Search results for: 1.5 degree Celsius temperature goal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12204

Search results for: 1.5 degree Celsius temperature goal

4494 Two-Step Patterning of Microfluidic Structures in Paper by Laser Cutting and Wax Printing for Mass Fabrication of Biosensor

Authors: Bong Keun Kang, Sung Suk Oh, Jeong-Woo Sohn, Jong-Ryul Choi, Young Ho Kim

Abstract:

In this paper, we describe two-step micro-pattering by using laser cutting and wax printing. Wax printing is performed only on the bridges for hydrophobic barriers. We prepared 405nm blue-violet laser module and wax pencil module. And, this two modules combine x-y plot. The hollow microstructure formed by laser patterning define the hydrophilic flowing paths. However, bridges are essential to avoid the cutting area being the island. Through the support bridges, microfluidic solution spread out to the unnecessary areas. Chromatography blotting paper was purchased from Whatman. We used 20x20 cm and 46x57 cm of chromatography blotting paper. Axis moving speed of x-y plot was the main parameter of optimization. For aligning between the two patterning, the paper sheet was taped at the bottom. After the two-step patterning, temperature curing step was done at 110-130 °C. The resolution of the fabrication and the potential of the multiplex detection were investigated.

Keywords: µPADs, microfluidic, biosensor, mass-fabrication

Procedia PDF Downloads 464
4493 Extension and Closure of a Field for Engineering Purpose

Authors: Shouji Yujiro, Memei Dukovic, Mist Yakubu

Abstract:

Fields are important objects of study in algebra since they provide a useful generalization of many number systems, such as the rational numbers, real numbers, and complex numbers. In particular, the usual rules of associativity, commutativity and distributivity hold. Fields also appear in many other areas of mathematics; see the examples below. When abstract algebra was first being developed, the definition of a field usually did not include commutativity of multiplication, and what we today call a field would have been called either a commutative field or a rational domain. In contemporary usage, a field is always commutative. A structure which satisfies all the properties of a field except possibly for commutativity, is today called a division ring ordivision algebra or sometimes a skew field. Also non-commutative field is still widely used. In French, fields are called corps (literally, body), generally regardless of their commutativity. When necessary, a (commutative) field is called corps commutative and a skew field-corps gauche. The German word for body is Körper and this word is used to denote fields; hence the use of the blackboard bold to denote a field. The concept of fields was first (implicitly) used to prove that there is no general formula expressing in terms of radicals the roots of a polynomial with rational coefficients of degree 5 or higher. An extension of a field k is just a field K containing k as a subfield. One distinguishes between extensions having various qualities. For example, an extension K of a field k is called algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is called transcendental. The aim of Galois Theory is the study of algebraic extensions of a field. Given a field k, various kinds of closures of k may be introduced. For example, the algebraic closure, the separable closure, the cyclic closure et cetera. The idea is always the same: If P is a property of fields, then a P-closure of k is a field K containing k, having property, and which is minimal in the sense that no proper subfield of K that contains k has property P. For example if we take P (K) to be the property ‘every non-constant polynomial f in K[t] has a root in K’, then a P-closure of k is just an algebraic closure of k. In general, if P-closures exist for some property P and field k, they are all isomorphic. However, there is in general no preferable isomorphism between two closures.

Keywords: field theory, mechanic maths, supertech, rolltech

Procedia PDF Downloads 366
4492 Potential Ecological Risk Assessment of Selected Heavy Metals in Sediments of Tidal Flat Marsh, the Case Study: Shuangtai Estuary, China

Authors: Chang-Fa Liu, Yi-Ting Wang, Yuan Liu, Hai-Feng Wei, Lei Fang, Jin Li

Abstract:

Heavy metals in sediments can cause adverse ecological effects while it exceeds a given criteria. The present study investigated sediment environmental quality, pollutant enrichment, ecological risk, and source identification for copper, cadmium, lead, zinc, mercury, and arsenic in the sediments collected from tidal flat marsh of Shuangtai estuary, China. The arithmetic mean integrated pollution index, geometric mean integrated pollution index, fuzzy integrated pollution index, and principal component score were used to characterize sediment environmental quality; fuzzy similarity and geo-accumulation Index were used to evaluate pollutant enrichment; correlation matrix, principal component analysis, and cluster analysis were used to identify source of pollution; environmental risk index and potential ecological risk index were used to assess ecological risk. The environmental qualities of sediment are classified to very low degree of contamination or low contamination. The similar order to element background of soil in the Liaohe plain is region of Sanjiaozhou, Honghaitan, Sandaogou, Xiaohe by pollutant enrichment analysis. The source identification indicates that correlations are significantly among metals except between copper and cadmium. Cadmium, lead, zinc, mercury, and arsenic will be clustered in the same clustering as the first principal component. Copper will be clustered as second principal component. The environmental risk assessment level will be scaled to no risk in the studied area. The order of potential ecological risk is As > Cd > Hg > Cu > Pb > Zn.

Keywords: ecological risk assessment, heavy metals, sediment, marsh, Shuangtai estuary

Procedia PDF Downloads 342
4491 Finite Element Modeling of a Lower Limb Based on the East Asian Body Characteristics for Pedestrian Protection

Authors: Xianping Du, Runlu Miao, Guanjun Zhang, Libo Cao, Feng Zhu

Abstract:

Current vehicle safety standards and human body injury criteria were established based on the biomechanical response of Euro-American human body, without considering the difference in the body anthropometry and injury characteristics among different races, particularly the East Asian people with smaller body size. Absence of such race specific design considerations will negatively influence the protective performance of safety products for these populations, and weaken the accuracy of injury thresholds derived. To resolve these issues, in this study, we aim to develop a race specific finite element model to simulate the impact response of the lower extremity of a 50th percentile East Asian (Chinese) male. The model was built based on medical images for the leg of an average size Chinese male and slightly adjusted based on the statistical data. The model includes detailed anatomic features and is able to simulate the muscle active force. Thirteen biomechanical tests available in the literature were used to validate its biofidelity. Using the validated model, a pedestrian-car impact accident taking place in China was re-constructed computationally. The results show that the newly developed lower leg model has a good performance in predicting dynamic response and tibia fracture pattern. An additional comparison on the fracture tolerance of the East Asian and Euro-American lower limb suggests that the current injury criterion underestimates the degree of injury of East Asian human body.

Keywords: lower limb, East Asian body characteristics, traffic accident reconstruction, finite element analysis, injury tolerance

Procedia PDF Downloads 283
4490 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method

Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández

Abstract:

Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.

Keywords: manganese-gallium ferrite, magnetic hyperthermia, heating ability, cytotoxicity

Procedia PDF Downloads 389
4489 Energy Analysis of an Ejector Based Solar Assisted Trigeneration System for Dairy Application

Authors: V. Ravindra, P. A. Saikiran, M. Ramgopal

Abstract:

This paper presents an energy analysis of a solar assisted trigeneration system using an Ejector for dairy applications. The working fluid in the trigeneration loop is Supercritical CO₂. The trigeneration system is a combination of Brayton cycle and ejector based vapor compression refrigeration cycle. The heating and cooling outputs are used for simultaneous pasteurization and chilling of the milk. The electrical power is used to drive the auxiliary equipment in the dairy plant. A numerical simulation is done with Engineering Equation Solver (EES), and a parametric analysis is performed by varying the operating variables over a meaningful range. The results show that the overall performance index decreases with increase in ambient temperature. For an ejector based system, the compressor work and cooling output are significant output quantities. An increase in total mass flow rate of the refrigerant (primary + secondary) results in an increase in the compressor work and cooling output.

Keywords: trigeneration, solar thermal, supercritical CO₂, ejector

Procedia PDF Downloads 119
4488 Effects of Different Processing Methods on Composition, Physicochemical and Morphological Properties of MR263 Rice Flour

Authors: R. Asmeda, A. Noorlaila, M. H. Norziah

Abstract:

This research work was conducted to investigate the effects of different grinding techniques during the milling process of rice grains on physicochemical characteristics of rice flour produced. Dry grinding, semi-wet grinding, and wet grinding were employed to produce the rice flour. The results indicated that different grinding methods significantly (p ≤ 0.05) affected physicochemical and functional properties of starch except for the carbohydrate content, x-ray diffraction pattern and breakdown viscosity. Dry grinding technique caused highest percentage of starch damage compared to semi-wet and wet grinding. Protein, fat and ash content were highest in rice flour obtained by dry grinding. It was found that wet grinding produce flour with smallest average particle size (8.52 µm), resulting in highest process yield (73.14%). Pasting profiles revealed that dry grinding produce rice flour with significantly lowest pasting temperature and highest setback viscosity.

Keywords: average particle size, grinding techniques, physicochemical characteristics, rice flour

Procedia PDF Downloads 191
4487 Investigation of the Physicochemistry in Leaching of Blackmass for the Recovery of Metals from Spent Lithium-Ion Battery

Authors: Alexandre Chagnes

Abstract:

Lithium-ion battery is the technology of choice in the development of electric vehicles. This technology is now mature, although there are still many challenges to increase their energy density while ensuring an irreproachable safety of use. For this goal, it is necessary to develop new cathodic materials that can be cycled at higher voltages and electrolytes compatible with these materials. But the challenge does not only concern the production of efficient batteries for the electrochemical storage of energy since lithium-ion battery technology relies on the use of critical and/or strategic value resources. It is, therefore, crucial to include Lithium-ion batteries development in a circular economy approach very early. In particular, optimized recycling and reuse of battery components must both minimize their impact on the environment and limit geopolitical issues related to tensions on the mineral resources necessary for lithium-ion battery production. Although recycling will never replace mining, it reduces resource dependence by ensuring the presence of exploitable resources in the territory, which is particularly important for countries like France, where exploited or exploitable resources are limited. This conference addresses the development of a new hydrometallurgical process combining leaching of cathodic material from spent lithium-ion battery in acidic chloride media and solvent extraction process. Most of recycling processes reported in the literature rely on the sulphate route, and a few studies investigate the potentialities of the chloride route despite many advantages and the possibility to develop new chemistry, which could get easier the metal separation. The leaching mechanisms and the solvent extraction equilibria will be presented in this conference. Based on the comprehension of the physicochemistry of leaching and solvent extraction, the present study will introduce a new hydrometallurgical process for the production of cobalt, nickel, manganese and lithium from spent cathodic materials.

Keywords: lithium-ion battery, recycling, hydrometallurgy, leaching, solvent extraction

Procedia PDF Downloads 76
4486 Synthesis and Characterization of Akermanite Nanoparticles (AMN) as a Bio-Ceramic Nano Powder by Sol-Gel Method for Use in Biomedical

Authors: Seyedmahdi Mousavihashemi

Abstract:

Natural Akermanite (NAM) has been successfully prepared by a modified sol-gel method. Optimization in calcination temperature and mechanical ball milling resulted in a pure and nano-sized powder which characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared Spectroscopy (FT–IR). We hypothesized that nano-sized Akermanite (AM) would mimic more efficiently the nanocrystal structure and function of natural bone apatite, owing to the higher surface area, compare to conventional micron-size Akermanite (AM). Accordingly, we used the unique advantage of nanotechnology to improve novel nano akermanite particles as a potential candidate for bone tissue regeneration whether as a per implant filling powder or in combination with other biomaterials as a composite scaffold. Pure Akermanite (PAM) powders were successfully obtained via a simple sol-gel method followed by calcination at 1250 °C. Mechanical grinding in a ceramic ball mill for 7 hours resulted in akermanite (AM) nanoparticles in the range of about 30- 45 nm.

Keywords: biomedical engineering, nano composite, SEM, TEM

Procedia PDF Downloads 232
4485 The Impact of Model Specification Decisions on the Teacher ValuE-added Effectiveness: Choosing the Correct Predictors

Authors: Ismail Aslantas

Abstract:

Value-Added Models (VAMs), the statistical methods for evaluating the effectiveness of teachers and schools based on student achievement growth, has attracted decision-makers’ and researchers’ attention over the last decades. As a result of this attention, many studies have conducted in recent years to discuss these statistical models from different aspects. This research focused on the importance of conceptual variables in VAM estimations; therefor, this research was undertaken to examine the extent to which value-added effectiveness estimates for teachers can be affected by using context predictions. Using longitudinal data over three years from the international school context, value-added teacher effectiveness was estimated by ordinary least-square value-added models, and the effectiveness of the teachers was examined. The longitudinal dataset in this study consisted of three major sources: students’ attainment scores up to three years and their characteristics, teacher background information, and school characteristics. A total of 1,027 teachers and their 35,355 students who were in eighth grade were examined for understanding the impact of model specifications on the value-added teacher effectiveness evaluation. Models were created using selection methods that adding a predictor on each step, then removing it and adding another one on a subsequent step and evaluating changes in model fit was checked by reviewing changes in R² values. Cohen’s effect size statistics were also employed in order to find out the degree of the relationship between teacher characteristics and their effectiveness. Overall, the results indicated that prior attainment score is the most powerful predictor of the current attainment score. 47.1 percent of the variation in grade 8 math score can be explained by the prior attainment score in grade 7. The research findings raise issues to be considered in VAM implementations for teacher evaluations and make suggestions to researchers and practitioners.

Keywords: model specification, teacher effectiveness, teacher performance evaluation, value-added model

Procedia PDF Downloads 127
4484 The Effect of Vertical Integration on Operational Performance: Evaluating Physician Employment in Hospitals

Authors: Gary Young, David Zepeda, Gilbert Nyaga

Abstract:

This study investigated whether vertical integration of hospitals and physicians is associated with better care for patients with cardiac conditions. A dramatic change in the U.S. hospital industry is the integration of hospital and physicians through hospital acquisition of physician practices. Yet, there is little evidence regarding whether this form of vertical integration leads to better operational performance of hospitals. The study was conducted as an observational investigation based on a pooled, cross-sectional database. The study sample comprised over hospitals in the State of California. The time frame for the study was 2010 to 2012. The key performance measure was hospitals’ degree of compliance with performance criteria set out by the federal government for managing patients with cardiac conditions. These criteria relate to the types of clinical tests and medications that hospitals should follow for cardiac patients but hospital compliance requires the cooperation of a hospital’s physicians. Data for this measure was obtained from a federal website that presents performance scores for U.S. hospitals. The key independent variable was the percentage of cardiologists that a hospital employs (versus cardiologists who are affiliated but not employed by the hospital). Data for this measure was obtained from the State of California which requires hospitals to report financial and operation data each year including numbers of employed physicians. Other characteristics of hospitals (e.g., information technology for cardiac care, volume of cardiac patients) were also evaluated as possible complements or substitutes for physician employment by hospitals. Additional sources of data included the American Hospital Association and the U.S. Census. Empirical models were estimated with generalized estimating equations (GEE). Findings suggest that physician employment is positively associated with better hospital performance for cardiac care. However, findings also suggest that information technology is a substitute for physician employment.

Keywords: physician employment, hospitals, verical integration, cardiac care

Procedia PDF Downloads 393
4483 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study

Authors: W. Hasan, H. Farhat

Abstract:

A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.

Keywords: lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio

Procedia PDF Downloads 363
4482 Religion and Democracy: Assessing Tolerance in the Diversity of Indonesia

Authors: Harsi Nastiti, Haidar Fikri

Abstract:

Indonesia has been known for its diversity of cultures, ethnics, religions, and races. This diversity signs as the uniqueness of the country, so tolerance becomes vital point here. As a unitary state, tolerance value is established strongly as the foundation of democracy implementation but recently this tolerance condition facing up some problems after regional election. In this case, religion issue takes a main role for the Indonesian political system which is managed into tolerance breaker especially for local democracy. The election of Jakarta’s Governor 2017 can be said as the momentum for the people to rethink the democracy and tolerance meaning. It begins from one of the governor candidates who makes statement about the majority religion and unfortunately the candidate comes from the minority. The statement emerges into a new social movement based on religiosity. Basically, the social movement which is coordinated by Islamic Defender Front (Front Pembela Islam or FPI) and National Movement to Safeguard the Fatwa-Indonesian Ulama Council (GNPF-MUI) want to demand the justice in the name of blasphemy. The action continuously happens in different names (Action 411, 212, etc.). So, this article analyzes the new phenomenon and how does the impact for the tolerance and democracy life in Indonesia. The method is using qualitative method by review of literature and media content analysis. Results show this phenomenon potentially spreading new conflicts far beyond the goal of the action itself; justice. It makes the conflicts more complex after there are actions such as; Parade Kebhinekaan and Aksi Lilin which contrary reacts to the actions before. These actions and reactions rise up the sensitive issues for Indonesia like religions, Pancasila, unity in diversity, ethnics, and races. At the same time raising skepticism; will it be over after the candidate is getting sentenced or becomes the dangerous latent conflict that will threaten tolerance and democracy in Indonesia.

Keywords: conflict, democracy, religion, tolerance

Procedia PDF Downloads 287
4481 New Ethanol Method for Soft Tissue Imaging in Micro-CT

Authors: Matej Patzelt, Jan Dudak, Frantisek Krejci, Jan Zemlicka, Vladimir Musil, Jitka Riedlova, Viktor Sykora, Jana Mrzilkova, Petr Zach

Abstract:

Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to create a new fixation method for soft tissue imaging in micro-CT. Methodology: We used organs of 18 mice - heart, lungs, kidneys, liver and brain, which we fixated in ethanol after meticulous preparation. We fixated organs in different concentrations of ethanol and for different period of time. We used three types of ethanol concentration - 97%, 50% and ascending ethanol concentration (25%, 50%, 75%, 97% each for 12 hours). Fixated organs were scanned after 72 hours, 168 hours and 336 hours period of fixation. We scanned all specimens in micro-CT MARS (Medipix All Resolution System). Results: Ethanol method provided contrast enhancement in all studied organs in all used types of fixation. Fixation in 97% ethanol provided very fast fixation and the contrast among the tissues was visible already after 72 hours of fixation. Fixation for the period of 168 and 336 hours gave better details, especially in lung tissue, where alveoli were visualized. On the other hand, this type of fixation caused organs to petrify. Fixation in 50% ethanol provided best results in 336 hours fixation, details were visualized better than in 97% ethanol and samples were not as hard as in fixation in 97% ethanol. Best results were obtained in fixation in ascending ethanol concentration. All organs were visualized in great details, best-visualized organ was heart, where trabeculae and valves were visible. In this type of fixation, organs stayed soft for whole time. Conclusion: New ethanol method is a great option for soft tissue fixation as well as the method for enhancing contrast among tissues in organs. The best results were obtained with fixation of the organs in ascending ethanol concentration, the best visualized organ was the heart.

Keywords: x-ray imaging, small animals, ethanol, ex-vivo

Procedia PDF Downloads 316
4480 Neighbouring and Sense of Community in Participatory Social Housing Estates in Algeria

Authors: Farida Naceur

Abstract:

Algerian cities experienced after the independence of the country a rapid urbanisation process fostered by population growth. In order to deal with the severe housing shortage resulted, large social public housing programs totally financed by the government were launched across the country during the eighty. Unfortunately, the standardized multistory buildings produced underwent intense deterioration and turned very quickly after their occupancy into sources of nuisance and distress. The government adopted a new housing policy in 2000, which aims to diversify housing types according to household incomes and encourage access to housing property. The model of participatory social housing emerged; it was designed for the intermediate groups, allowing them to benefit from direct financial aid and to borrow credit from banks in order to purchase their dwellings. Twenty years afterward, no assessment to date has been established to evaluate the real impact of such a strategy. The aim of this paper is to examine whether this type of housing helped to stimulate a participative dynamism among its occupants to strengthen their commitment, their involvement in the maintenance and keeping of their surroundings. For the purpose of the study, we focus our attention on various participatory social housing settlements in Batna and Biskra, two medium-sized cities in eastern Algeria. The investigation is structured in various types of analysis: a spatial analysis, observations, interviews with public authorities representatives, chief planners, and experts. In addition to this, informal interviews with occupants of various participatory social housing settlements were arranged to collect qualitative data. Occupants were asked open questions focusing on their daily life and practices in order to examine their degree of involvement in their neighbourhood’s life.

Keywords: participatory social housing, rental social housing, involvement, maintenance, social interactions, community life

Procedia PDF Downloads 39
4479 Optimizing PelletPAVE Rubberized Asphalt MIX Design Using Gyratory Compaction and Volumetrics

Authors: Hussain Al-Baghli

Abstract:

In comparison to hot mix asphalt (HMAs) composed of non-modified bitumens, the superior performance of rubberized HMAs is very well documented, and numerous trials in the USA and elsewhere have demonstrated excellent performance in terms of creep, fatigue, and durability. In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high-temperature rutting and moisture-induced raveling. Pelletpave additive was selected as the preferred technology since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.

Keywords: modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties

Procedia PDF Downloads 177
4478 Interpreting Possibilities: Teaching Without Borders

Authors: Mira Kadric

Abstract:

The proposed paper deals with a new developed approach for interpreting teaching, combining traditional didactics with a new element. The fundamental principle of the approach is taken from the theatre pedagogy (Augusto Boal`s Theatre of the Oppressed) and includes the discussion on social power relations. From the point of view of education sociology this implies strengthening students’ individual potential for self-determination on a number of levels, especially in view of the present increase in social responsibility. This knowledge constitutes a starting point and basis for the process of self-determined action. This takes place in the context of a creative didactic policy which identifies didactic goals, provides clear sequences of content, specifies interdisciplinary methods and examines their practical adequacy and ultimately serves not only individual translators and interpreters, but all parties involved. The goal of the presented didactic model is to promote independent work and problem-solving strategies; this helps to develop creative potential and self-confident behaviour. It also conveys realistic knowledge of professional reality and thus also of the real socio-political and professional parameters involved. As well as providing a discussion of fundamental questions relevant to Translation and Interpreting Studies, this also serves to improve this interdisciplinary didactic approach which simulates interpreting reality and illustrates processes and strategies which (can) take place in real life. This idea is illustrated in more detail with methods taken from the Theatre of the Oppressed created by Augusto Boal. This includes examples from (dialogue) interpreting teaching based on documentation from recordings made in a seminar in the summer term 2014.

Keywords: augusto boal, didactic model, interpreting teaching, theatre of the oppressed

Procedia PDF Downloads 421
4477 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour

Authors: Deepak Loura

Abstract:

Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.

Keywords: climate change, global warming, crop production, climate resilient agriculture

Procedia PDF Downloads 70
4476 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.

Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution

Procedia PDF Downloads 285
4475 Efficacy of Light-Emitting Diode-Mediated Photobiomodulation in Tendon Healing in a Murine Model

Authors: Sukwoong Kang

Abstract:

Background: The application of light-emitting diode (LED)-dependent photobiomodulation (PBM) in promoting post-tendon injury healing has been recently reported. Despite the establishment of a theoretical basis for ligament restoration through PBM, the lack of any empirical evidence deems this therapeutic strategy contentious. Therefore, the aim of this study was to investigate the potency of LED-based PBM in facilitating tendon healing in a murine model. Methods: Migration kinetics were analyzed at two specific wavelengths: 630 and 880 nm. The Achilles tendon in the hind limbs of Balb/c mice was severed via Achilles tendon transection. Subsequently, the mice were randomized into LED non-irradiation and LED irradiation groups. Mice with intact tendons were employed as healthy controls. The wounds were LED-irradiated for 20 min daily for two days. Histological properties, tendon healing mediators, and inflammatory mediators were screened on day 14. Results: The roundness of the nuclei and fiber structure, indicating the degree of infiltrated inflammatory cells and severity of fiber fragmentation, respectively, were considerably lower in the LED irradiation group than in the LED non-irradiation group. Immunohistochemical analysis depicted an increase in tenocytes (SCX+ cells) and a recovery of wounds with reduced fibrosis (lower collagen 3 and TGF-β1) in the LED irradiation group during healing; conversely, the LED non-irradiation group exhibited tissue fibrosis. The ratio of M2 macrophages to total macrophages was higher in the LED irradiation group than in the injured group. Conclusion: LED-based PBM in the Achilles tendon rupture murine model effectuated a rapid restoration of histological and immunochemical outcomes. The aforementioned findings suggest that LED-based PBM presents remarkable potential as an adjunct therapeutic for tendon healing and warrants further research to standardize various parameters to advance and establish it as a reliable treatment regime.

Keywords: photobiomodulation, light-emitting diode, tendon, regeneration

Procedia PDF Downloads 39
4474 Predicting the Potential Geographical Distribution of the Banana Aphid (Pentalonia nigronervosa) as Vector of Banana Bunchy Top Virus Using Diva-GIS

Authors: Marilyn Painagan

Abstract:

This study was conducted to predict the potential geographical distribution of the banana aphid (Pentalonia negronervosa) in North Cotabato through climate envelope approach of DIVA-GIS, a software for analyzing the distribution of organisms to elucidate geographic and ecological patterns. A WorldClim database that was based on weather conditions recorded last 1950 to 2000 with a spatial resolution of approximately 1x1 km. was used in the bioclimatic modelling, this database includes temperature, precipitation, evapotranspiration and bioclimatic variables which was measured at many different locations, a bioclimatic modelling was done in the study. The study revealed that the western part of Magpet and Arakan and the municipality of Antipas are at high potential risk of occurrence of banana aphid while it is not likely to occur in the municipalities of Aleosan, Midsayap, Pikit, M’lang and Tulunan. The result of this study can help developed strategies for monitoring and managing this serious pest of banana and to prepare a mitigation measures on those areas that are potential for future infestation.

Keywords: banana aphid, bioclimatic model, bunchy top, climatic envelope approach

Procedia PDF Downloads 251
4473 Philosophy, Geometry, and Purpose in Islamic and Gothic Architecture as Two Religious-Based Styles

Authors: P. Nafisi Poor, P. Javid

Abstract:

Religion and divinity have always held important meaning to humans, and therefore it affects different aspects of life including art and architecture. Numerous works of art are related to religion whether supporting or denying it. Religion and religious scholars have influenced and changed art throughout history. This paper focuses on Islam and Christianity because these two religions have been the most discussed and most popular of all time, starting from the birth of Jesus to the arrival of Mohammad. Based on this popularity, these religions have influenced the arts and especially architecture. Islam on one hand changed Iranian and Arabian architecture and they applied it in different places around the world. From the appearance of Islam at 622 AD to this day, Islamic architecture has been evolving; however, one of the most important periods for this style was between 1501 AD and 1736 AD in Iran. Christianity, on the other hand, changed European architecture especially between 1150 AD and 1450 AD or the so-called "Gothic" era, which begins at medieval time and reaches its peak at International Gothic ages. At both of these periods, designing buildings based on spiritual concepts and divine statements reached its peak, and architects were considering God and religion as their center of attention. This article studies the focus on the religions of Islam and Christianity in terms of architecture and presents a general philosophy of both styles to comprehend the idea behind each one, followed by an analysis of their geometry and architectural aspects derived from the best examples, all to understand the purpose of each style and to realize, which one was more successful in reaching their purpose. Subsequently, a comprehensive review of each building is provided including 3D visualizations to help achieve the goal of the article. These studies can support diverse inquiries about both Islamic and Gothic architecture and can be used as a resource to support studies and research towards designing based on religion or for divine purposes.

Keywords: architecture, Gothic, Islamic, religion

Procedia PDF Downloads 136
4472 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human

Authors: Sarah Pasala, Elizabeth Zacharias

Abstract:

Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.

Keywords: composites, flexible, non-invasive, piezoelectric

Procedia PDF Downloads 32
4471 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 48
4470 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy

Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti

Abstract:

Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.

Keywords: beneficial insects, corn borer management, drones, precision agriculture

Procedia PDF Downloads 98
4469 Developing an Automated Protocol for the Wristband Extraction Process Using Opentrons

Authors: Tei Kim, Brooklynn McNeil, Kathryn Dunn, Douglas I. Walker

Abstract:

To better characterize the relationship between complex chemical exposures and disease, our laboratory uses an approach that combines low-cost, polydimethylsiloxane (silicone) wristband samplers that absorb many of the chemicals we are exposed to with untargeted high-resolution mass spectrometry (HRMS) to characterize 1000’s of chemicals at a time. In studies with human populations, these wristbands can provide an important measure of our environment: however, there is a need to use this approach in large cohorts to study exposures associated with the disease. To facilitate the use of silicone samplers in large scale population studies, the goal of this research project was to establish automated sample preparation methods that improve throughput, robustness, and scalability of analytical methods for silicone wristbands. Using the Opentron OT2 automated liquid platform, which provides a low-cost and opensource framework for automated pipetting, we created two separate workflows that translate the manual wristband preparation method to a fully automated protocol that requires minor intervention by the operator. These protocols include a sequence generation step, which defines the location of all plates and labware according to user-specified settings, and a transfer protocol that includes all necessary instrument parameters and instructions for automated solvent extraction of wristband samplers. These protocols were written in Python and uploaded to GitHub for use by others in the research community. Results from this project show it is possible to establish automated and open source methods for the preparation of silicone wristband samplers to support profiling of many environmental exposures. Ongoing studies include deployment in longitudinal cohort studies to investigate the relationship between personal chemical exposure and disease.

Keywords: bioinformatics, automation, opentrons, research

Procedia PDF Downloads 104
4468 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 175
4467 Macroeconomic Policy Coordination and Economic Growth Uncertainty in Nigeria

Authors: Ephraim Ugwu, Christopher Ehinomen

Abstract:

Despite efforts by the Nigerian government to harmonize the macroeconomic policy implementations by establishing various committees to resolve disputes between the fiscal and monetary authorities, it is still evident that the federal government had continued its expansionary policy by increasing spending, thus creating huge budget deficit. This study evaluates the effect of macroeconomic policy coordination on economic growth uncertainty in Nigeria from 1980 to 2020. Employing the Auto regressive distributed lag (ARDL) bound testing procedures, the empirical results shows that the error correction term, ECM(-1), indicates a negative sign and is significant statistically with the t-statistic value of (-5.612882 ). Therefore, the gap between long run equilibrium value and the actual value of the dependent variable is corrected with speed of adjustment equal to 77% yearly. The long run coefficient results showed that the estimated coefficients of the intercept term indicates that other things remains the same (ceteris paribus), the economics growth uncertainty will continue reduce by 7.32%. The coefficient of the fiscal policy variable, PUBEXP, indicates a positive sign and significant statistically. This implies that as the government expenditure increases by 1%, economic growth uncertainty will increase by 1.67%. The coefficient of monetary policy variable MS also indicates a positive sign and insignificant statistically. The coefficients of merchandise trade variable, TRADE and exchange rate EXR show negative signs and significant statistically. This indicate that as the country’s merchandise trade and the rate of exchange increases by 1%, the economic growth uncertainty reduces by 0.38% and 0.06%, respectively. This study, therefore, advocate for proper coordination of monetary, fiscal and exchange rate policies in order to actualize the goal of achieving a stable economic growth.

Keywords: macroeconomic, policy coordination, growth uncertainty, ARDL, Nigeria

Procedia PDF Downloads 119
4466 N-Heterocyclic Carbene Based Dearomatized Iridium Complex as an Efficient Catalyst towards Carbon-Carbon Bond Formation via Hydrogen Borrowing Strategy

Authors: Mandeep Kaur, Jitendra K. Bera

Abstract:

The search for atom-economical and green synthetic methods for the synthesis of functionalized molecules has attracted much attention. Metal ligand cooperation (MLC) plays a pivotal role in organometallic catalysis to activate C−H, H−H, O−H, N−H and B−H bonds through reversible bond breaking and bond making process. Towards this goal, a bifunctional N─heterocyclic carbene (NHC) based pyridyl-functionalized amide ligand precursor, and corresponding dearomatized iridium complex was synthesized. The NMR and UV/Vis acid titration study have been done to prove the proton response nature of the iridium complex. Further, the dearomatized iridium complex explored as a catalyst on the platform of MLC via dearomatzation/aromatization mode of action towards atom economical α and β─alkylation of ketones and secondary alcohols by using primary alcohols through hydrogen borrowing methodology. The key features of the catalysis are high turnover frequency (TOF) values, low catalyst loading, low base loading and no waste product. The greener syntheses of quinoline, lactone derivatives and selective alkylation of drug molecules like pregnenolone and testosterone were also achieved successfully. Another structurally similar iridium complex was also synthesized with modified ligand precursor where a pendant amide unit was absent. The inactivity of this analogue iridium complex towards catalysis authenticated the participation of proton responsive imido sidearm of the ligand to accelerate the catalytic reaction. The mechanistic investigation through control experiments, NMR and deuterated labeling study, authenticate the borrowing hydrogen strategy.

Keywords: C-C bond formation, hydrogen borrowing, metal ligand cooperation (MLC), n-heterocyclic carbene

Procedia PDF Downloads 176
4465 Thermal Comfort Characteristics in an Enclosure with a Radiant Ceiling Heating and Floor Air Heating System

Authors: Seung-Ho Yoo, Jong-Ryeul Sohn

Abstract:

An environmental friendly or efficient heating & cooling systems attract a great attention, due to the energy or environmental problems. Especially the heat balance of human body is about 50% influenced by radiation exchange in built environment. Therefore, a thermal comfort characteristics in a radiant built environment need to be accessed through the development of an efficient evaluation method. Almost of Korean housings use traditionally the radiant floor heating system. A radiant cooling system attracts also many attention nowadays in the viewpoint of energy conservation and comfort. Thermal comfort characteristics in an enclosure with a radiant heating and cooling system are investigated by experiment, thermal sensation vote analysis and mean radiant temperature simulation. Asymmetric radiation between radiant heating ceiling and air heating system in 9 points of room is compared with each other.

Keywords: radiant heating and cooling ceiling, asymmetric radiation, thermal comfort, thermal sensation vote

Procedia PDF Downloads 508