Search results for: SEM observations of the fracture surface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8551

Search results for: SEM observations of the fracture surface

931 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane

Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua

Abstract:

Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.

Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability

Procedia PDF Downloads 325
930 Polymer Mediated Interaction between Grafted Nanosheets

Authors: Supriya Gupta, Paresh Chokshi

Abstract:

Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.

Keywords: clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory

Procedia PDF Downloads 252
929 Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content.

Keywords: spray drying, propolis, maltodextrin, encapsulation, scanning electron microscopy

Procedia PDF Downloads 288
928 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based

Procedia PDF Downloads 156
927 Angiogenic, Cytoprotective, and Immunosuppressive Properties of Human Amnion and Chorion-Derived Mesenchymal Stem Cells

Authors: Kenichi Yamahara, Makiko Ohshima, Shunsuke Ohnishi, Hidetoshi Tsuda, Akihiko Taguchi, Toshihiro Soma, Hiroyasu Ogawa, Jun Yoshimatsu, Tomoaki Ikeda

Abstract:

We have previously reported the therapeutic potential of rat fetal membrane(FM)-derived mesenchymal stem cells (MSCs) using various rat models including hindlimb ischemia, autoimmune myocarditis, glomerulonephritis, renal ischemia-reperfusion injury, and myocardial infarction. In this study, 1) we isolated and characterized MSCs from human amnion and chorion; 2) we examined their differences in the expression profile of growth factors and cytokines; and 3) we investigated the therapeutic potential and difference of these MSCs using murine hindlimb ischemia and acute graft-versus-host disease (GVHD) models. Isolated MSCs from both amnion and chorion layers of FM showed similar morphological appearance, multipotency, and cell-surface antigen expression. Conditioned media obtained from amnion- and chorion-derived MSCs inhibited cell death caused by serum starvation or hypoxia in endothelial cells and cardiomyocytes. Amnion and chorion MSCs secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Transplantation of human amnion or chorion MSCs significantly increased blood flow and capillary density in a murine hindlimb ischemia model. In addition, compared to human chorion MSCs, human amnion MSCs markedly reduced T-lymphocyte proliferation with the enhanced secretion of PGE2, and improved the pathological situation of a mouse model of GVHD disease. Our results highlight that human amnionand chorion-derived MSCs, which showed differences in their soluble factor secretion and angiogenic/immuno-suppressive function, could be ideal cell sources for regenerative medicine.

Keywords: amnion, chorion, fetal membrane, mesenchymal stem cells

Procedia PDF Downloads 417
926 Magnetic Bio-Nano-Fluids for Hyperthermia

Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak

Abstract:

Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.

Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron

Procedia PDF Downloads 416
925 Assessment of the Performance of the Sonoreactors Operated at Different Ultrasound Frequencies, to Remove Pollutants from Aqueous Media

Authors: Gabriela Rivadeneyra-Romero, Claudia del C. Gutierrez Torres, Sergio A. Martinez-Delgadillo, Victor X. Mendoza-Escamilla, Alejandro Alonzo-Garcia

Abstract:

Ultrasonic degradation is currently being used in sonochemical reactors to degrade pollutant compounds from aqueous media, as emerging contaminants (e.g. pharmaceuticals, drugs and personal care products.) because they can produce possible ecological impacts on the environment. For this reason, it is important to develop appropriate water and wastewater treatments able to reduce pollution and increase reuse. Pollutants such as textile dyes, aromatic and phenolic compounds, cholorobenzene, bisphenol-A and carboxylic acid and other organic pollutants, can be removed from wastewaters by sonochemical oxidation. The effect on the removal of pollutants depends on the type of the ultrasonic frequency used; however, not much studies have been done related to the behavior of the fluid into the sonoreactors operated at different ultrasonic frequencies. Based on the above, it is necessary to study the hydrodynamic behavior of the liquid generated by the ultrasonic irradiation to design efficient sonoreactors to reduce treatment times and costs. In this work, it was studied the hydrodynamic behavior of the fluid in sonochemical reactors at different frequencies (250 kHz, 500 kHz and 1000 kHz). The performances of the sonoreactors at those frequencies were simulated using computational fluid dynamics (CFD). Due to there is great sound speed gradient between piezoelectric and fluid, k-e models were used. Piezoelectric was defined as a vibration surface, to evaluate the different frequencies effect on the fluid into sonochemical reactor. Structured hexahedral cells were used to mesh the computational liquid domain, and fine triangular cells were used to mesh the piezoelectric transducers. Unsteady state conditions were used in the solver. Estimation of the dissipation rate, flow field velocities, Reynolds stress and turbulent quantities were evaluated by CFD and 2D-PIV measurements. Test results show that there is no necessary correlation between an increase of the ultrasonic frequency and the pollutant degradation, moreover, the reactor geometry and power density are important factors that should be considered in the sonochemical reactor design.

Keywords: CFD, reactor, ultrasound, wastewater

Procedia PDF Downloads 191
924 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 214
923 Characterisation of Extracellular Polymeric Substances from Bacteria Isolated from Acid Mine Decant in Gauteng, South Africa

Authors: Nonhlanhla Nkosi, Kulsum Kondiah

Abstract:

The toxicological manifestation of heavy metals motivates interest towards the development of a reliable, eco-friendly biosorption process. With that being said, the aim of the current study was to characterise the EPS from heavy-metal resistant bacteria isolated from acid mine decant on the West Rand, Gauteng, South Africa. To achieve this, six exopolysaccharide (EPS) producing, metal resistant strains (Pb101, Pb102, Pb103, Pb204, Co101, and Ni101) were identified as Bacillus safensis strain NBRC 100820, Bacillus proteolyticus, Micrococcus luteus, Enterobacter sp. Pb204, Bacillus wiedmannii and Bacillus zhangzhouensis, respectively with 16S rRNA sequencing. Thereafter, EPS was extracted using chemical (formaldehyde/NaOH) and physical (ultrasonification) methods followed by physicochemical characterisation of carbohydrate, DNA, and protein contents using chemical assays and spectroscopy (FTIR- Fourier transformed infrared and 3DEEM- three-dimensional excitation-emission matrix fluorescence spectroscopy). EPS treated with formaldehyde/NaOH showed better recovery of macromolecules than ultrasonification. The results of the present study showed that carbohydrates were more abundant than proteins, with carbohydrate and protein concentrations of 8.00 mg/ml and 0.22 mg/ml using chemical method in contrast to 5.00 mg/ml and 0.77 mg/ml using physical method, respectively. The FTIR spectroscopy results revealed that the extracted EPS contained hydroxyl, amide, acyl, and carboxyl groups that corresponded to the aforementioned chemical analysis results, thus asserting the presence of carbohydrates, DNA, polysaccharides, and proteins in the EPS. These findings suggest that identified functional groups of EPS form surface charges, which serve as the binding sites for suspended particles, thus possibly mediating adsorption of divalent cations and heavy metals. Using the extracted EPS in the development of a cost-effective biosorption solution for industrial wastewater treatment is attainable.

Keywords: biosorbent, exopolysaccharides, heavy metals, wastewater treatment

Procedia PDF Downloads 149
922 Study on Accurate Calculation Method of Model Attidude on Wind Tunnel Test

Authors: Jinjun Jiang, Lianzhong Chen, Rui Xu

Abstract:

The accurate of model attitude angel plays an important role on the aerodynamic test results in the wind tunnel test. The original method applies the spherical coordinate system transformation to obtain attitude angel calculation.The model attitude angel is obtained by coordinate transformation and spherical surface mapping applying the nominal attitude angel (the balance attitude angel in the wind tunnel coordinate system) indicated by the mechanism. First, the coordinate transformation of this method is not only complex but also difficult to establish the transformed relationship between the space coordinate systems especially after many steps of coordinate transformation, moreover it cannot realize the iterative calculation of the interference relationship between attitude angels; Second, during the calculate process to solve the problem the arc is approximately used to replace the straight line, the angel for the tangent value, and the inverse trigonometric function is applied. Therefore, in the calculation of attitude angel, the process is complex and inaccurate, which can be solved approximately when calculating small attack angel. However, with the advancing development of modern aerodynamic unsteady research, the aircraft tends to develop high or super large attack angel and unsteadyresearch field.According to engineering practice and vector theory, the concept of vector angel coordinate systemis proposed for the first time, and the vector angel coordinate system of attitude angel is established.With the iterative correction calculation and avoiding the problem of approximate and inverse trigonometric function solution, the model attitude calculation process is carried out in detail, which validates that the calculation accuracy and accuracy of model attitude angels are improved.Based on engineering and theoretical methods, a vector angel coordinate systemis established for the first time, which gives the transformation and angel definition relations between different flight attitude coordinate systems, that can accurately calculate the attitude angel of the corresponding coordinate systemand determine its direction, especially in the channel coupling calculation, the calculation of the attitude angel between the coordinate systems is only related to the angel, and has nothing to do with the change order s of the coordinate system, whichsimplifies the calculation process.

Keywords: attitude angel, angel vector coordinate system, iterative calculation, spherical coordinate system, wind tunnel test

Procedia PDF Downloads 150
921 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 191
920 Thickness-Tunable Optical, Magnetic, and Dielectric Response of Lithium Ferrite Thin Film Synthesized by Pulsed Laser Deposition

Authors: Prajna Paramita Mohapatra, Pamu Dobbidi

Abstract:

Lithium ferrite (LiFe5O8) has potential applications as a component of microwave magnetic devices such as circulators and monolithic integrated circuits. For efficient device applications, spinel ferrites in the form of thin films are highly required. It is necessary to improve their magnetic and dielectric behavior by optimizing the processing parameters during deposition. The lithium ferrite thin films are deposited on Pt/Si substrate using the pulsed laser deposition technique (PLD). As controlling the film thickness is the easiest parameter to tailor the strain, we deposited the thin films having different film thicknesses (160 nm, 200 nm, 240 nm) at oxygen partial pressure of 0.001 mbar. The formation of single phase with spinel structure (space group - P4132) is confirmed by the XRD pattern and the Rietveld analysis. The optical bandgap is decreased with the increase in thickness. FESEM confirmed the formation of uniform grains having well separated grain boundaries. Further, the film growth and the roughness are analyzed by AFM. The root-mean-square (RMS) surface roughness is decreased from 13.52 nm (160 nm) to 9.34 nm (240 nm). The room temperature magnetization is measured with a maximum field of 10 kOe. The saturation magnetization is enhanced monotonically with an increase in thickness. The magnetic resonance linewidth is obtained in the range of 450 – 780 Oe. The dielectric response is measured in the frequency range of 104 – 106 Hz and in the temperature range of 303 – 473 K. With an increase in frequency, the dielectric constant and the loss tangent of all the samples decreased continuously, which is a typical behavior of conventional dielectric material. The real part of the dielectric constant and the dielectric loss is increased with an increase in thickness. The contribution of grain and grain boundaries is also analyzed by employing the equivalent circuit model. The highest dielectric constant is obtained for the film having a thickness of 240 nm at 104 Hz. The obtained results demonstrate that desired response can be obtained by tailoring the film thickness for the microwave magnetic devices.

Keywords: PLD, optical response, thin films, magnetic response, dielectric response

Procedia PDF Downloads 98
919 In vitro Modeling of Aniridia-Related Keratopathy by the Use of Crispr/Cas9 on Limbal Epithelial Cells and Rescue

Authors: Daniel Aberdam

Abstract:

Haploinsufficiency of PAX6 in humans is the main cause of congenital aniridia, a rare eye disease characterized by reduced visual acuity. Patients have also progressive disorders including cataract, glaucoma and corneal abnormalities making their condition very challenging to manage. Aniridia-related keratopathy (ARK), caused by a combination of factors including limbal stem-cell deficiency, impaired healing response, abnormal differentiation, and infiltration of conjunctival cells onto the corneal surface, affects up to 95% of patients. It usually begins in the first decade of life resulting in recurrent corneal erosions, sub-epithelial fibrosis with corneal decompensation and opacification. Unfortunately, current treatment options for aniridia patients are currently limited. Although animal models partially recapitulate this disease, there is no in vitro cellular model of AKT needed for drug/therapeutic tools screening and validation. We used genome editing (CRISPR/Cas9 technology) to introduce a nonsense mutation found in patients into one allele of the PAX6 gene into limbal stem cells. Resulting mutated clones, expressing half of the amount of PAX6 protein and thus representative of haploinsufficiency were further characterized. Sequencing analysis showed that no off-target mutations were induced. The mutated cells displayed reduced cell proliferation and cell migration but enhanced cell adhesion. Known PAX6 targets expression was also reduced. Remarkably, addition of soluble recombinant PAX6 protein into the culture medium was sufficient to activate endogenous PAX6 gene and, as a consequence, rescue the phenotype. It strongly suggests that our in vitro model recapitulates well the epithelial defect and becomes a powerful tool to identify drugs that could rescue the corneal defect in patients. Furthermore, we demonstrate that the homeotic transcription factor Pax6 is able to be uptake naturally by recipient cells to function into the nucleus.

Keywords: Pax6, crispr/cas9, limbal stem cells, aniridia, gene therapy

Procedia PDF Downloads 207
918 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 454
917 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 219
916 Collagen Gel in Hip Cartilage Repair: in vivo Preliminary Study

Authors: A. Bajek, J. Skopinska-Wisniewska, A. Rynkiewicz, A. Jundzill, M. Bodnar, A. Marszalek, T. Drewa

Abstract:

Traumatic injury and age-related degenerative diseases associated with cartilage are major health problems worldwide. The articular cartilage is comprised of a relatively small number of cells, which have a relatively slow rate of turnover. Therefore, damaged articular cartilage has a limited capacity for self-repair. New clinical methods have been designed to achieve better repair of injured cartilage. However, there is no treatment that enables full restoration of it. The aim of this study was to evaluate how collagen gel with bone marrow mesenchymal stem cells (MSCs) and collagen gel alone will influence on the hip cartilage repair after injury. Collagen type I was isolated from rats’ tails and cross-linked with N-hydroxysuccinimide in 24-hour process. MSCs were isolated from rats’ bone marrow. The experiments were conducted according to the guidelines for animal experiments of Ethics Committee. Fifteen 8-week-old Wistar rats were used in this study. All animals received hip joint surgery with a total of 30 created cartilage defects. Then, animals were randomly divided into three groups and filled, respectively, with collagen gel (group 1), collagen gel cultured with MSCs (group II) or left untreated as a control (control group). Immunohistochemy and radiological evaluation was carried out 11 weeks post implantation. It has been proved that the surface of the matrix is non-toxic, and its porosity promotes cell adhesion and growth. However, the in vivo regeneration process was poor. We observed the low integration rate of biomaterial. Immunohistochemical evaluation of cartilage after 11 weeks of treatment showed low II and high X collagen expression in two tested groups in comparison to the control one, in which we observed the high II collagen expression. What is more, after radiological analysis, we observed the best regeneration process in control group. The biomaterial construct and mesenchymal stem cells, as well as the use of the biomaterial itself was not sufficient to regenerate the hip cartilage surfaces. These results suggest that the collagen gel based biomaterials, even with MSCs, are not satisfactory in repar of hip cartilage defect. However, additional evaluation is needed to confirm these results.

Keywords: collafen gel, MSCs, cartilage repair, hip cartilage

Procedia PDF Downloads 457
915 Identification and Correlation of Structural Parameters and Gas Accumulation Capacity of Shales From Poland

Authors: Anna Pajdak, Mateusz Kudasik, Aleksandra Gajda, Katarzyna Kozieł

Abstract:

Shales are a type of fine-grained sedimentary rocks, which are composed of small grains of several to several dozen μm in size and consist of a variable mixture of clay minerals, quartz, feldspars, carbonates, sulphides, amorphous material and organic matter. The study involved an analysis of the basic physical properties of shale rocks from several research wells in Poland. The structural, sorption and seepage parameters of these rocks were determined. The total porosity of granular rock samples reached several percent, including the share of closed pores up to half a percent. The volume and distribution of pores, which are of significant importance in the context of the mechanisms of methane binding to the rock matrix and methods of stimulating its desorption and the possibility of CO₂ storage, were determined. The BET surface area of the samples ranged from a few to a dozen or so m²/g, and the share of micropores was dominant. In order to determine the interaction of rocks with gases, the sorption capacity in relation to CO₂ and CH₄ was determined at a pressure of 0-1.4 MPa. Sorption capacities, sorption isotherms and diffusion coefficients were also determined. Studies of competitive sorption of CO₂/CH₄ on shales showed a preference for CO₂ sorption over CH₄, and the selectivity of CO₂/CH₄ sorption decreased with increasing pressure. In addition to the pore structure, the adsorption capacity of gases in shale rocks is significantly influenced by the carbon content in their organic matter. The sorbed gas can constitute from 20% to 80% of the total gas contained in the shales. With the increasing depth of shale gas occurrence, the share of free gas to sorbed gas increases, among others, due to the increase in temperature and surrounding pressure. Determining the share of free gas to sorbed gas in shale, depending on the depth of its deposition, is one of the key elements of recognizing the gas/sorption exchange processes of CO₂/CH₄, which are the basis of CO₂-ESGR technology. The main objective of the work was to identify the correlation between different forms of gas occurrence in rocks and the parameters describing the pore space of shales.

Keywords: shale, CH₄, CO₂, shale gas, CO₂ -ESGR, pores structure

Procedia PDF Downloads 16
914 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries

Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov

Abstract:

This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.

Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid

Procedia PDF Downloads 155
913 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 301
912 Biocompatible Beta Titanium Alloy Ti36Nb6Ta as a Suitable Material for Bone Regeneration

Authors: Vera Lukasova, Eva Filova, Jana Dankova, Vera Sovkova, Matej Daniel, Michala Rampichova

Abstract:

Proper bone implants should promote fast adhesion of cells, stimulate cell differentiation and support the formation of bone tissue. Nowadays titanium is used as a biocompatible material capable of bone tissue integration. This study was focused on comparison of bioactive properties of two titanium alloys - beta titanium alloy Ti36Nb6Ta and standard medical titanium alloy Ti6A14V. The advantage of beta titanium alloy Ti36Nb6Ta is mainly that this material does not contain adverse elements like vanadium or aluminium. Titanium alloys were sterilized in ethanol, placed into 48 well plates and seeded with porcine mesenchymal stem cells. Cells were cultivated for 14 days in standard growth cultivation media with osteogenic supplements. Cell metabolic activity was quantified using MTS assay (Promega). Cell adhesion on day 1 and cell proliferation on further days were verified immunohistochemically using beta-actin monoclonal antibody and secondary antibody conjugated with AlexaFluor®488. Differentiation of cells was evaluated using alkaline phosphatase assay. Additionally, gene expression of collagen I was measured by qRT-PCR. Porcine mesenchymal stem cells adhered and spread well on beta titanium alloy Ti36Nb6Ta on day 1. During the 14 days’ time period the cells were spread confluently on the surface of the beta titanium alloy Ti36Nb6Ta. The metabolic activity of cells increased during the whole cultivation period. In comparison to standard medical titanium alloy Ti6A14V, we did not observe any differences. Moreover, the expression of collagen I gene revealed no statistical differences between both titanium alloys. Therefore, a beta titanium alloy Ti36Nb6Ta promotes cell adhesion, metabolic activity, proliferation and collagen I expression equally to standard medical titanium alloy Ti6A14V. Thus, beta titanium is a suitable material that provides sufficient biocompatible properties. This project was supported by the Czech Science Foundation: grant No. 16-14758S.

Keywords: beta titanium alloy, biocompatibility, differentiation, mesenchymal stem cells

Procedia PDF Downloads 494
911 Fatty Acids in Female's Gonads of the Red Sea Fish Rhabdosargus Sarba During the Spawning Season

Authors: Suhaila Qari, Samia Moharram, Safaa Alowaidi

Abstract:

Objectives: To determine the fatty acids profiles in female fish, R. sarba from the Red Sea during the spawning season. Methods: Monthly individual Rhabdosargus sarba were obtained from Bangalah market in Jeddah, Red Sea and transported to the laboratory in ice aquarium. The total length, standard length and weight were measured, fishes were dissected. Ovaries were removed, weighed and 10 ml of concentrated hydrochloric acid were added to 10g of the ovary in a conical flask and immersed in boiling water until the sample was dissolved and the fat was seen to collect on the surface. The conical was cooled and the fat was extracted by shaking with 30 ml of diethyl ether. The extract was bowled after allowing the layers to separate into a weighed flask. The extraction was repeated three times more and distilled off the solvent then the fat dried at 100oC, cooled and weighed. Then 50 mg of lipid was put in a tube, 5 ml of methanolic sulphuric acid was added and 2 ml of benzene, the tube well closed and placed in water bath at 90oC for an hour and half. After cooling, 8 ml water and 5 ml petroleum was added shacked strongly and the ethereal layer was separated in a dry tube, evaporated to dryness. The fatty acid methyl esters were analyzed using a Hewlett Packard (HP 6890) chromatography, asplit /splitless injector and flame ionization detector (FID). Results: In female Rhabdosargus sarba, a total of 29 fatty acids detected in ovaries throughout the spawning season. The main fatty acid group in total lipid was saturated fatty acid (SFA, 28.9%), followed by 23.5% of polyunsaturated fatty acids (PUFA) and 12.9% of monounsaturated fatty acids (MUFA). The dominant SFA were palmitic and stearic, the major MUFA were palmitoleic and oleic, and the major PUFA were C18:2 and C22:2. During spawning stages no significant differences in total SFA, MUFA and PUFA, the highest value of SFA was in late spawning (36.78%). However, the highest value of MUFA and PUFA was in spawning (16.70% and 24.96% respectively). During spawning season there were a significant differences in total SFA between March (late spawning stage) and December (nearly ripe stage), (P < 0.05).

Keywords: sparidae, Rhabdosargus sarba, fish, fatty acids, spawning, gonads, red sea

Procedia PDF Downloads 803
910 A Decadal Flood Assessment Using Time-Series Satellite Data in Cambodia

Authors: Nguyen-Thanh Son

Abstract:

Flood is among the most frequent and costliest natural hazards. The flood disasters especially affect the poor people in rural areas, who are heavily dependent on agriculture and have lower incomes. Cambodia is identified as one of the most climate-vulnerable countries in the world, ranked 13th out of 181 countries most affected by the impacts of climate change. Flood monitoring is thus a strategic priority at national and regional levels because policymakers need reliable spatial and temporal information on flood-prone areas to form successful monitoring programs to reduce possible impacts on the country’s economy and people’s likelihood. This study aims to develop methods for flood mapping and assessment from MODIS data in Cambodia. We processed the data for the period from 2000 to 2017, following three main steps: (1) data pre-processing to construct smooth time-series vegetation and water surface indices, (2) delineation of flood-prone areas, and (3) accuracy assessment. The results of flood mapping were verified with the ground reference data, indicating the overall accuracy of 88.7% and a Kappa coefficient of 0.77, respectively. These results were reaffirmed by close agreement between the flood-mapping area and ground reference data, with the correlation coefficient of determination (R²) of 0.94. The seasonally flooded areas observed for 2010, 2015, and 2016 were remarkably smaller than other years, mainly attributed to the El Niño weather phenomenon exacerbated by impacts of climate change. Eventually, although several sources potentially lowered the mapping accuracy of flood-prone areas, including image cloud contamination, mixed-pixel issues, and low-resolution bias between the mapping results and ground reference data, our methods indicated the satisfactory results for delineating spatiotemporal evolutions of floods. The results in the form of quantitative information on spatiotemporal flood distributions could be beneficial to policymakers in evaluating their management strategies for mitigating the negative effects of floods on agriculture and people’s likelihood in the country.

Keywords: MODIS, flood, mapping, Cambodia

Procedia PDF Downloads 128
909 TiO2 Solar Light Photocatalysis a Promising Treatment Method of Wastewater with Trinitrotoluene Content

Authors: Ines Nitoi, Petruta Oancea, Lucian Constantin, Laurentiu Dinu, Maria Crisan, Malina Raileanu, Ionut Cristea

Abstract:

2,4,6-Trinitrotoluene (TNT) is the most common pollutant identified in wastewater generated from munitions plants where this explosive is synthesized or handled (munitions load, assembly and pack operations). Due to their toxic and suspected carcinogenic characteristics, nitroaromatic compounds like TNT are included on the list of prioritary pollutants and strictly regulated in EU countries. Since their presence in water bodies is risky for human health and aquatic life, development of powerful, modern treatment methods like photocatalysis are needed in order to assures environmental pollution mitigation. The photocatalytic degradation of TNT was carried out at pH=7.8, in aqueous TiO2 based catalyst suspension, under sunlight irradiation. The enhanced photo activity of catalyst in visible domain was assured by 0.5% Fe doping. TNT degradation experiments were performed using a tubular collector type solar photoreactor (26 UV permeable silica glass tubes series connected), plug in a total recycle loops. The influence of substrate concentration and catalyst dose on the pollutant degradation and mineralization by-products (NO2-, NO3-, NH4+) formation efficiencies was studied. In order to compare the experimental results obtained in various working conditions, the pollutant and mineralization by-products measured concentrations have been considered as functions of irradiation time and cumulative photonic energy Qhν incident on the reactor surface (kJ/L). In the tested experimental conditions, at tens mg/L pollutant concentration, increase of 0,5%-TiO2 dose up to 200mg/L leads to the enhancement of CB degradation efficiency. Since, doubling of TNT content has a negative effect on pollutant degradation efficiency, in similar experimental condition, prolonged irradiation time from 360 to 480 min was necessary in order to assures the compliance of treated effluent with limits imposed by EU legislation (TNT ≤ 10µg/L).

Keywords: wastewater treatment, TNT, photocatalysis, environmental engineering

Procedia PDF Downloads 359
908 CFD Simulation of the Pressure Distribution in the Upper Airway of an Obstructive Sleep Apnea Patient

Authors: Christina Hagen, Pragathi Kamale Gurmurthy, Thorsten M. Buzug

Abstract:

CFD simulations are performed in the upper airway of a patient suffering from obstructive sleep apnea (OSA) that is a sleep related breathing disorder characterized by repetitive partial or complete closures of the upper airways. The simulations are aimed at getting a better understanding of the pathophysiological flow patterns in an OSA patient. The simulation is compared to medical data of a sleep endoscopic examination under sedation. A digital model consisting of surface triangles of the upper airway is extracted from the MR images by a region growing segmentation process and is followed by a careful manual refinement. The computational domain includes the nasal cavity with the nostrils as the inlet areas and the pharyngeal volume with an outlet underneath the larynx. At the nostrils a flat inflow velocity profile is prescribed by choosing the velocity such that a volume flow rate of 150 ml/s is reached. Behind the larynx at the outlet a pressure of -10 Pa is prescribed. The stationary incompressible Navier-Stokes equations are numerically solved using finite elements. A grid convergence study has been performed. The results show an amplification of the maximal velocity of about 2.5 times the inlet velocity at a constriction of the pharyngeal volume in the area of the tongue. It is the same region that also shows the highest pressure drop from about 5 Pa. This is in agreement with the sleep endoscopic examinations of the same patient under sedation showing complete contractions in the area of the tongue. CFD simulations can become a useful tool in the diagnosis and therapy of obstructive sleep apnea by giving insight into the patient’s individual fluid dynamical situation in the upper airways giving a better understanding of the disease where experimental measurements are not feasible. Within this study, it could been shown on one hand that constriction areas within the upper airway lead to a significant pressure drop and on the other hand a good agreement of the area of pressure drop and the area of contraction could be shown.

Keywords: biomedical engineering, obstructive sleep apnea, pharynx, upper airways

Procedia PDF Downloads 306
907 Reinforced Concrete Bridge Deck Condition Assessment Methods Using Ground Penetrating Radar and Infrared Thermography

Authors: Nicole M. Martino

Abstract:

Reinforced concrete bridge deck condition assessments primarily use visual inspection methods, where an inspector looks for and records locations of cracks, potholes, efflorescence and other signs of probable deterioration. Sounding is another technique used to diagnose the condition of a bridge deck, however this method listens for damage within the subsurface as the surface is struck with a hammer or chain. Even though extensive procedures are in place for using these inspection techniques, neither one provides the inspector with a comprehensive understanding of the internal condition of a bridge deck – the location where damage originates from.  In order to make accurate estimates of repair locations and quantities, in addition to allocating the necessary funding, a total understanding of the deck’s deteriorated state is key. The research presented in this paper collected infrared thermography and ground penetrating radar data from reinforced concrete bridge decks without an asphalt overlay. These decks were of various ages and their condition varied from brand new, to in need of replacement. The goals of this work were to first verify that these nondestructive evaluation methods could identify similar areas of healthy and damaged concrete, and then to see if combining the results of both methods would provide a higher confidence than if the condition assessment was completed using only one method. The results from each method were presented as plan view color contour plots. The results from one of the decks assessed as a part of this research, including these plan view plots, are presented in this paper. Furthermore, in order to answer the interest of transportation agencies throughout the United States, this research developed a step-by-step guide which demonstrates how to collect and assess a bridge deck using these nondestructive evaluation methods. This guide addresses setup procedures on the deck during the day of data collection, system setups and settings for different bridge decks, data post-processing for each method, and data visualization and quantification.

Keywords: bridge deck deterioration, ground penetrating radar, infrared thermography, NDT of bridge decks

Procedia PDF Downloads 155
906 Ph-Triggered Cationic Solid Lipid Nanoparticles Mitigated Colitis in Mice

Authors: Muhammad Naeem, Juho Lee, Jin-Wook Yoo

Abstract:

In this study, we hypothesized that prolonged gastrointestinal transit at the inflamed colon conferred by a pH-triggered mucoadhesive smart nanoparticulate drug delivery system aids in achieving selective and sustained levels of the drug within the inflamed colon for the treatment of ulcerative colitis. We developed budesonide-loaded pH-sensitive charge-reversal solid lipid nanoparticles (SLNs) using a hot homogenization method. Polyetylenimine (PEI) was used to render SLNs cationic (PEI-SLNs). Eudragit S100 (ES) was coated on PEI-SLNs for pH-trigger charge-reversal SLNs (ES-PEI-SLNs). Therapeutic potential of the prepared SNLs formulation was evaluated in ulcerative colitis in mice. The transmission electron microscopy, zeta size and zeta potential data showed the successful formation of SLNs formulations. SLNs and PEI-SLNs showed burst drug release in acidic pH condition mimicking stomach and early small intestine environment which limiting their application as oral delivery systems. However, ES-PEI-SLNs prevented a burst drug release in acidic pH conditions and showed sustained release at a colonic pH. Most importantly, the surface charge of ES-PEI-SLNs switched from negative to positive in colonic conditions by pH-triggered removal of ES coating and accumulated selectively in inflamed colon. Furthermore, a charge reversal ES-PEI-SLNs showed a superior mitigation of dextran sulfate sodium (DSS)-induced acute colitis in mice as compared to SLNs and PEI-SLNs treated groups. Moreover, histopathological analysis of distal colon sections stained with hematoxylin/eosin and E-cadherin immunostaining revealed attenuated inflammation in an ES-PEI-SLNs-treated group. We also found that ES-PEI-SLNs markedly reduced the myeloperoxidase level and expression of TNF-alpha in colon tissue. Our results suggest that the pH-triggered charge reversal SLNs presented in this study would be a promising approach for ulcerative colitis therapy.

Keywords: solid lipid nanoparticles, stimuli-triggered charge-reversal, ulcerative colitis, methacrylate copolymer, budesonide

Procedia PDF Downloads 248
905 Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India

Authors: Chandrakant Gurav, Md Babar, Ajaykumar Asode

Abstract:

Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape.

Keywords: GIS, Kohilla, morphometry, Shivbhadra, Yelganga

Procedia PDF Downloads 157
904 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model

Authors: Mostafa Zandi, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and  equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.

Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function

Procedia PDF Downloads 77
903 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)

Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen

Abstract:

The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.

Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles

Procedia PDF Downloads 143
902 Determination of Influence Lines for Train Crossings on a Tied Arch Bridge to Optimize the Construction of the Hangers

Authors: Martin Mensinger, Marjolaine Pfaffinger, Matthias Haslbeck

Abstract:

The maintenance and expansion of the railway network represents a central task for transport planning in the future. In addition to the ultimate limit states, the aspects of resource conservation and sustainability are increasingly more necessary to include in the basic engineering. Therefore, as part of the AiF research project, ‘Integrated assessment of steel and composite railway bridges in accordance with sustainability criteria’, the entire lifecycle of engineering structures is involved in planning and evaluation, offering a way to optimize the design of steel bridges. In order to reduce the life cycle costs and increase the profitability of steel structures, it is particularly necessary to consider the demands on hanger connections resulting from fatigue. In order for accurate analysis, a number simulations were conducted as part of the research project on a finite element model of a reference bridge, which gives an indication of the internal forces of the individual structural components of a tied arch bridge, depending on the stress incurred by various types of trains. The calculations were carried out on a detailed FE-model, which allows an extraordinarily accurate modeling of the stiffness of all parts of the constructions as it is made up surface elements. The results point to a large impact of the formation of details on fatigue-related changes in stress, on the one hand, and on the other, they could depict construction-specific specifics over the course of adding stress. Comparative calculations with varied axle-stress distribution also provide information about the sensitivity of the results compared to the imposition of stress and axel distribution on the stress-resultant development. The calculated diagrams help to achieve an optimized hanger connection design through improved durability, which helps to reduce the maintenance costs of rail networks and to give practical application notes for the formation of details.

Keywords: fatigue, influence line, life cycle, tied arch bridge

Procedia PDF Downloads 331