Search results for: enhanced properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11049

Search results for: enhanced properties

3489 Enhancing African Students’ Learning Experience by Creating Multilingual Resources at a South African University of Technology

Authors: Lisa Graham, Kathleen Grant

Abstract:

South Africa is a multicultural country with eleven official languages, yet most of the formal education at institutions of higher education in the country is in English. It is well known that many students, irrespective of their home language, struggle to grasp difficult scientific concepts and the same is true for students enrolled in the Extended Curriculum Programme at the Cape Peninsula University of Technology (CPUT), studying biomedical sciences. Today we are fortunate in that there is a plethora of resources available to students to research and better understand subject matter online. For example, the students often use YouTube videos to supplement the formal education provided in our course. Unfortunately, most of this material is presented in English. The rationale behind this project lies in that it is well documented that students think and grasp concepts easier in their home language and addresses the fact that the lingua franca of instruction in the field of biomedical science is English. A project aimed at addressing the lack of available resources in most of the South African languages is planned, where students studying Bachelor of Health Science in Medical Laboratory Science will collaborate with those studying Film and Video Technology to create educational videos, explaining scientific concepts in their home languages. These videos will then be published on our own YouTube channel, thereby making them accessible to fellow students, future students and anybody with interest in the subject. Research will be conducted to determine the benefit of the project as well as the published videos to the student community. It is suspected that the students engaged in making the videos will benefit in such a way as to gain further understanding of their course content, a broader appreciation of the discipline, an enhanced sense of civic responsibility, as well as greater respect for the different languages and cultures in our classes. Indeed, an increase in student engagement has been shown to play a central role in student success, and it is well noted that deeper learning and more innovative solutions take place in collaborative groups. We aim to make a meaningful contribution towards the production and repository of knowledge in multilingual teaching and learning for the benefit of the diverse student population and staff. This would strengthen language development, multilingualism, and multiculturalism at CPUT and empower and promote African languages as languages of science and education at CPUT, in other institutions of higher learning, and in South Africa as a whole.

Keywords: educational videos, multiculturalism, multilingualism, student engagement

Procedia PDF Downloads 151
3488 Solvent Dependent Triazole-Appended Glucofuranose-Based Fluorometric Sensor for Detection of Au³⁺ Ions

Authors: Samiul Islam Hazarika, Domngam Boje, Ananta Kumar Atta

Abstract:

It is well familiar that solvents play a significant role in modern chemistry. Solvents can change the reactivity and physicochemical properties of molecules in a solution. Keeping this in mind, we have designed and synthesized a mono-triazolyl-linked pyrenyl-appended xylofuranose derivative for the detection of metal ions with changing solvent systems. The incorporation of a sugar backbone in the sensor increases the water solubility and biocompatibility. The experimental study revealed that the xylofuranose-based fluorescence probe did not exhibit any specific selectivity towards metal ions in acetonitrile (CH₃CN) solvent. Whereas, we revealed that triazole-linked pyrenyl-appended xylofuranose-based fluorescent sensor would exhibit high selectivity and sensitivity towards Au³⁺ ions in CH₃CN-H₂O (1/1, v/v) system. This observation might be explained by the viscosity and polarity differences of CH₃CN and CH₃CN-H₂O solvent systems. The formation of the sensor-Au³⁺ complex was also established by high-resolution mass spectrometry (HRMS) data of the complex.

Keywords: triazole, furanose, fluorometric, solvent dependent

Procedia PDF Downloads 112
3487 Proximate, Functional and Sensory Evaluation of Some Brands of Instant Noodles in Nigeria

Authors: Olakunle Moses Makanjuola, Adebola Ajayi

Abstract:

Noodles are made from unleavened dough, rolled flat and cut into shapes. The instant noodle market is growing fast in Asian countries and is gaining popularity in the western market. This project reports on the proximate functional and sensory evaluation of different brands of instant noodles in Nigeria. The comparisons were based on proximate functional and sensory evaluation of the product. The result obtained from the proximate analysis showed that sample QHR has the highest moisture content, sample BMG has the highest protein content, sample CPO has the highest fat content, sample. The obtained result from the functional properties showed that sample BMG (Dangote noodles) had the highest volume increase after cooking due to its high swelling capacity, high water absorption capacity and high hydration capacity. Sample sensory analysis of the noodles showed that all the samples are of significant difference (at P < 0.05) in terms of colour, texture, and aroma but there is no significant difference in terms of taste and overall acceptability. Sample QHR (Indomie noodles) is the most preferred by the panelists.

Keywords: proximate, functional, sensory evaluation, noodles

Procedia PDF Downloads 247
3486 Numerical Study of Dynamic Buckling of Fiber Metal Laminates's Profile

Authors: Monika Kamocka, Radoslaw Mania

Abstract:

The design of Fiber Metal Laminates - combining thin aluminum sheets and prepreg layers, allows creating a hybrid structure with high strength to weight ratio. This feature makes FMLs very attractive for aerospace industry, where thin-walled structures are commonly used. Nevertheless, those structures are prone to buckling phenomenon. Buckling could occur also under static load as well as dynamic pulse loads. In this paper, the problem of dynamic buckling of open cross-section FML profiles under axial dynamic compression in the form of pulse load of finite duration is investigated. In the numerical model, material properties of FML constituents were assumed as nonlinear elastic-plastic aluminum and linear-elastic glass-fiber-reinforced composite. The influence of pulse shape was investigated. Sinusoidal and rectangular pulse loads of finite duration were compared in two ways, i.e. with respect to magnitude and force pulse. The dynamic critical buckling load was determined based on Budiansky-Hutchinson, Ari Gur, and Simonetta dynamic buckling criteria.

Keywords: dynamic buckling, dynamic stability, Fiber Metal Laminate, Finite Element Method

Procedia PDF Downloads 185
3485 Lunar Exploration based on Ground-Based Radar: Current Research Progress and Future Prospects

Authors: Jiangwan Xu, Chunyu Ding

Abstract:

Lunar exploration is of significant importance in the development and utilization of in-situ lunar resources, water ice exploration, space and astronomical science, as well as in political and military strategy. In recent years, ground-based radar (GBR) has gained increasing attention in the field of lunar exploration due to its flexibility, low cost, and penetrating capabilities. This paper reviews the scientific research on lunar exploration using GBR, outlining the basic principles of GBR and the progress made in lunar exploration studies. It introduces the fundamental principles of lunar imaging using GBR, and systematically reviews studies on lunar surface layer detection, inversion of lunar regolith dielectric properties, and polar water ice detection using GBR. In particular, the paper summarizes the current development status of Chinese GBR and forecasts future development trends in China. This review will enhance the understanding of lunar exploration results using GBR radar, systematically demonstrate the main applications and scientific achievements of GBR in lunar exploration, and provide a reference for future GBR radar lunar exploration missions.

Keywords: ground-based radar, lunar exploration, radar imaging, lunar surface/subsurface detection

Procedia PDF Downloads 16
3484 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele

Abstract:

This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 461
3483 Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation

Authors: Ajay Dwivedi, M. Suresh Kumar, A. N. Vaidya

Abstract:

The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized.

Keywords: vegetable waste, physico-chemical characteristics, hydrogen, methane

Procedia PDF Downloads 423
3482 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 338
3481 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization

Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz

Abstract:

Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.

Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide

Procedia PDF Downloads 170
3480 An Investigation of Surface Water Quality in an Industrial Area Using Integrated Approaches

Authors: Priti Saha, Biswajit Paul

Abstract:

Rapid urbanization and industrialization has increased the pollution load in surface water bodies. However, these water bodies are major source of water for drinking, irrigation, industrial activities and fishery. Therefore, water quality assessment is paramount importance to evaluate its suitability for all these purposes. This study focus to evaluate the surface water quality of an industrial city in eastern India through integrating interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking, irrigation as well as fishery of forty-eight sampling locations, where 8.33% have excellent water quality (WQI:0-25) for fishery and 10.42%, 20.83% and 45.83% have good quality (WQI:25-50), which represents its suitability for drinking irrigation and fishery respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 6.25% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). Integration of these statistical analysis with geographical information system (GIS) helps in spatial assessment. It identifies of the regions where the water quality is suitable for its use in drinking, irrigation, fishery as well as industrial activities. This research demonstrates the effectiveness of statistical and GIS techniques for water quality assessment.

Keywords: surface water, water quality assessment, water quality index, spatial assessment

Procedia PDF Downloads 174
3479 Escalation of Commitment and Turnover in Top Management Teams

Authors: Dmitriy V. Chulkov

Abstract:

Escalation of commitment is defined as continuation of a project after receiving negative information about it. While literature in management and psychology identified various factors contributing to escalation behavior, this phenomenon has received little analysis in economics, potentially due to the apparent irrationality of escalation. In this study, we present an economic model of escalation with asymmetric information in a principal-agent setup where the agents are responsible for a project selection decision and discover the outcome of the project before the principal. Our theoretical model complements the existing literature on several accounts. First, we link the incentive to escalate commitment to a project with the turnover decision by the manager. When a manager learns the outcome of the project and stops it that reveals that a mistake was made. There is an incentive to continue failing projects and avoid admitting the mistake. This incentive is enhanced when the agent may voluntarily resign from the firm before the outcome of the failing project is revealed, and thus not bear the full extent of reputation damage due to project failure. As long as some successful managers leave the firm for extraneous reasons, outside firms find it difficult to link failing projects with certainty to managers that left a firm. Second, we demonstrate that non-CEO managers have reputation concerns separate from those of the CEO, and thus may escalate commitment to projects they oversee, when such escalation can attenuate damage to reputation from impending project failure. Such incentive for escalation will be present for non-CEO managers if the CEO delegates responsibility for a project to a non-CEO executive. If reputation matters for promotion to the CEO, the incentive for a rising executive to escalate in order to protect reputation is distinct from that of a CEO. Third, our theoretical model is supported by empirical analysis of changes in the firm’s operations measured by the presence of discontinued operations at the time of turnover among the top four members of the top management team. Discontinued operations are indicative of termination of failing projects at a firm. The empirical results demonstrate that in a large dataset of over three thousand publicly traded U.S. firms for a period from 1993 to 2014 turnover by top executives significantly increases the likelihood that the firm discontinues operations. Furthermore, the type of turnover matters as this effect is strongest when at least one non-CEO member of the top management team leaves the firm and when the CEO departure is due to a voluntary resignation and not to a retirement or illness. Empirical results are consistent with the predictions of the theoretical model and suggest that escalation of commitment is primarily observed in decisions by non-CEO members of the top management team.

Keywords: discontinued operations, escalation of commitment, executive turnover, top management teams

Procedia PDF Downloads 362
3478 WO₃-SnO₂ Sensors for Selective Detection of Volatile Organic Compounds for Breath Analysis

Authors: Arpan Kumar Nayak, Debabrata Pradhan

Abstract:

A simple, single-step and one-pot hydrothermal method was employed to synthesize WO₃-SnO₂ mixed nanostructured metal oxides at 200°C in 12h. The SnO₂ nanoparticles were found to be uniformly decorated on the WO₃ nanoplates. Though it is widely known that noble metals such as Pt, Pd doping or decoration on metal oxides improve the sensing response and sensitivity, we varied the SnO₂ concentration in the WO₃-SnO₂ mixed oxide and demonstrated their performance in ammonia, ethanol and acetone sensing. The sensing performance of WO₃-(x)SnO₂ [x = 0.27, 0.54, 1.08] mixed nanostructured oxides was found to be not only superior to that of pristine oxides but also higher/better than that of reported noble metal-based sensors. The sensing properties (selectivity, limit of detection, response and recovery times) are measured as a function of operating temperature (150-350°C). In particular, the gas selectivity is found to be highly temperature-dependent with optimum performance obtained at 200°C, 300°C and 350°C for ammonia, ethanol, and acetone, respectively. The present results on cost effective WO₃-SnO₂ sensors can find potential application in human breath analysis by noninvasive detection.

Keywords: gas sensing, mixed oxides, nanoplates, ammonia, ethanol, acetone

Procedia PDF Downloads 239
3477 Human Microbiome Hidden Association with Chronic and Autoimmune Diseases

Authors: Elmira Davasaz Tabrizi, Müşteba Sevil, Ercan Arican

Abstract:

In recent decades, there has been a sharp increase in the prevalence of several unrelated chronic diseases. The use of long-term antibiotics for chronic illnesses is increasing. The antibiotic resistance occurrence and its relationship with host microbiomes are still unclear. Properties of the identifying antibodies have been the focus of chronic disease research, such as prostatitis or autoimmune. The immune system is made up of a complicated but well-organized network of cell types that constantly monitor and maintain their surroundings. The regulated homeostatic interaction between immune system cells and their surrounding environment shapes the microbial flora. Researchers believe that the disappearance of special bacterial species from our ancestral microbiota might have altered the body flora that can cause a rise in disease during the human life span. This unpleasant pattern demonstrates the importance of focusing on discovering and revealing the root causes behind the disappearance or alteration of our microbiota. In this review, we gathered the results of some studies that reveal changes in the diversity and quantity of microorganisms that may affect chronic and autoimmune diseases. Additionally, a Ph.D. thesis that is still in process as Metagenomic studies in chronic prostatitis samples is mentioned.

Keywords: metagenomic, autoimmune, prostatitis, microbiome

Procedia PDF Downloads 90
3476 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 232
3475 An Assessment of Government Entrepreneurship Programs for Women in Sabah Malaysia

Authors: Imelda Albert Gisip, Tarsiah T. Z. Taman

Abstract:

In Asia, particularly in Malaysia women entrepreneurs contribute substantially to economic growth. This paper presents a review of women entrepreneurs’ program, focusing on Creating Millionaires among Young Women Entrepreneurs (CREAM@YWE) program in Sabah Malaysia which aims to accelerate the entrepreneurship among young women in Sabah Malaysia. Entrepreneurs is seen as essential for growth, job creation and social progress and the virtues of small business for Sabah Maju Jaya (SMJ), the Sabah state government Sabah State development plan for the year 2021-2025. SMJ guides the direction of the government's policies and programs, further guiding the implementation in a planned and strategic manner, to achieve targets and goals that coincide with the development needs of the state. One of the government’s agenda is to put its efforts more strongly to ensure that women entrepreneurs are well supported and enhanced. Thus, The CreaM@YWE Program was developed in 2018 with the main objective is to produce competitive young women entrepreneurs in Sabah and achieve "millionaire" status. CreaM@YWE Program is an innovation process which specifically developed to accelerate entrepreneurship sector particularly for women entrepreneurs in Sabah by incorporating strategic partnerships and collaborations with government agencies and industry players. Being the first of its kind in Sabah, the novelty of this project is providing a supportive ecosystem including six months intensive courses, guided through "hands-holding”, collaborations with strategic partners and easy access to government's assistance. Since its inception, the program has significantly impact society’s wellbeing particularly in empowering young women entrepreneurs in Sabah for the past six years and has produced many successful women entrepreneurs with “millionaire” status. Generally, improving women’s enterprise sector in Malaysia needs an overall enabling environment that allows development opportunities for women entrepreneurs including access to resources and support services. Since achieving the goal of women entrepreneurship policy requires effective partnerships and inclusiveness, Cream @YWE Program has managed to practice these in assisting small entrepreneurs among young women in Sabah in accessing public goods and business opportunities. This proves that achieving women’s economic empowerment requires sound policies, a holistic approach and long-term commitment. Thus, this paper presents how Cream@YWE Program has been supporting Sabah young women entrepreneurs by reforming the business environment to help create opportunities for women, while addressing the few existing gender-specific hurdles.

Keywords: entrepreneurship programs, women, Sabah, Malaysia

Procedia PDF Downloads 12
3474 Investigation of Distortion and Impact Strength of 304L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A. Shahi, A. Kumar

Abstract:

The aim of present investigation was to carry out Finite element modeling of distortion in the case of butt weld. 12mm thick AISI 304L plates were butt welded using three different combinations of groove design namely Double U, Double V and Composite. A full simulation of shielded metal arc welding (SMAW) of nonlinear heat transfer is carried out. Aspects like, temperature-dependent thermal properties of AISI stainless steel above liquid phase, the effect of thermal boundary conditions, were included in the model. Since welding heat dissipation characteristics changed due to variable groove design significant changes in the microhardness tensile strength and impact toughness of the joints were observed. The cumulative distortion was found to be least in double V joint followed by the Composite and Double U-joints. All the joints have joint efficiency more than 100%. CVN value of the Double V-groove weld metal was highest. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for a multipass joint with a standard analogy of 83%.

Keywords: AISI 304 L, Butt joint, distortion, FEM, groove design, SMAW

Procedia PDF Downloads 401
3473 Preliminary Phytochemical Screening and Comparison of Different Extracts of Capparidaceae Family

Authors: Noshaba Dilbar, Maria Jabbar

Abstract:

Medicinal plants are considered to be the richest source of drug discovery. The main cause of medicinal properties of plants is the presence of bioactive compounds in them. Phytochemical screening is the valuable process that detects bioactive compounds(secondary metabolites) in plants. The present study was carried out to determine phytochemical profile and ethnobotanical importance of Capparidaceae species. ( Capparis spinosa and Dipterygium glaucum). The selection of plants was made on basis of traditional knowledge of their usage in ayurvedic medicines. Different type of solvents(ethanol, methanol, chloroform, benzene and petroleum ether) were used to make extracts of dry and fresh plants. Phytochemical screening was made by using various standard techniques. Results reveal the presence of large range of bioactive compounds i.e alakloids, saponins, flavonoids, terpenoids, glycosides, phenols and steroids. Methanol, petroleum ether and chloroform extracts showed high extractability of bioactive compounds. The results obtained ensure these plants a reliable source of pharmacological industry and can be used in making of various biological friendly drugs.

Keywords: bioactive compounds, Capparidaceae, phytochemical screening, secondary metabolites

Procedia PDF Downloads 170
3472 Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Abstract:

The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.

Keywords: Finite element method, Functionally graded material, Porosity volume fraction, Power law

Procedia PDF Downloads 196
3471 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 76
3470 Nonverbal Signs in Television Advertisements: A Semiotics Perspective

Authors: Yemi Mahmud

Abstract:

Semiotics is the study of signs and symbols as significations in a communication process. Television advertisement combines verbal and nonverbal signs to apprise consumers of products’ deliverables. This makes the language of television advertisement an important area of semiotic research. This paper focuses on nonverbal signs in television advertisement in purposively selected advertisements of two Nivea beauty products television advertisements: New Nivea Natural Fairness and Nivea Natural Fairness Lotion in Nigeria to investigate signs in meaning construction. It studies the interpretative realities of the signification of the nonverbal signs in television advertisements in Nigeria; examining signs in relation to the embedded and contextual meanings they are capable of exhuming vis-a-vis, viewers’ social and cultural senses extrapolated to draw inferences. The paper anchors its research on visual rhetorics and concludes that signs, as nonverbal elements in television advertisements, form part of the entire linguistic system of meaning transmission, noting that interpretations do not rely, solely, on the intrinsic properties of signs as signifiers, but on the imbued sociocultural elements that suggest meaning to viewers.

Keywords: Nivea, nonverbal signs, semiotics, signification, signifiers, television advertisement

Procedia PDF Downloads 161
3469 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem

Procedia PDF Downloads 215
3468 The Development of Noctiluca scintillans Algal Bloom in Coastal Waters of Muscat, Sulanate of Oman

Authors: Aysha Al Sha'aibi

Abstract:

Algal blooms of the dinoflagellate species Noctiluca scintillans became frequent events in Omani waters. The current study aims at elucidating the abundance, size variation and observations on the feeding mechanism performed by this species during the winter bloom. An attempt was made, to relate observed biological parameters of the Noctiluca population to environmental factors. Field studies spanned the period from December 2014 to April 2015. Samples were collected from Bandar Rawdah (Muscat region) by Bongo nets, twice per week, from the surface and the integrated upper mixed layer. The measured environmental variables were: temperature, salinity, dissolved oxygen, chlorophyll a, turbidity, nitrite, phosphate, wind speed and rainfall. During the winter bloom (from December 2014 through February 2015), the abundance exhibited the highest concentration on 17 February (640.24×106 cell.L-1) in oblique samples and 83.9x103 cell.L-1 in surface samples, with a subsequent decline up to the end of April. The average number of food vacuoles inside Noctiluca cells was 1.5 per cell; the percentage of feeding Noctiluca compared to the entire population varied from 0.01% to 0.03%. Both the surface area of the Noctiluca symbionts (Pedinomonas noctilucae) and cell diameter were maximal in December. In oblique samples the highest average cell diameter and the surface area of symbiont algae were 751.7 µm and 179.2x103 µm2 respectively. In surface samples, highest average cell diameter and the surface area of symbionts were 760 µm and 284.05x103 µm2 respectively. No significant correlations were detected between Noctiluca’s biological parameters and environmental variables except for the correlation between cell diameter and chlorophyll a, also between symbiotic algae surface area and chlorophyll a. The high correlation of chlorophyll a was as a reason of endosymbiotic algae Pedinomonas noctilucae and green Noctiluca enhanced chlorophyll during bloom. All correlations among biological parameters were significant; they are perhaps one of major factors that mediating high growth rates, generating millions of cell per liter in a short time range. The results gained from this study will provide a beneficial background for understanding deeply the development of coastal algal blooms of Noctiluca scintillans. Moreover, results could be used in different applications related to marine environment.

Keywords: abundance, feeding activities, Noctiluca scintillans, Oman

Procedia PDF Downloads 432
3467 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams

Authors: Jiin-Yuh Jang, Yu-Feng Gan

Abstract:

In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.

Keywords: controlled cooling, H-Beam, optimization, thermal stress

Procedia PDF Downloads 363
3466 Synthesis of a Serie of Metallic Complexes Derived from bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-yl)butane with First Raw Transition Metals

Authors: I. Belbachir, T. Benabdallah, N. Belhadj

Abstract:

The present research work describes the synthesis, through a multi-step strategy, as well as the structural characterization of a polydentate organic ligand, namely the bis(4-amino-5-mercapto-1,2,4-triazole-3-yl)butane (BAMT). The bis-triazolic ligand was characterized by different spectroscopic studies, in order to enlighten its coordination mode, in the neutral and deprotonated forms, towards cobalt(II), nickel(II) and copper(II) sulfates, in both solution and solid state. The stoichiometry of the complexes [neutral BAMT-metal] and [deprotonated BAMT-metal] was first established in a solution of DMF with each of the three metallic cations and their complexation constants calculated, allowing us to compare the stability of the various prepared complexes. The various complexes were finally isolated in the solid state and the coordination mode of neutral and deprotonated BAMT explored towards each of the three metallic sulfates. The establishment of some ligand field parameters (Dq, B, β…) by electronic spectroscopy finally allowed to compare the coordination modes of BAMT towards each of the three metals and to highlight the influence of the deprotonation on the complexing properties of the bis-triazolic ligand.

Keywords: 1, 2, 4-triazol, bis-1, 2, 4-triazol, metallic complexes, coordination in solution and solid state

Procedia PDF Downloads 177
3465 A Fundamental Study on the Molecular Chemistry of Agarwood Water Mixture

Authors: Fatmawati Adam, Saidatul Syaima Mat Tari, Saiful Nizam Tajuddin, Nurul Salwa Azliyana Hamzah

Abstract:

Essential oil of agarwood or known as Gaharu in Malay is highly prized for its value as luxury fragrances and incense. However, the complexities of the chemical composition of agarwood itself is the main challenge for establishment of an effective recovery method, which is able to ensure uniform qualities and standard for each batch of essential oil production. Agarwood markers are actually a blend of volatile and non-volatile compounds. While volatile molecules could be easily retrieved by the present distillation technique, the high solubility properties are the limiting factor for the latter. With regard to this, an elementary chemistry resolution study had been performed on commercial agarwood essential oil-water mixture, by the application of preparative HPLC and FTIR. Interpretation of the results leads to the theoretical postulation that, agarwood water mixture comprise of agarospirol, jinkohol, jinkoh eremol and khusenol. This study provides a pinpoint on the chemical characteristics of water soluble (non-volatile) agarwood compounds, therefore, will be an insight for researchers to develop a more strategic technique for their extraction. Thereafter the optimum quality of this essential oil could be controlled in a more improved way.

Keywords: Agarwood, Aquillaria Malaccensis, agarospirol, jinkohol, jinkoh eremol, khusenol

Procedia PDF Downloads 545
3464 Reducing Pressure Drop in Microscale Channel Using Constructal Theory

Authors: K. X. Cheng, A. L. Goh, K. T. Ooi

Abstract:

The effectiveness of microchannels in enhancing heat transfer has been demonstrated in the semiconductor industry. In order to tap the microscale heat transfer effects into macro geometries, overcoming the cost and technological constraints, microscale passages were created in macro geometries machined using conventional fabrication methods. A cylindrical insert was placed within a pipe, and geometrical profiles were created on the outer surface of the insert to enhance heat transfer under steady-state single-phase liquid flow conditions. However, while heat transfer coefficient values of above 10 kW/m2·K were achieved, the heat transfer enhancement was accompanied by undesirable pressure drop increment. Therefore, this study aims to address the high pressure drop issue using Constructal theory, a universal design law for both animate and inanimate systems. Two designs based on Constructal theory were developed to study the effectiveness of Constructal features in reducing the pressure drop increment as compared to parallel channels, which are commonly found in microchannel fabrication. The hydrodynamic and heat transfer performance for the Tree insert and Constructal fin (Cfin) insert were studied using experimental methods, and the underlying mechanisms were substantiated by numerical results. In technical terms, the objective is to achieve at least comparable increment in both heat transfer coefficient and pressure drop, if not higher increment in the former parameter. Results show that the Tree insert improved the heat transfer performance by more than 16 percent at low flow rates, as compared to the Tree-parallel insert. However, the heat transfer enhancement reduced to less than 5 percent at high Reynolds numbers. On the other hand, the pressure drop increment stayed almost constant at 20 percent. This suggests that the Tree insert has better heat transfer performance in the low Reynolds number region. More importantly, the Cfin insert displayed improved heat transfer performance along with favourable hydrodynamic performance, as compared to Cfinparallel insert, at all flow rates in this study. At 2 L/min, the enhancement of heat transfer was more than 30 percent, with 20 percent pressure drop increment, as compared to Cfin-parallel insert. Furthermore, comparable increment in both heat transfer coefficient and pressure drop was observed at 8 L/min. In other words, the Cfin insert successfully achieved the objective of this study. Analysis of the results suggests that bifurcation of flows is effective in reducing the increment in pressure drop relative to heat transfer enhancement. Optimising the geometries of the Constructal fins is therefore the potential future study in achieving a bigger stride in energy efficiency at much lower costs.

Keywords: constructal theory, enhanced heat transfer, microchannel, pressure drop

Procedia PDF Downloads 330
3463 A Green Optically Active Hydrogen and Oxygen Generation System Employing Terrestrial and Extra-Terrestrial Ultraviolet Solar Irradiance

Authors: H. Shahid

Abstract:

Due to Ozone layer depletion on earth, the incoming ultraviolet (UV) radiation is recorded at its high index levels such as 25 in South Peru (13.5° S, 3360 m a.s.l.) Also, the planning of human inhabitation on Mars is under discussion where UV radiations are quite high. The exposure to UV is health hazardous and is avoided by UV filters. On the other hand, artificial UV sources are in use for water thermolysis to generate Hydrogen and Oxygen, which are later used as fuels. This paper presents the utility of employing UVA (315-400nm) and UVB (280-315nm) electromagnetic radiation from the solar spectrum to design and implement an optically active, Hydrogen and Oxygen generation system via thermolysis of desalinated seawater. The proposed system finds its utility on earth and can be deployed in the future on Mars (UVB). In this system, by using Fresnel lens arrays as an optical filter and via active tracking, the ultraviolet light from the sun is concentrated and then allowed to fall on two sub-systems of the proposed system. The first sub-system generates electrical energy by using UV based tandem photovoltaic cells such as GaAs/GaInP/GaInAs/GaInAsP and the second elevates temperature of water to lower the electric potential required to electrolyze the water. An empirical analysis is performed at 30 atm and an electrical potential is observed to be the main controlling factor for the rate of production of Hydrogen and Oxygen and hence the operating point (Q-Point) of the proposed system. The hydrogen production rate in the case of the commercial system in static mode (650ᵒC, 0.6V) is taken as a reference. The silicon oxide electrolyzer cell (SOEC) is used in the proposed (UV) system for the Hydrogen and Oxygen production. To achieve the same amount of Hydrogen as in the case of the reference system, with minimum chamber operating temperature of 850ᵒC in static mode, the corresponding required electrical potential is calculated as 0.3V. However, practically, the Hydrogen production rate is observed to be low in comparison to the reference system at 850ᵒC at 0.3V. However, it has been shown empirically that the Hydrogen production can be enhanced and by raising the electrical potential to 0.45V. It increases the production rate to the same level as is of the reference system. Therefore, 850ᵒC and 0.45V are assigned as the Q-point of the proposed system which is actively stabilized via proportional integral derivative controllers which adjust the axial position of the lens arrays for both subsystems. The functionality of the controllers is based on maintaining the chamber fixed at 850ᵒC (minimum operating temperature) and 0.45V; Q-Point to realize the same Hydrogen production rate as-is for the reference system.

Keywords: hydrogen, oxygen, thermolysis, ultraviolet

Procedia PDF Downloads 128
3462 Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere

Authors: Md. Hasan Zahir

Abstract:

Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes.

Keywords: ceramic membrane, gas separation, hydrothermal stability, rare earth doped-Silica

Procedia PDF Downloads 253
3461 Modification and Surface Characterization of the Co20Cr15W10Ni Alloy for Application as Biomaterial

Authors: Fernanda A. Vechietti, Natália O. B. Muniz, Laura C. Treccani, Kurosch. Rezwan, Luis Alberto dos Santos

Abstract:

CoCr alloys are widely used in prosthetic implants due to their excellent mechanical properties, such as good tensile strength, elastic modulus and wear resistance. Their biocompatibility and lack of corrosion are also prominent features of this alloy. One of the most effective and simple ways to protect metal’s surfaces are treatments, such as electrochemical oxidation by passivation, which is used as a protect release of metallic ions. Another useful treatment is the electropolishing, which is used to reduce the carbide concentration and protrusion at the implanted surface. Electropolishing is a cheap and effective method for treatment of implants, which generally has complex geometries. The purpose of this study is surface modification of the alloy CoCr(ASTM F90-09) by different methods: polishing, electro polishing, passivation and heat treatment for application as biomaterials. The modification of the surface was studied and characterized by SEM, profilometry, wettability and compared to the surface of the samples untreated. The heat treatment and of passivation increased roughness (0.477 µm and 0.825 µm) the samples in relation the sample electropolished and polished(0.131 µm and 0.274 µm) and were observed the improve wettability’s with the increase the roughness.

Keywords: biomaterial, CoCr, surface treatment, heat treatment, roughness

Procedia PDF Downloads 540
3460 Analytical Design of Fractional-Order PI Controller for Decoupling Control System

Authors: Truong Nguyen Luan Vu, Le Hieu Giang, Le Linh

Abstract:

The FOPI controller is proposed based on the main properties of the decoupling control scheme, as well as the fractional calculus. By using the simplified decoupling technique, the transfer function of decoupled apparent process is firstly separated into a set of n equivalent independent processes in terms of a ratio of the diagonal elements of original open-loop transfer function to those of dynamic relative gain array and the fraction – order PI controller is then developed for each control loops due to the Bode’s ideal transfer function that gives the desired fractional closed-loop response in the frequency domain. The simulation studies were carried out to evaluate the proposed design approach in a fair compared with the other existing methods in accordance with the structured singular value (SSV) theory that used to measure the robust stability of control systems under multiplicative output uncertainty. The simulation results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: ideal transfer function of bode, fractional calculus, fractional order proportional integral (FOPI) controller, decoupling control system

Procedia PDF Downloads 326