Search results for: tumor infiltrating lymphocytes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 888

Search results for: tumor infiltrating lymphocytes

168 Angiogenic Potential of Collagen Based Biomaterials Implanted on Chick Embryo Chorioallantoic Membrane as Alternative Microenvironment for in Vitro and in Vivo Angiogenesis Assays

Authors: Anca Maria Cimpean, Serban Comsa

Abstract:

Chick embryo chorioallantoic membrane (CAM) is a well vascularised in vivo experimental model used as a platform for testing the behavior of different implants inserted on it from tumor fragments to therapeutic agents or various biomaterials. Five types of collagen-based biomaterials with 2D and 3D structure (MotifMesh, Optimaix2D, Optimaix3D, Dual Layer Collagen and Xenoderm) were implanted on CAM and continuously evaluated by stereomicroscope for up to 5 days post-implant with an emphasis of their ability to requisite and develop new blood vessels (BVs) followed by microscopic analysis. MotifMEsh did not induce any angiogenic response lacking to be invaded by BVs from the CAM, but it induced intense inflammatory response necrosis and fibroblastic reaction around the implant. Optimaix2D has good adherence. CAM with minimal or no inflammatory reaction, a good integration of the CAM between the collagen mesh’s fibers, consistent adhesion of the cells to the collagen fibers,and a good ability to form pseudo-vascular channels filled with cells. Optimaix3D induced the highest angiogenic effects on CAM. The material shows good integration on CAM. The collagen fibers of the material show the ability to organize themselves into linear and tubular structures. It is possible to see blood elements, especially at the periphery of the implant. Dual-layer collagen behaves similar to Optimaix 3D, while Xenoderm induced a moderate angiogenic effect on CAM. Based on these data, we may conclude that collagen-based materials have variable ability to requisite and develop new blood vessels. A proper selection of collagen-based biomaterial scaffolds may crucially influence the acquisition and development of blood vessels during angiogenesis assays.

Keywords: chick embryo chorioallantoic membrane, collagen scaffolds, blood vessels, vascular microenvironment

Procedia PDF Downloads 191
167 Pattern of Prostate Specific Antigen Request in a Tertiary Health Institution S’ Tumor Marker Laboratory in Nigeria: A Two Year Review

Authors: Ademola Azeez

Abstract:

Background: This study is a two year review of requests pattern for Prostate Specific Antigen (PSA), in a Nigerian tertiary health care institution. Prostate specific antigen was first described about 44 years ago but is still in use today for, diagnosis, monitoring, screening and prognosis of prostatic carcinoma though not-very specific as was widely believed. Prostate cancer is an increasingly important public health problem among adult men worldwide. Nigeria, which was formerly regarded as a low-incidence area by several authors is now witnessing a steep rise in the occurrence of this disease. This has been suggested to be due to increasing availability of screening tests and diagnostic facilities and not necessarily because of increased incidence of the diseases. Many notable Nigerians have died due to this dreaded disease. Methods: All plasma samples for PSA from January 2021-December 2022 were analyzed weekly by abbot autoanalyser, chemiluminescence assay method. Bio-data from request form were collated and analyzed. A total of 385 requests were received for the period under review. Result: There was an increase of request from inception to the last year of review. Smoked food, consumption of local herb and alcohol in order of importance, respectively, appears to be prominent factor in patient requested for PSA. The mean age was 67.years; the youngest was 29, while the oldest was 93years. Age 70 has the highest frequency of 8.5% .Mean PSA was 12.9ng/ml. There was a positive correlation between age and PSA (R=0.255, P < 0.05).Significant increase in PSA with age were reported. Men who retired from active jobs constitute the highest request for PSA test. Conclusion: There was an increasing trend in the proportion of requests with values outside the reference interval especially in patients diagnosed of benign prostatic hyperplasia, prostate cancer, while some routine test for PSA were elevated for the first time .This is in line with earlier report of increasing incidence of prostate cancer in Nigeria despite the increasing knowledge of healthy lifestyle.

Keywords: pattern, PSA, tertiary institution, Nigeria

Procedia PDF Downloads 25
166 Cysticidal Effect of Balanites Aegyptiaca and Moringa Oleifera on Bovine Cysticercosis with Monitoring to Dynamics of TNF-α

Authors: Omnia M.Kandil, Noha M. F. Hassan, Doaa Sedky, Hatem A. Shalaby, Heba M. Ashry, Nadia M. T. Abu El Ezz, Sahar M. Kandeel, Mohamed S. Abdelfattah Ying L, Ebtesam M. Al-Olayan

Abstract:

The cestode, Taenia saginata is a zoonotic tapeworm that it’s larval stage which known as Cysticercus bovis cause cyst formation in cattle’s organs such as heart, lung, liver, tongue, esophagus and diaphragm muscle, despite the infected cattle may show no clinical signs. In view of considerable interest in developing cysticidal drugs including those from medicinal plants, because of their consideration as eco-friendly and biodegradable as well as having multiple bioactive compounds that may translate to multiple mechanisms in killing the parasites. This study was achieved to evaluate, for the first time, the efficacy of methanolic extract of Balanites aegyptiaca fruits and Moringa oleifera seeds against metacestode larval stage of the cestode Taenia saginata in BALB/c mice compared with commonly used anthelmintic albendazole and assigning the level of tumor necrosis factor (TNF-α) to monitor immune and inflammatory response of experimentally infected animals. The results revealed a marked decrease in the numbers of cysticerci found in all treated mice groups and up to 88% reduction was achieved in the B. aegyptiaca treated group; higher than that was recorded in both M. oleifera (72.23%) and albendazole treated ones (80.56%). The cysts of the treated groups were smaller of the control one. Besides, the mean concentration of TNF-α following treatment with Balanites and Moringa extracts, was higher but not significant difference than that in the untreated infected control one (P<0.05), evidence for inflammation and cyst damage. It can be concluded that the in vivo efficacy of M. oleifera extract was comparable to a commercial anthelmintic, and the B. aegyptiaca extract was superior in the reduction of cysticerci numbers.

Keywords: Balanites aeggyptica, Moringa oleifera, cysticercosis, BALB/C mice

Procedia PDF Downloads 65
165 Quantification and Evaluation of Tumors Heterogeneity Utilizing Multimodality Imaging

Authors: Ramin Ghasemi Shayan, Morteza Janebifam

Abstract:

Tumors are regularly inhomogeneous. Provincial varieties in death, metabolic action, multiplication and body part are watched. There’s expanding proof that strong tumors may contain subpopulations of cells with various genotypes and phenotypes. These unmistakable populaces of malignancy cells can connect during a serious way and may contrast in affectability to medications. Most tumors show organic heterogeneity1–3 remembering heterogeneity for genomic subtypes, varieties inside the statement of development variables and genius, and hostile to angiogenic factors4–9 and varieties inside the tumoural microenvironment. These can present as contrasts between tumors in a few people. for instance, O6-methylguanine-DNA methyltransferase, a DNA fix compound, is hushed by methylation of the quality advertiser in half of glioblastoma (GBM), adding to chemosensitivity, and improved endurance. From the outset, there includes been specific enthusiasm inside the usage of dissemination weighted imaging (DWI) and dynamic complexity upgraded MRI (DCE-MRI). DWI sharpens MRI to water dispersion inside the extravascular extracellular space (EES) and is wiped out with the size and setup of the cell populace. Additionally, DCE-MRI utilizes dynamic obtaining of pictures during and after the infusion of intravenous complexity operator. Signal changes are additionally changed to outright grouping of differentiation permitting examination utilizing pharmacokinetic models. PET scan modality gives one of a kind natural particularity, permitting dynamic or static imaging of organic atoms marked with positron emanating isotopes (for example, 15O, 18F, 11C). The strategy is explained to a colossal radiation portion, which points of confinement rehashed estimations, particularly when utilized together with PC tomography (CT). At long last, it's of incredible enthusiasm to quantify territorial hemoglobin state, which could be joined with DCE-CT vascular physiology estimation to create significant experiences for understanding tumor hypoxia.

Keywords: heterogeneity, computerized tomography scan, magnetic resonance imaging, PET

Procedia PDF Downloads 145
164 Surgical Treatment Tumors and Cysts of the Pancreas in Children

Authors: Trunov V.O., Ryabov A. B., Poddubny I.V

Abstract:

Introduction: cystic and solid pancreatic tumors have a relevant and disruptive position in many positions. The results of the treatment of children with tumors and pancreatic cysts aged 3 to 17 years for the period from 2008 to 2019 on the basis of the Morozov State Children's Clinical Hospital in Moscow were analyzed. The total number of children with solid tumors was 17, and 31 with cysts. In all children, the diagnosis was made on the basis of ultrasound, followed by CT and MRI. In most patients with solid tumors, they were located in the area of the pancreas tail - 58%, in the body area - 14%, in the area of the pancreatic head - 28%. In patients with pancreatic cysts, the distribution of patients by topography was as follows: head of the pancreas - 10%, body of the pancreas - 16%, tail of the pancreas - 68%, total cystic transformation of the Wirsung duct - 6%. In pancreatic cysts, the method of surgical treatment was based on the results of MRCP, the level of amylase in the contents of the cyst, and the localization of the cyst. Thus, pathogenetically substantiated treatment included: excision of cysts, internal drainage on an isolated loop according to Ru, the formation of pancreatojejunoanastomosis in a child with the total cystic transformation of the Wirsung duct. In patients with solid pancreatic lesions, pancretoduodenalresection, central resection of the pancreas, and distal resection from laparotomy and laparoscopic access were performed. In the postoperative period, in order to prevent pancreatitis, all children underwent antisecretory therapy, parenteral nutrition, and drainage of the omental bursa. Results: hospital stay ranged from 7 to 12 days. The duration of postoperative fermentemia in patients with solid formations lasted from 3 to 6 days. In all cases, according to the histological examination, a pseudopapillary tumor of the pancreas was revealed. In the group of children with pancreatic cysts, fermentemia was observed from 2 to 4 days, recurrence of cysts in the long term was detected in 3 children (10%). Conclusions: the treatment of cystic and solid pancreatic neoplasms is a difficult task in connection with the anatomical and functional features of the organ.

Keywords: pancreas, tumors, cysts, resection, laparoscopy, children

Procedia PDF Downloads 139
163 Toxicological Effects of Atmospheric Fine Particulate Matter on Human Bronchial Epithelial Cells: Metabolic Activation, Genotoxicity and Epigenetic Modifications

Authors: M. Borgie, Z. Dagher, F. Ledoux, A. Verdin, F. Cazier, H. Greige, P. Shirali, D. Courcot

Abstract:

In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution and fine particulate matter (PM2.5) as carcinogenic to humans. Despite the clearly relationship established by epidemiological studies between PM exposure and the onset of respiratory and cardiovascular diseases, uncertainties remain about the physiopathological mechanisms responsible for these diseases. The aim of this work was to evaluate the toxicological effects of two samples of atmospheric PM2.5 collected at urban and rural sites on human bronchial epithelial cells, BEAS-2B, especially to investigate the metabolic activation of organic compounds, the alteration of epigenetic mechanisms (i.e. microRNAs genes expression), the phosphorylation of H2AX and the telomerase activity. Our results showed a significant increase in CYP1A1, CYP1B1, and AhRR genes expression, miR-21 gene expression, H2AX phosphorylation and telomerase activity in BEAS-2B cells after their exposure to PM2.5, both in a dose and site-dependent manner. These results showed that PM2.5, especially urban PM, are able to induce the expression of metabolizing enzymes which can provide metabolic biotransformation of organic compounds into more toxic and carcinogenic metabolites, and to induce the expression of the oncomiR miR-21 which promotes cell growth and enhances tumor invasion and metastasis in lung cancer. In addition, our results have highlighted the role of PM2.5 in the activation of telomerase, which can maintain the telomeres length and subsequently preventing cell death, and have also demonstrated the ability of PM2.5 to induce DNA breaks and thus to increase the risk of mutations or chromosomal translocations that lead to genomic instability. All these factors may contribute to cell abnormalities, and thus the development of cancer.

Keywords: BEAS-2B cells, carcinogenesis, epigenetic alterations and genotoxicity, PM2.5

Procedia PDF Downloads 380
162 Differences in Cognitive Functioning over the Course of Chemotherapy in Patients Suffering from Multiple Myeloma and the Possibility to Predict Their Cognitive State on the Basis of Biological Factors

Authors: Magdalena Bury-Kaminska, Aneta Szudy-Szczyrek, Aleksandra Nowaczynska, Olga Jankowska-Lecka, Marek Hus, Klaudia Kot

Abstract:

Introduction: The aim of the research was to determine the changes in cognitive functioning in patients with plasma cell myeloma by comparing patients’ state before the treatment and during chemotherapy as well as to determine the biological factors that can be used to predict patients’ cognitive state. Methods: The patients underwent the research procedure twice: before chemotherapy and after 4-6 treatment cycles. A psychological test and measurement of the following biological variables were carried out: TNF-α (tumor necrosis factor), IL-6 (interleukin 6), IL-10 (interleukin 10), BDNF (brain-derived neurotrophic factor). The following research methods were implemented: the Montreal Cognitive Assessment (MoCA), Battery of Tests for Assessing Cognitive Functions PU1, experimental and clinical trials based on the Choynowski’s Memory Scale, Stroop Color-Word Interference Test (SCWT), depression measurement questionnaire. Results: The analysis of the research showed better cognitive functions of patients during chemotherapy in comparison to the phase before it. Moreover, neurotrophin BDNF allows to predict the level of selected cognitive functions (semantic fluency and execution control) already at the diagnosis stage. After 4-6 cycles, it is also possible to draw conclusions concerning the extent of working memory based on the level of BDNF. Cytokine TNF-α allows us to predict the level of letter fluency during anti-cancer treatment. Conclusions: It is possible to presume that BDNF has a protective influence on patients’ cognitive functions and working memory and that cytokine TNF-α co-occurs with a diminished execution control and better material grouping in terms of phonological fluency. Acknowledgment: This work was funded by the National Science Center in Poland [grant no. 2017/27/N/HS6/02057.

Keywords: chemobrain, cognitive impairment, non−central nervous system cancers, hematologic diseases

Procedia PDF Downloads 151
161 The Use of Bleomycin and Analogues to Probe the Chromatin Structure of Human Genes

Authors: Vincent Murray

Abstract:

The chromatin structure at the transcription start sites (TSSs) of genes is very important in the control of gene expression. In order for gene expression to occur, the chromatin structure at the TSS has to be altered so that the transcriptional machinery can be assembled and RNA transcripts can be produced. In particular, the nucleosome structure and positioning around the TSS has to be changed. Bleomycin is utilized as an anti-tumor agent to treat Hodgkin's lymphoma, squamous cell carcinoma, and testicular cancer. Bleomycin produces DNA damage in human cells and DNA strand breaks, especially double-strand breaks, are thought to be responsible for the cancer chemotherapeutic activity of bleomycin. Bleomycin is a large glycopeptide with molecular weight of approximately 1500 Daltons and hence its DNA strand cleavage activity can be utilized as a probe of chromatin structure. In this project, Illumina next-generation DNA sequencing technology was used to determine the position of DNA double-strand breaks at the TSSs of genes in intact cells. In this genome-wide study, it was found that bleomycin cleavage preferentially occurred at the TSSs of actively transcribed human genes in comparison with non-transcribed genes. There was a correlation between the level of enhanced bleomycin cleavage at TSSs and the degree of transcriptional activity. In addition, bleomycin was able to determine the position of nucleosomes at the TSSs of human genes. Bleomycin analogues were also utilized as probes of chromatin structure at the TSSs of human genes. In a similar manner to bleomycin, the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin preferentially cleaved at the TSSs of human genes. Interestingly this degree of enhanced TSS cleavage inversely correlated with the cytotoxicity (IC50 values) of BLM analogues. This indicated that the degree of cleavage by bleomycin analogues at the TSSs of human genes was very important in the cytotoxicity of bleomycin and analogues. It also provided a deeper insight into the mechanism of action of this cancer chemotherapeutic agent since actively transcribed genes were preferentially targeted.

Keywords: anti-cancer activity, chromatin structure, cytotoxicity, gene expression, next-generation DNA sequencing

Procedia PDF Downloads 114
160 Microfluidic Based High Throughput Screening System for Photodynamic Therapy against Cancer Cells

Authors: Rina Lee, Chung-Hun Oh, Eunjin Lee, Jeongyun Kim

Abstract:

The Photodynamic therapy (PDT) is a treatment that uses a photosensitizer as a drug to damage and kill cancer cells. After injecting the photosensitizer into the bloodstream, the drug is absorbed by cancer cells selectively. Then the area to be treated is exposed to specific wavelengths of light and the photosensitizer produces a form of oxygen that kills nearby cancer cells. PDT is has an advantage to destroy the tumor with minimized side-effects on normal cells. But, PDT is not a completed method for cancer therapy. Because the mechanism of PDT is quite clear yet and the parameters such as intensity of light and dose of photosensitizer are not optimized for different types of cancers. To optimize these parameters, we suggest a novel microfluidic system to automatically control intensity of light exposure with a personal computer (PC). A polydimethylsiloxane (PDMS) microfluidic chip is composed with (1) a cell culture channels layer where cancer cells were trapped to be tested with various dosed photofrin (1μg/ml used for the test) as the photosensitizer and (2) a color dye layer as a neutral density (ND) filter to reduce intensity of light which exposes the cell culture channels filled with cancer cells. Eight different intensity of light (10%, 20%, …, 100%) are generated through various concentrations of blue dye filling the ND filter. As a light source, a light emitting diode (LED) with 635nm wavelength was placed above the developed PDMS microfluidic chip. The total time for light exposure was 30 minutes and HeLa and PC3 cell lines of cancer cells were tested. The cell viability of cells was evaluated with a Live/Dead assay kit (L-3224, Invitrogen, USA). The stronger intensity of light exposed, the lower viability of the cell was observed, and vice versa. Therefore, this system was demonstrated through investigating the PDT against cancer cell to optimize the parameters as critical light intensity and dose of photosensitizer. Our results suggest that the system can be used for optimizing the combinational parameters of light intensity and photosensitizer dose against diverse cancer cell types.

Keywords: photodynamic therapy, photofrin, high throughput screening, hela

Procedia PDF Downloads 382
159 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles

Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz

Abstract:

Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.

Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles

Procedia PDF Downloads 147
158 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines

Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci

Abstract:

Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.

Keywords: breast cancer, epigenetic, microRNAs, RNF2

Procedia PDF Downloads 178
157 Study Secondary Particle Production in Carbon Ion Beam Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Ensuring accurate radiotherapy with carbon therapy requires precise monitoring of radiation dose distribution within the patient's body. This monitoring is essential for targeted tumor treatment, minimizing harm to healthy tissues, and improving treatment effectiveness while lowering side effects. In our investigation, we employed a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo simulations. Initially, Geant4 simulations were utilized to extract the initial positions of secondary particles formed during interactions between carbon ions and water. These particles included protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we studied the relationship between the carbon ion beam and these secondary particles. Interaction Vertex Imaging (IVI) is valuable for monitoring dose distribution in carbon therapy. It provides details about the positions and amounts of secondary particles, particularly protons. The IVI method depends on charged particles produced during ion fragmentation to gather information about the range by reconstructing particle trajectories back to their point of origin, referred to as the vertex. In our simulations regarding carbon ion therapy, we observed a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the target's unique elongated geometry, which hindered the straightforward transmission of forward-generated protons. Consequently, the limited protons that emerged mostly originated from points close to the target entrance. The trajectories of fragments (protons) were approximated as straight lines, and a beam back-projection algorithm, using recorded interaction positions in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitoring of radiation dose, interaction vertex imaging

Procedia PDF Downloads 82
156 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm² are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm²). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: focused ultrasound therapy, histotripsy, inertial cavitation, mechanical tissue ablation

Procedia PDF Downloads 318
155 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Apoptotic Factors

Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli

Abstract:

Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of the most important side effects of MTX. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone (PIO), is known to exert anti-inflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of PIO against MTX-induced nephropathy. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with PIO (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (1-30 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-PIO interaction was assessed. PIO treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with PIO. Collectively, PIO abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.

Keywords: methotrexate, pioglitazone, endothelium, kidney

Procedia PDF Downloads 311
154 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 183
153 Pioglitazone Ameliorates Methotrexate-Induced Renal Endothelial Dysfunction via Amending Detrimental Changes in Antioxidant Profile, Systemic Cytokines and Fas Production

Authors: Sahar M. El-Gowilly, Mai M. Helmy, Hanan M. El-Gowelli

Abstract:

Methotrexate (MTX) is widely used in treatment of cancers and autoimmune diseases. However, nephrotoxicity is one of its most important side effects. The peroxisome proliferator-activated receptor gamma agonist, pioglitazone, is known to exert antiinflammatory and reno-protective effects in various kidney injuries. The purpose of this study was to investigate the potential involvement of endothelial damage in MTX-induced renal injury and to elaborate the possible protective effect of pioglitazone against MTX-induced endothelial impairment. Compared with saline-treated rats, treatment with MTX (7 mg/kg for 3 day) caused significant elevations in serum levels of urea and creatinine, increased renal nitrate/nitrite level and impaired renovascular responsiveness of isolated perfused kidney to endothelium-dependent vasodilations induced by acetylcholine (0.01-2.43 nmol) and isoprenaline (1µmol). These effects were abolished by concurrent treatment with pioglitazone (2.5 mg/kg, for 5 days starting two days before MTX). Alternatively, MTX treatment did not affect endothelium-independent renovascular relaxation induced by sodium nitroprusside (0.001-10 μmole). The possibility that alterations in renal antioxidants, circulating cytokine and apoptotic factor (Fas) levels contributed to MTX-pioglitazone interaction was assessed. Pioglitazone treatment abrogated renal oxidative stress (decreased reduced glutathione and catalase activity and increased malondialdehyde), elevated serum cytokine (interleukin-6, interleukin-10, tumor necrosis factor-alpha and transforming growth factor-beta1) and Fas induced by MTX. Histologically, MTX caused defused tubular cells swelling and vacuolization associated with endothelial damage in renal arterioles. These effects disappeared upon co-treated with pioglitazone. Collectively, pioglitazone abolished MTX-induced endothelium dysfunction and nephrotoxicity via ameliorating oxidative stress and rectifying cytokines and Fas abnormalities caused by MTX.

Keywords: methotrexate, pioglitazone, endothelium, kidney

Procedia PDF Downloads 497
152 Exploring Factors Related to Unplanning Readmission of Elderly Patients in Taiwan

Authors: Hui-Yen Lee, Hsiu-Yun Wei, Guey-Jen Lin, Pi-Yueh Lee Lee

Abstract:

Background: Unplanned hospital readmissions increase healthcare costs and have been considered a marker of poor healthcare performance. The elderly face a higher risk of unplanned readmission due to elderly-specific characteristics such as deteriorating body functions and the relatively high incidence of complications after treatment of acute diseases. Purpose: The aim of this study was exploring the factors that relate to the unplanned readmission of elderly within 14 days of discharge at our hospital in southern Taiwan. Methods: We retrospectively reviewed the medical records of patients aged ≥65 years who had been re-admitted between January 2018 and December 2018.The Charlson Comorbidity score was calculated using previous used method. Related factors that affected the rate of unplanned readmission within 14 days of discharge were screened and analyzed using the chi-squared test and logistic regression analysis. Results: This study enrolled 829 subjects aged more than 65 years. The numbers of unplanned readmission patients within 14 days were 318 cases, while those did not belong to the unplanned readmission were 511 cases. In 2018, the rate of elderly patients in unplanned 14 days readmissions was 38.4%. The majority patients were females (166 cases, 52.2%), with an average age of 77.6 ± 7.90 years (65-98). The average value of Charlson Comorbidity score was 4.42±2.76. Using logistic regression analysis, we found that the gastric or peptic ulcer (OR=1.917 , P< 0.002), diabetes (OR= 0.722, P< 0.043), hemiplegia (OR= 2.292, P< 0.015), metastatic solid tumor (OR= 2.204, P< 0.025), hypertension (OR= 0.696, P< 0.044), and skin ulcer/cellulitis (OR= 2.747, P< 0.022) have significantly higher risk of 14-day readmissions. Conclusion: The results of the present study may assist the healthcare teams to understand the factors that may affect unplanned readmission in the elderly. We recommend that these teams give efficient approach in their medical practice, provide timely health education for elderly, and integrative healthcare for chronic diseases in order to reduce unplanned readmissions.

Keywords: unplanning readmission, elderly, Charlson comorbidity score, logistic regression analysis

Procedia PDF Downloads 129
151 Gene Expression Signature-Based Chemical Genomic to Identify Potential Therapeutic Compounds for Colorectal Cancer

Authors: Yen-Hao Su, Wan-Chun Tang, Ya-Wen Cheng, Peik Sia, Chi-Chen Huang, Yi-Chao Lee, Hsin-Yi Jiang, Ming-Heng Wu, I-Lu Lai, Jun-Wei Lee, Kuen-Haur Lee

Abstract:

There is a wide range of drugs and combinations under investigation and/or approved over the last decade to treat colorectal cancer (CRC), but the 5-year survival rate remains poor at stages II–IV. Therefore, new, more efficient drugs still need to be developed that will hopefully be included in first-line therapy or overcome resistance when it appears, as part of second- or third-line treatments in the near future. In this study, we revealed that heat shock protein 90 (Hsp90) inhibitors have high therapeutic potential in CRC according to combinative analysis of NCBI's Gene Expression Omnibus (GEO) repository and chemical genomic database of Connectivity Map (CMap). We found that second generation Hsp90 inhibitor, NVP-AUY922, significantly down regulated the activities of a broad spectrum of kinases involved in regulating cell growth arrest and death of NVPAUY922-sensitive CRC cells. To overcome NVP-AUY922-induced upregulation of survivin expression which causes drug insensitivity, we found that combining berberine (BBR), a herbal medicine with potency in inhibiting survivin expression, with NVP-AUY922 resulted in synergistic antiproliferative effects for NVP-AUY922-sensitive and -insensitive CRC cells. Furthermore, we demonstrated that treatment of NVP-AUY922-insensitive CRC cells with the combination of NVP-AUY922 and BBR caused cell growth arrest through inhibiting CDK4 expression and induction of microRNA-296-5p (miR-296-5p)-mediated suppression of Pin1–β-catenin–cyclin D1 signaling pathway. Finally, we found that the expression level of Hsp90 in tumor tissues of CRC was positively correlated with CDK4 and Pin1 expression levels. Taken together, these results indicate that combination of NVP-AUY922 and BBR therapy can inhibit multiple oncogenic signaling pathways of CRC.

Keywords: berberine, colorectal cancer, connectivity map, heat shock protein 90 inhibitor

Procedia PDF Downloads 303
150 Preoperative versus Postoperative Radiation Therapy in Patients with Soft Tissue Sarcoma of the Extremity

Authors: AliAkbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi, Behnam Kadkhodaei

Abstract:

Background: Soft tissue sarcomas (STS) are generally treated with a combination of limb preservation surgery and radiation therapy. Today, preoperative radiation therapy is considered for accurate treatment volume and smaller field size. Therefore, this study was performed to compare preoperative with postoperative radiation therapy in patients with extremity STS. Methods: In this non-randomized clinical trial, patients with localized extremity STS referred to the orthopedic clinics in Iran from 2021 to 2023 were studied. Patients were randomly divided into two groups: preoperative and postoperative radiation therapy. The two groups of patients were compared in terms of acute (wound dehiscence and infection) and late (limb edema, subcutaneous fibrosis, and joint stiffness) complications and their severity, as well as local recurrence and other one-year outcomes. Results: A total of 80 patients with localized extremity STS were evaluated in two treatment groups. The groups were matched in terms of age, sex, history of diabetes mellitus, hypertension, smoking, involved side, involved extremity, lesion location, and tumor histopathology. The acute complications of treatment in the two groups of patients did not differ significantly (P > 0.05). Of the late complications, only joint stiffness between the two groups had significant statistical differences (P < 0.001). The severity of all three late complications in the postoperative radiation therapy group was significantly higher (P < 0.05). There was no significant difference between the two groups in terms of the rate of local recurrence of other one-year outcomes (P > 0.05). Conclusion: This study showed that in patients with localized extremity STS, the two therapeutic approaches of adjuvant and neoadjuvant radiation therapy did not differ significantly in terms of local recurrence and distant metastasis during the one-year follow-up period and due to fewer late complications in preoperative radiotherapy group, this treatment approach can be a better choice than postoperative radiation therapy.

Keywords: soft tissue sarcoma, extremity, preoperative radiation therapy, postoperative radiation therapy

Procedia PDF Downloads 43
149 Neuroprotective Effect of Chrysin on Thioacetamide-Induced Hepatic Encephalopathy in Rats: Role of Oxidative Stress and TLR-4/NF-κB Pathway

Authors: S. A. El-Marasy, S. A. El Awdan, R. M. Abd-Elsalam

Abstract:

This study aimed to investigate the possible neuroprotective effect of chrysin on thioacetamide (TAA)-induced hepatic encephalopathy in rats. Also, the effect of chrysin on motor impairment, cognitive deficits, oxidative stress, neuroinflammation, apoptosis and histopathological damage was assessed. Male Wistar rats were randomly allocated into five groups. The first group received the vehicle (distilled water) for 21 days and is considered as normal group. While the second one received intraperitoneal dose of TAA (200 mg/kg) at three alternative days during the third week of the experiment to induce HE and is considered as control group. The other three groups were orally administered chrysin for 21 days (25, 50, 100 mg/kg) and starting from day 17; rats received intraperitoneal dose of TAA (200 mg/kg) at three alternative days. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Then behavioral, biochemical, histopathological and immunohistochemical analyses were assessed. Chrysin reversed TAA-induced motor coordination in rotarod test, cognitive deficits in object recognition test (ORT) and attenuated serum ammonia, hepatic liver enzymes, reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), reduced nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) brain contents. Chrysin administration also reduced Toll-4 receptor (TLR-4) gene expression, caspase-3 protein expression, hepatic necrosis and astrocyte swelling. This study depicts that chrysin exerted neuroprotective effect in TAA-induced HE rats, evidenced by improvement of cognitive deficits, motor incoordination and histopathological changes such as astrocyte swelling and vacuolization; hallmarks in HE, via reducing hyperammonemia, ameliorating hepatic function, in addition to its anti-oxidant, inactivation of TLR-4/NF-κB inflammatory pathway, and anti-apoptotic effects.

Keywords: chrysin, hepatic encephalopathy, oxidative stress, rats, thioacetamide, TLR4/NF-κB pathway

Procedia PDF Downloads 159
148 Treatment of Non-Small Cell Lung Cancer (NSCLC) With Activating Mutations Considering ctDNA Fluctuations

Authors: Moiseenko F. V., Volkov N. M., Zhabina A. S., Stepanova E. O., Kirillov A. V., Myslik A. V., Artemieva E. V., Agranov I. R., Oganesyan A. P., Egorenkov V. V., Abduloeva N. H., Aleksakhina S. Yu., Ivantsov A. O., Kuligina E. S., Imyanitov E. N., Moiseyenko V. M.

Abstract:

Analysis of ctDNA in patients with NSCLC is an emerging biomarker. Multiple research efforts of quantitative or at least qualitative analysis before and during the first periods of treatment with TKI showed the prognostic value of ctDNA clearance. Still, these important results are not incorporated in clinical standards. We evaluated the role of ctDNA in EGFR-mutated NSCLC receiving first-line TKI. Firstly, we analyzed sequential plasma samples from 30 patients that were collected before intake of the first tablet (at baseline) and at 6, 12, 24, 36, and 48 hours after the “starting point.” EGFR-M+ allele was measured by ddPCR. Afterward, we included sequential qualitative analysis of ctDNA with cobas® EGFR Mutation Test v2 from 99 NSCLC patients before the first dose, after 2 and 4 months of treatment, and on progression. Early response analysis showed the decline of EGFR-M+ level in plasma within the first 48 hours of treatment in 11 subjects. All these patients showed objective tumor response. 10 patients showed either elevation of EGFR-M+ plasma concentration (n = 5) or stable content of circulating EGFR-M+ after the start of the therapy (n = 5); only 3 of these patients achieved an objective response (p = 0.026) when compared to the former group). The rapid decline of plasma EGFR-M+ DNA concentration also predicted for longer PFS (13.7 vs. 11.4 months, p = 0.030). Long-term ctDNA monitoring showed clinically significant heterogeneity of EGFR-mutated NSCLC treated with 1st line TKIs in terms of progression-free and overall survival. Patients without detectable ctDNA at baseline (N = 32) possess the best prognosis on the duration of treatment (PFS: 24.07 [16.8-31.3] and OS: 56.2 [21.8-90.7] months). Those who achieve clearance after two months of TKI (N = 42) have indistinguishably good PFS (19.0 [13.7 – 24.2]). Individuals who retain ctDNA after 2 months (N = 25) have the worst prognosis (PFS: 10.3 [7.0 – 13.5], p = 0.000). 9/25 patients did not develop ctDNA clearance at 4 months with no statistical difference in PFS from those without clearance at 2 months. Prognostic heterogeneity of EGFR-mutated NSCLC should be taken into consideration in planning further clinical trials and optimizing the outcomes of patients.

Keywords: NSCLC, EGFR, targeted therapy, ctDNA, prognosis

Procedia PDF Downloads 50
147 A Radioprotective Effect of Nanoceria (CNPs), Magnetic Flower-Like Iron Oxide Microparticles (FIOMPs), and Vitamins C and E on Irradiated BSA Protein

Authors: Hajar Zarei, AliAkbar Zarenejadatashgah, Vuk Uskoković, Hiroshi Watabe

Abstract:

The reactive oxygen species (ROS) generated by radiation in nuclear diagnostic imaging and radiotherapy could damage the structure of the proteins in noncancerous cells surrounding the tumor. The critical factor in many age-related diseases, such as Alzheimer, Parkinson, or Huntington diseases, is the oxidation of proteins by the ROS as molecular triggers of the given pathologies. Our studies by spectroscopic experiments showed doses close to therapeutic ones (1 to 5 Gy) could lead to changes of secondary and tertiary structures in BSA protein macromolecule as a protein model as well as the aggregation of polypeptide chain but without the fragmentation. For this reason, we investigated the radioprotective effects of natural (vitamin C and E) and synthetic materials (CNPs and FIOMPs) on the structural changes in BSA protein induced by gamma irradiation at a therapeutic dose (3Gy). In the presence of both vitamins and synthetic materials, the spectroscopic studies revealed that irradiated BSA was protected from the structural changes caused by ROS, according to in vitro research. The radioprotective property of CNPs and FIOMPs arises from enzyme mimetic activities (catalase, superoxide dismutase, and peroxidase) and their antioxidant capability against hydroxyl radicals. In the case of FIOMPs, a porous structure also leads to increased ROS recombination with each other in the same radiolytic track and subsequently decreased encounters with BSA. The hydrophilicity of vitamin C resulted in the major scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only neutralize them thanks to the moderate BSA binding constant but also formed a barrier for diffusing ROS. To the best of our knowledge, there has been a persistent lack of studies investigating the radioactive effect of mentioned materials on proteins. Therefore, the results of our studies can open a new widow for application of these common dietary ingredients and new synthetic NPs in improving the safety of radiotherapy.

Keywords: reactive oxygen species, spectroscopy, bovine serum albumin, gamma radiation, radioprotection

Procedia PDF Downloads 85
146 GATA3-AS1 lncRNA as a Predictive Biomarker for Neoadjuvant Chemotherapy Response in Locally Advanced Luminal B Breast Cancer: An RNA ISH Study

Authors: Tania Vasquez Mata, Luis A. Herrera, Cristian Arriaga Canon

Abstract:

Background: Locally advanced breast cancer of the luminal B phenotype, poses challenges due to its variable response to neoadjuvant chemotherapy. A predictive biomarker is needed to identify patients who will not respond to treatment, allowing for alternative therapies. This study aims to validate the use of the lncRNA GATA3-AS1, as a predictive biomarker using RNA in situ hybridization. Research aim: The aim of this study is to determine if GATA3-AS1 can serve as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Methodology: The study utilizes RNA in situ hybridization with predesigned probes for GATA3-AS1 on Formalin-Fixed Paraffin-Embedded tissue sections. The samples underwent pretreatment and protease treatment to enable probe penetration. Chromogenic detection and signal evaluation were performed using specific criteria. Findings: Patients who did not respond to neoadjuvant chemotherapy showed a 3+ score for GATA3-AS1, while those who had a complete response had a 1+ score. Theoretical importance: This study demonstrates the potential clinical utility of GATA3-AS1 as a biomarker for resistance to neoadjuvant chemotherapy. Identifying non-responders early on can help avoid unnecessary treatment and explore alternative therapy options. Data collection and analysis procedures: Tissue samples from patients with locally advanced luminal B breast cancer were collected and processed using RNA in situ hybridization. Signal evaluation was conducted under a microscope, and scoring was based on specific criteria. Questions addressed: Can GATA3-AS1 serve as a predictive biomarker for neoadjuvant chemotherapy response in locally advanced luminal B breast cancer? Conclusion: The lncRNA GATA3-AS1 can be used as a biomarker for resistance to neoadjuvant chemotherapy in patients with locally advanced luminal B breast cancer. Its identification through RNA in situ hybridization of tissue obtained from the initial biopsy can aid in treatment decision-making.

Keywords: biomarkers, breast neoplasms, genetics, neoadjuvant therapy, tumor

Procedia PDF Downloads 56
145 Heart-Rate Variability Moderates the Relation between Life Threatening Events and Cancer-Development: Making Cancer Less “Vague”

Authors: Yori Gidron, Laura Caton, Irit Ben-Aharon

Abstract:

Background: Many patients and even certain clinicians attribute cancer development to psychosocial factors. Yet, empirical data supports more the prognostic role, rather than the etiological role, of psychosocial factors in cancer. Part of the inconsistency may result from not considering possible moderating factors in the etiological role of psychosocial factors. One important candidate moderating factor is the vagal nerve, whose activity is indexed by heart-rate variability (HRV). The vagal nerve may prevent cancer since it reduces inflammation on the one hand, and since it increases anti-tumor immunity on the other hand. This study examined the moderating role of the vagus in the relation between life threatening events (LTE) and cancer development. Method: We re-analyzed data from the Lifelines Dutch longitudinal cohort study of over 150,000 people. The present study included 82,751 adults, who initially were cancer-free. We extracted information on background factors (e.g., age, gender, fat consumption), whether they ever experienced LTE, HRV and cancer diagnosis as reported by patients in annual clinic visits. HRV was derived from brief ECGs. Results: Of the full sample, 1011 people developed cancer during a follow-up. In the full sample, LTE significantly predicted cancer development (R.R = 1.063 p < .01) and HRV significantly predicted a reduced risk of cancer development (R.R = .506 p <.001). Importantly, LTE significantly predicted cancer only when HRV was low (R.R = 1.056, 95% CI: 1.007 - 1.108, p < .05) but not when HRV was high (R.R = 1.014; 95% CI: 0.916 - 1.122, p > 0.05), independent of confounders. Conclusions: To the best of our knowledge, this is the first study showing in a large sample that LTE predict cancer development, and that this occurs only when vagal nerve activity (HRV) is relatively low. These results could result from lack of vagal modulation of inflammation and also from lack of vagal modulation of stress responses. Results are in line with the cancer-protective role of the vagus. HRV needs to be routinely monitored in the population and future intervention trials need to examine whether vagal nerve activation can prevent cancer in people with LTE and with other cancer risk factors.

Keywords: cancer development, life-events, moderation, vagal nerve

Procedia PDF Downloads 170
144 Derivation of Human NK Cells from T Cell-Derived Induced Pluripotent Stem Cells Using Xenogeneic Serum-Free and Feeder Cell-Free Culture System

Authors: Aliya Sekenova, Vyacheslav Ogay

Abstract:

The derivation of human induced pluripotent stem cells (iPSCs) from somatic cells by direct reprogramming opens wide perspectives in the regenerative medicine. It means the possibility to develop the personal and, consequently, any immunologically compatible cells for applications in cell-based therapy. The purpose of our study was to develop the technology for the production of NK cells from T cell-derived induced pluripotent stem cells (TiPSCs) for subsequent application in adoptive cancer immunotherapy. Methods: In this study iPSCs were derived from peripheral blood T cells using Sendai virus vectors expressing Oct4, Sox2, Klf4 and c-Myc. Pluripotent characteristics of TiPSCs were examined and confirmed with alkaline phosphatase staining, immunocytochemistry and RT-PCR analysis. For NK cell differentiation, embryoid bodies (EB) formed from (TiPSCs) were cultured in xenogeneic serum-free medium containing human serum, IL-3, IL-7, IL-15, SCF, FLT3L without using M210-B4 and AFT-024 stromal feeder cells. After differentiation, NK cells were characterized with immunofluorescence analysis, flow cytometry and cytotoxicity assay. Results: Here, we for the first time demonstrate that TiPSCs can effectively differentiate into functionally active NK cells without M210-B4 and AFT-024 xenogeneic stroma cells. Immunofluorescence and flow cytometry analysis showed that EB-derived cells can differentiate into a homogeneous population of NK cell expressing high levels of CD56, CD45 and CD16 specific markers. Moreover, these cells significantly express killing activation receptors such as NKp44 and NKp46. In the comparative analysis, we observed that NK cells derived using feeder-free culture system have more high killing activity against K-562 tumor cells, than NK cells derived by feeder-dependent method. Thus, we think that our obtained data will be useful for the development of large-scale production of NK cells for translation into cancer immunotherapy.

Keywords: induced pluripotent stem cells, NK cells, T cells, cell diffentiation, feeder cell-free culture system

Procedia PDF Downloads 324
143 Investigating Prostaglandin E2 and Intracellular Oxidative Stress Levels in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages upon Treatment with Strobilanthes crispus

Authors: Anna Pick Kiong Ling, Jia May Chin, Rhun Yian Koh, Ying Pei Wong

Abstract:

Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.

Keywords: anti-inflammatory, natural products, prostaglandin E2, reactive oxygen species

Procedia PDF Downloads 283
142 Protective Efficacy of Moringa oleifera against Oxidative Ovarian Damage and Reproductive Failure in Female Rats Caused by Cyclophosphamide

Authors: Seham Samir Soliman, Ahmed A.Suliman, Khaled Fathy, Ahmed A. Sedik

Abstract:

Cyclophosphamide (CP), an antineoplastic drug, has been found to induce reproductive damage. It is essential to develop approaches aimed at safeguarding ovarian tissue integrity in women experiencing reproductive toxicity as a result of chemotherapy. The current study was conducted to assess the impact of an extract derived from Moringa oleifera (M. oleifera) leaves on ovarian damage produced by CP. A total of 32 female Wistar Albino rats, which were in a healthy cycling state, were randomly separated into 4 groups, with every group contains 8 rats. The first group was administered intraperitoneal (i.p.) saline. The second group was administered a solitary intraperitoneal dosage of cyclophosphamide (200 mg/kg). The third one received M. oleifera extract (150 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. The fourth group received M. oleifera extract (250 mg/kg orally) for 20 days, followed by i.p. of CP on the last day of the experiment. Hormonal assessments, including luteinizing hormone (LH), estrogen (ES), and follicle-stimulating hormone (FSH), were performed 24 hours after CP administration. In addition, evaluating the antioxidant status and inflammatory response against CP. Moreover, conducting detailed histopathological and ultra-structural pictures of the ovary. Our findings reported that rats intoxicated with CP exhibited elevated levels of FSH, LH, malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), and a decrease in E₂, and glutathione (GSH) levels. Pre-treatment with M. oleifera extract (250 mg/kg orally) ameliorated the disturbance in hormonal changes, oxidative stress indices, and the levels of pro-inflammatory mediators. Also, the histopathological and ultra-structural pictures of the ovaries were improved significantly in rats. In conclusion, M. oleifera extract possesses a significant protective role against CP-induced acute reproductive toxicity via modulating the values of FSH, LH, E₂ and quenching the release of reactive oxygen species and inflammatory mediators in female rats.

Keywords: cyclophosphamide, Moringa oleifera, ovarian function, oxidative stress, pro-inflammatory mediators

Procedia PDF Downloads 78
141 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker

Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi

Abstract:

Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.

Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles

Procedia PDF Downloads 286
140 Comparison of 18F-FDG and 11C-Methionine PET-CT for Assessment of Response to Neoadjuvant Chemotherapy in Locally Advanced Breast Carcinoma

Authors: Sonia Mahajan Dinesh, Anant Dinesh, Madhavi Tripathi, Vinod Kumar Ramteke, Rajnish Sharma, Anupam Mondal

Abstract:

Background: Neo-adjuvant chemotherapy plays an important role in treatment of breast cancer by decreasing the tumour load and it offers an opportunity to evaluate response of primary tumour to chemotherapy. Standard anatomical imaging modalities are unable to accurately reflect the response to chemotherapy until several cycles of drug treatment have been completed. Metabolic imaging using tracers like 18F-fluorodeoxyglucose (FDG) as a marker of glucose metabolism or amino acid tracers like L-methyl-11C methionine (MET) have potential role for the measurement of treatment response. In this study, our objective was to compare these two PET tracers for assessment of response to neoadjuvant chemotherapy, in locally advanced breast carcinoma. Methods: In our prospective study, 20 female patients with histology proven locally advanced breast carcinoma underwent PET-CT imaging using FDG and MET before and after three cycles of neoadjuvant chemotherapy (CAF regimen). Thereafter, all patients were taken for MRM and the resected specimen was sent for histo-pathological analysis. Tumour response to the neoadjuvant chemotherapy was evaluated by PET-CT imaging using PERCIST criteria and correlated with histological results. Responses calculated were compared for statistical significance using paired t- test. Results: Mean SUVmax for primary lesion in FDG PET and MET PET was 15.88±11.12 and 5.01±2.14 respectively (p<0.001) and for axillary lymph nodes was 7.61±7.31 and 2.75±2.27 respectively (p=0.001). Statistically significant response in primary tumour and axilla was noted on both FDG and MET PET after three cycles of NAC. Complete response in primary tumour was seen in only 1 patient in FDG and 7 patients in MET PET (p=0.001) whereas there was no histological complete resolution of tumor in any patient. Response to therapy in axillary nodes noted on both PET scans were similar (p=0.45) and correlated well with histological findings. Conclusions: For the primary breast tumour, FDG PET has a higher sensitivity and accuracy than MET PET and for axilla both have comparable sensitivity and specificity. FDG PET shows higher target to background ratios so response is better predicted for primary breast tumour and axilla. Also, FDG-PET is widely available and has the advantage of a whole body evaluation in one study.

Keywords: 11C-methionine, 18F-FDG, breast carcinoma, neoadjuvant chemotherapy

Procedia PDF Downloads 507
139 Investigating Anti-Tumourigenic and Anti-Angiogenic Effects of Resveratrol in Breast Carcinogenesis Using in-Silico Algorithms

Authors: Asma Zaib, Saeed Khan, Ayaz Ahmed Noonari, Sehrish Bint-e-Mohsin

Abstract:

Breast cancer is the most common cancer among females worldwide and is estimated that more than 450,000 deaths are reported each year. It accounts for about 14% of all female cancer deaths. Angiogenesis plays an essential role in Breast cancer development, invasion, and metastasis. Breast cancer predominantly begins in luminal epithelial cells lining the normal breast ducts. Breast carcinoma likely requires coordinated efforts of both increased proliferation and increased motility to progress to metastatic stages.Resveratrol: a natural stilbenoid, has anti-inflammatory and anticancer effects that inhibits proliferation of variety of human cancer cell lines, including breast, prostate, stomach, colon, pancreatic, and thyroid cancers.The objective of this study is:To investigate anti-neoangiogenesis effects of Resveratrol in breast cancer and to analyze inhibitory effects of resveratrol on aromatase, Erα, HER2/neu, and VEGFR.Docking is the computational determination of binding affinity between molecule (protein structure and ligand).We performed molecular docking using Swiss-Dock and to determine docking effects of (1) Resveratrol with Aromatase, (2) Resveratrol with ERα (3) Resveratrol with HER2/neu and (4) Resveratrol with VEGFR2.Docking results of resveratrol determined inhibitory effects on aromatase with binding energy of -7.28 kcal/mol which shows anticancerous effects on estrogen dependent breast tumors. Resveratrol also show inhibitory effects on ERα and HER2/new with binging energy -8.02, and -6.74 respectively; which revealed anti-cytoproliferative effects upon breast cancer. On the other hand resveratrol v/s VEGFR showed potential inhibitory effects on neo-angiogenesis with binding energy -7.68 kcal/mol, angiogenesis is the important phenomenon that promote tumor development and metastasis. Resveratrol is an anti-breast cancer agent conformed by in silico studies, it has been identified that resveratrol can inhibit breast cancer cells proliferation by acting as competitive inhibitor of aromatase, ERα and HER2 neo, while neo-angiogemesis is restricted by binding to VEGFR which authenticates the anti-carcinogenic effects of resveratrol against breast cancer.

Keywords: angiogenesis, anti-cytoproliferative, molecular docking, resveratrol

Procedia PDF Downloads 324