Search results for: sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1278

Search results for: sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

558 Scope of Samarium Content on Microstructural and Structural Properties of Potassium-Sodium Niobate (KNN) Based Ceramics

Authors: Geraldine Giraldo

Abstract:

In the research of advanced materials, ceramics based on KNN are an important topic, especially for multifunctional applications. In this work, the physical, structural, and microstructural properties of the (KNN-CaLi-xSm) system were analyzed by varying the concentration of samarium, which was prepared using the conventional solid-state reaction method by mixing oxides. It was found that the increase in Sm+3 concentration led to higher porosity in the sample and, consequently, a decrease in density, which is attributed to the structural vacancies at the A-sites of the perovskite-type structure of the ceramic system. In the structural analysis, a coexistence of Tetragonal (T) and Orthorhombic (O) phases were observed at different rare-earth ion contents, with a higher content of the T phase at xSm=0.010. Furthermore, the structural changes in the calcined powders at different temperatures were studied using the results of DTA-TG, which allowed for the analysis of the system's composition. It was found that the lowest total decomposition temperature occurred when xSm=0.010 at 770°C.

Keywords: perovskite, piezoelectric, multifunctional, Structure, ceramic

Procedia PDF Downloads 67
557 An Evaluation on the Methodology of Manufacturing High Performance Organophilic Clay at the Most Efficient and Cost Effective Process

Authors: Siti Nur Izati Azmi, Zatil Afifah Omar, Kathi Swaran, Navin Kumar

Abstract:

Organophilic Clays, also known as Organoclays, is used as a viscosifier in Oil based Drilling fluids. Most often, Organophilic clay are produced from modified Sodium and Calcium based Bentonite. Many studies and data show that Organophilic Clay using Hectorite based clays provide the best yield and good fluid loss properties in an oil-based drilling fluid at a higher cost. In terms of the manufacturing process, the two common methods of manufacturing organophilic clays are a Wet Process and a Dry Process. Wet process is known to produce better performance product at a higher cost while Dry Process shorten the production time. Hence, the purpose of this study is to evaluate the various formulation of an organophilic clay and its performance vs. the cost, as well as to determine the most efficient and cost-effective method of manufacturing organophilic clays.

Keywords: organophilic clay, viscosifier, wet process, dry process

Procedia PDF Downloads 226
556 Identification of the Microalgae Species in a Wild Mix Culture Acclimated to Landfill Leachate and Ammonia Removal Performances in a Microbubble Assisted Photobioreactor

Authors: Neslihan Ozman Say, Jim Gilmour, Pratik Desai, William Zimmerman

Abstract:

Landfill leachate treatment has been attracting researchers recently for various environmental and economical reasons. Leachate discharge to receiving waterbodies without treatment causes serious detrimental effects including partial oxygen depletion due to high biological oxygen demand (BOD) and chemical oxygen demand (COD) concentrations besides toxicity of heavy metals it contains and high ammonia concentrations. In this study, it is aimed to show microalgal ammonia removal performances of a wild microalgae consortia as an alternative treatment method and determine the dominant leachate tolerant species for this consortia. For the microalgae species identification experiments a microalgal consortium which has been isolated from a local pond in Sheffield inoculated in %5 diluted raw landfill leachate and acclimated to the leachate by batch feeding for a month. In order to determine the most tolerant microalgal consortium, four different untreated landfill leachate samples have been used as diluted in four different ratios as 5%, 10%, 20%, and 40%. Microalgae cell samples have been collected from all experiment sets and have been examined by using 18S rDNA sequencing and specialised gel electrophoresis which are adapted molecular biodiversity methods. The best leachate tolerant algal consortium is being used in order to determine ammonia removal performances of the culture in a microbubble assisted photobioreactor (PBR). A porous microbubble diffuser which is supported by a fluidic oscillator is being used for dosing CO₂ and air mixture in the PBR. It is known that high mass transfer performance of microbubble technology provides a better removal efficiency and a better mixing in the photobioreactor. Ammonia concentrations and microalgal growth are being monitored for PBR currently. It is aimed to present all the results of the study in final paper submission.

Keywords: ammonia removal from leachate, landfill leachate treatment, microalgae species identification, microbubble assisted photobioreactors

Procedia PDF Downloads 160
555 Sulfamethoxazole Degradation by Conventional Fenton and Microwave-Assisted Fenton Reaction

Authors: Derradji Chebli, Abdallah Bouguettoucha, Zoubir Manaa, Amrane Abdeltif

Abstract:

Pharmaceutical products, such as sulfamethoxazole (SMX) are rejected in the environment at trace level by human and animals (ng/L to mg/L), in their original form or as byproducts. Antibiotics are toxic contaminants for the aquatic environment, owing to their adverse effects on the aquatic life and humans. Even at low concentrations, they can negatively impact biological water treatment leading to the proliferation of antibiotics-resistant pathogens. It is therefore of major importance to develop efficient methods to limit their presence in the aquatic environment. In this aim, advanced oxidation processes (AOP) appear relevant compared to other methods, since they are based on the production of highly reactive free radicals, and especially ●OH. The objective of this work was to evaluate the degradation of SMX by microwave-assisted Fenton reaction (MW/Fe/H2O2). Hydrogen peroxide and ferrous ions concentrations, as well as the microwave power were optimized. The results showed that the SMX degradation by MW/Fe/H2O2 followed a pseudo-first order kinetic. The treatment of 20 mg/L initial SMX by the Fenton reaction in the presence of microwave showed the positive impact of this latter owing to the higher degradation yields observed in a reduced reaction time if compared to the conventional Fenton reaction, less than 5 min for a total degradation. In addition, increasing microwave power increased the degradation kinetics. Irrespective of the application of microwave, the optimal pH for the Fenton reaction remained 3. Examination of the impact of the ionic strength showed that carbonate and sulfate anions increased the rate of SMX degradation.

Keywords: antibiotic, degradation, elimination, fenton, microwave, polluant

Procedia PDF Downloads 398
554 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies

Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.

Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies

Procedia PDF Downloads 389
553 Dwindling the Stability of DNA Sequence by Base Substitution at Intersection of COMT and MIR4761 Gene

Authors: Srishty Gulati, Anju Singh, Shrikant Kukreti

Abstract:

The manifestation of structural polymorphism in DNA depends on the sequence and surrounding environment. Ample of folded DNA structures have been found in the cellular system out of which DNA hairpins are very common, however, are indispensable due to their role in the replication initiation sites, recombination, transcription regulation, and protein recognition. We enumerate this approach in our study, where the two base substitutions and change in temperature embark destabilization of DNA structure and misbalance the equilibrium between two structures of a sequence present at the overlapping region of the human COMT gene and MIR4761 gene. COMT and MIR4761 gene encodes for catechol-O-methyltransferase (COMT) enzyme and microRNAs (miRNAs), respectively. Environmental changes and errors during cell division lead to genetic abnormalities. The COMT gene entailed in dopamine regulation fosters neurological diseases like Parkinson's disease, schizophrenia, velocardiofacial syndrome, etc. A 19-mer deoxyoligonucleotide sequence 5'-AGGACAAGGTGTGCATGCC-3' (COMT19) is located at exon-4 on chromosome 22 and band q11.2 at the intersection of COMT and MIR4761 gene. Bioinformatics studies suggest that this sequence is conserved in humans and few other organisms and is involved in recognition of transcription factors in the vicinity of 3'-end. Non-denaturating gel electrophoresis and CD spectroscopy of COMT sequences indicate the formation of hairpin type DNA structures. Temperature-dependent CD studies revealed an unusual shift in the slipped DNA-Hairpin DNA equilibrium with the change in temperature. Also, UV-thermal melting techniques suggest that the two base substitutions on the complementary strand of COMT19 did not affect the structure but reduces the stability of duplex. This study gives insight about the possibility of existing structurally polymorphic transient states within DNA segments present at the intersection of COMT and MIR4761 gene.

Keywords: base-substitution, catechol-o-methyltransferase (COMT), hairpin-DNA, structural polymorphism

Procedia PDF Downloads 121
552 Assessment of Groundwater Potential Sampled in Hand Dug Wells and Boreholes in Ado-Ekiti, Southwestern Nigeria

Authors: A. J. Olatunji, Adebolu Temitope Johnson

Abstract:

Groundwater samples were collected randomly from hand-dug wells and boreholes in parts of the Ado Ekiti metropolis and were subjected to quality assessment and characterization. Physicochemical analyses, which include the in-situ parameters (pH units, Turbidity, and Electrical Conductivity) and laboratory analysis of selected ionic concentrations, were carried out following standard methods. Hydrochemistry of the present study revealed relative mean concentrations of cations in the order Ca2+ > Na+ > Mg2+ > Cu2+> Fe > Mn2+ and that of anions: Cl- > NO3- > SO42- > F - respectively considering World Health Organisation Standard (WHO) range of values for potable water. The result shows that values of certain parameters (Total Dissolved Solid (TDS), Manganese, Calcium, Magnesium, Fluoride, and Sulphate) were below the Highest Desirable Level of the Standards, while values of some other parameters (pH Units, Electrical Conductivity, Turbidity, Alkalinity, Sodium, Copper, Chloride, and Total Hardness) were within the range of figures between Highest Desirable Level (HDL) and Maximum Permissible Level (MPL) of World Health Organization (WHO) drinking water Standards. The reduction in the mean concentration value of Total Dissolved Solids (TDS) of most borehole samples follows the fact that water had been allowed to settle in the overhead tanks before usage; we discussed and brainstormed in the course of sampling and agreed to take a sample that way because that represents what the people consume, it also shows an indication while there was slightly concentration increase of these soluble ions in hand-dug wells samples than borehole samples only with the exception of borehole sample seven BH7 because BH7 uses the mono-pumping system. These in-situ parameters and ionic concentrations were further displayed and or represented on bar charts along with the WHO standards for better pictorial clarifications. Deductions from field observation indices revealed the imprints of natural weathering, ion-exchange processes, and anthropogenic activities influencing groundwater quality. A strong degree of association was found to exist between sodium and chlorine ions in both hand-dug well and borehole groundwater samples through the use of Pearson’s correlation coefficient; this association can further be supported by the chemistry of the parent bedrock associated with the study area because the chemistry of groundwater is a replica of its host rock. The correlation of those two ions must have begun from the period of mountain building, indicating an identical source from which they were released to the groundwater. Moreover, considering the comparison of ionic species concentrations of all samples with the (WHO) standards, there were no anomalous increases or decreases in the laboratory analysis results; this simply reveals an insignificant state of pollution of the groundwater. The study and its sampling techniques were not set to target the likely area and extent of groundwater pollution but its portability. It could be said that the samples were safe for human consumption.

Keywords: groundwater, physicochemical, parameters ionic, concentrations, WHO standards

Procedia PDF Downloads 39
551 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows

Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava

Abstract:

The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein

Procedia PDF Downloads 272
550 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Hashim, Aseel Abdullah

Abstract:

In this work, the fracture toughness of new green composite based on bio-PMMA resin reinforced with randomly short corn natural fiber of constant weight fraction by 10% wt was investigated. The corn fiber surface was modified by mercerization treatment with two different concentrations of sodium hydroxide (3, and 5% NaOH) for 1.5 and 3 hours respectively. The effect of mercerization treatment on the fracture behavior of the green composites was analyzed by FTIR spectra. NaOH concentration of 3% for 1.5 hrs. That was used for corn fiber green composite should the highest improvement in terms of plane strain fracture toughness KIC which increased by 62 % compared to untreated fiber composite material. On the other hand, increased both concentrations of alkali solution to 5% NaOH and time of soaking to 3 hrs. reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, bio-PMMA

Procedia PDF Downloads 426
549 Corrosion Characterization of ZA-27 Metal Matrix Composites

Authors: H. V. Jayaprakash, P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy by open circuit potential test. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are casted. Matrix was also casted in the same way for comparison. Specimen are fabricated according to ASTM standards. The corrodents used for the tests were 0.025, 0.05 and 0.1 molar sodium hydroxide solutions. They are subjected to Open Circuit Potential studies and weight loss corrosion tests. Corrosion rate was found to be decreased with increase in exposure time in both experiments. Effect of exposure time and presence of increased percentage of reinforcement red mud is discussed in detail.

Keywords: composites, vortex, particulates, red mud

Procedia PDF Downloads 449
548 Bleaching Liquor Recovery of Batch-Wise and Continuous Method

Authors: Sidra Saleemi, Arsalan Khan, Urooj Baig, Tahir Jamil

Abstract:

In this research, it was examined that some residual amount of bleaching chemicals left in the liquor, this amount is more in Batch-wise process as compared to continuous process. These chemicals can be recovered and reused for bleaching by adding more quantity of fresh bleaching chemicals and water, this quantity will be required to balance the recipe for fabric. This liquor is recovered and samples were bleached with different modified recipe of liquor for both processes i.e. Batch-wise and continuous process. Every time good results were achieved with negligible variation in the quality parameter between the fabric bleached with fresh liquor and the fabric bleached with Recovered Liquor. Additionally, samples were dyed, and found that dyeing can be done easily on samples bleached with recover liquor.

Keywords: bleaching process, hydrogen peroxide, sodium hydroxide, liquor recovery

Procedia PDF Downloads 363
547 Preparation of Carbon Monoliths from PET Waste and Their Use in Solar Interfacial Water Evaporation

Authors: Andrea Alfaro Barajas, Arturo I. Martinez

Abstract:

3D photothermal structure of carbon was synthesized using PET bottles waste and sodium chloride through controlled carbonization. Characterization techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, spectrophotometry, and mechanical compression were carried out. The carbon showed physical integrity > 90%, an absorbance > 90% between 300-1000nm of the solar spectrum, and a high specific surface area from 450 to 620 m2/g. The X-ray was employed to examine the phase structure; the obtained pattern shows an amorphous material. A higher intensity of band D with respect to band G was confirmed by Raman Spectroscopy. C-OH, COOH, C-O, and C-C bonds were obtained from the deconvolution of the high-resolution C1s orbital. Macropores of 160 to 180µm and micropores of 0.5 to 2nm were observed by SEM and TEM images, respectively. Such combined characteristics of carbon confer efficient evaporation of water under 1 sun irradiation > 60%.

Keywords: solar-absorber, carbon, water-evaporation, interfacial

Procedia PDF Downloads 151
546 Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin

Authors: Arpa Petchsomrit, Namfa Sermkaew, Ruedeekorn Wiwattanapatapee

Abstract:

Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs.

Keywords: alginate, curcumin, floating drug delivery, oil entrapped bead

Procedia PDF Downloads 385
545 Initiation of Paraptosis-Like PCD Pathway in Hepatocellular Carcinoma Cell Line by Hep88 mAb through the Binding of Mortalin (HSPA9) and Alpha-Enolase

Authors: Panadda Rojpibulstit, Suthathip Kittisenachai, Songchan Puthong, Sirikul Manochantr, Pornpen Gamnarai, Sasichai Kangsadalampai, Sittiruk Roytrakul

Abstract:

Hepatocellular carcinoma (HCC) is the most primary hepatic cancer worldwide. Nowadays a targeted therapy via monoclonal antibodies (mAbs) specific to tumor-associated antigen is continually developed in HCC treatment. In this regard, after establishing and consequently exploring Hep88 mAb’s tumoricidal effect on hepatocellular carcinoma cell line (HepG2 cell line), the Hep88 mAb’s specific Ag from both membrane and cytoplasmic fractions of HepG2 cell line was identified by 2-D gel electrophoresis and western blot analysis. After in-gel digestion and subsequent analysis by liquid chromatography-mass spectrometry (LC-MS), mortalin (HSPA9) and alpha-enolase were identified. The recombinant proteins specific to Hep88 mAb were cloned and expressed in E.coli BL21 (DE3). Moreover, alteration of HepG2 and Chang liver cell line after being induced by Hep88 mAb for 1-3 days was investigated using a transmission electron microscope. The result demonstrated that Hep88 mAb can bind to the recombinant mortalin (HSPA9) andalpha-enolase. In addition, gradual appearance of mitochondria vacuolization and endoplasmic reticulum dilatation were observed. Taken together, paraptosis-like programmed cell death (PCD) of HepG2 is induced by binding of mortalin (HSPA9) and alpha-enolase to Hep88 mAb. Mortalin depletion by formation of Hep88 mAb-mortalin (HSPA9) complex might initiate transcription-independent of p53-mediated apoptosis. Additionally, Hep88 mAb-alpha-enolase complex might initiate HepG2 cells energy exhaustion by glycolysis pathway obstruction. These results imply that Hep88 mAb might be a promising tool for development of an effective treatment of HCC in the next decade.

Keywords: Hepatocellular carcinoma, Monoclonal antibody, Paraptosis-like program cell death, Transmission electron microscopy, mortalin (HSPA9), alpha-enolase

Procedia PDF Downloads 361
544 Evaluation of Four Different DNA Targets in Polymerase Chain Reaction for Detection and Genotyping of Helicobacter pylori

Authors: Abu Salim Mustafa

Abstract:

Polymerase chain reaction (PCR) assays targeting genomic DNA segments have been established for the detection of Helicobacter pylori in clinical specimens. However, the data on comparative evaluations of various targets in detection of H. pylori are limited. Furthermore, the frequencies of vacA (s1 and s2) and cagA genotypes, which are suggested to be involved in the pathogenesis of H. pylori in other parts of the world, are not well studied in Kuwait. The aim of this study was to evaluate PCR assays for the detection and genotyping of H. pylori by targeting the amplification of DNA targets from four genomic segments. The genomic DNA were isolated from 72 clinical isolates of H. pylori and tested in PCR with four pairs of oligonucleotides primers, i.e. ECH-U/ECH-L, ET-5U/ET-5L, CagAF/CagAR and Vac1F/Vac1XR, which were expected to amplify targets of various sizes (471 bp, 230 bp, 183 bp and 176/203 bp, respectively) from the genomic DNA of H. pylori. The PCR-amplified DNA were analyzed by agarose gel electrophoresis. PCR products of expected size were obtained with all primer pairs by using genomic DNA isolated from H. pylori. DNA dilution experiments showed that the most sensitive PCR target was 471 bp DNA amplified by the primers ECH-U/ECH-L, followed by the targets of Vac1F/Vac1XR (176 bp/203 DNA), CagAF/CagAR (183 bp DNA) and ET-5U/ET-5L (230 bp DNA). However, when tested with undiluted genomic DNA isolated from single colonies of all isolates, the Vac1F/Vac1XR target provided the maximum positive results (71/72 (99% positives)), followed by ECH-U/ECH-L (69/72 (93% positives)), ET-5U/ET-5L (51/72 (71% positives)) and CagAF/CagAR (26/72 (46% positives)). The results of genotyping experiments showed that vacA s1 (46% positive) and vacA s2 (54% positive) genotypes were almost equally associated with VaCA+/CagA- isolates (P > 0.05), but with VacA+/CagA+ isolates, S1 genotype (92% positive) was more frequently detected than S2 genotype (8% positive) (P< 0.0001). In conclusion, among the primer pairs tested, Vac1F/Vac1XR provided the best results for detection of H. pylori. The genotyping experiments showed that vacA s1 and vacA s2 genotypes were almost equally associated with vaCA+/cagA- isolates, but vacA s1 genotype had a significantly increased association with vacA+/cagA+ isolates.

Keywords: H. pylori, PCR, detection, genotyping

Procedia PDF Downloads 133
543 Effects of Auxetic Antibacterial Zwitterion Carboxylate and Sulfate Copolymer Hydrogels for Diabetic Wound Healing Application

Authors: Udayakumar Vee, Franck Quero

Abstract:

Zwitterionic polymers generally have been viewed as a new class of antimicrobial and non-fouling materials. They offer a broad versatility for chemical modification and hence great freedom for accurate molecular design, which bear an equimolar number of homogenously distributed anionic and cationic groups along their polymer chains. This study explores the effectiveness of the auxetic zwitterion carboxylate/sulfonate hydrogel in the diabetic-induced mouse model. A series of silver metal-doped auxetic zwitterion carboxylate/sulfonate/vinylaniline copolymer hydrogels is designed via a 3D printer. Zwitterion monomers have been characterized by FT-IR and NMR techniques. The effect of changing the monomers and different loading ratios of Ag over zwitterion on the final hydrogel materials' antimicrobial properties and biocompatibility will be investigated in detail. The synthesized auxetic hydrogel has been characterized using a wide range of techniques to help establish the relationship between molecular level and macroscopic properties of these materials, including mechanical and antibacterial and biocompatibility and wound healing ability. This work's comparative studies and results provide new insights and guide us in choosing a better auxetic structured material for a broad spectrum of wound healing applications in the animal model. We expect this approach to provide a versatile and robust platform for biomaterial design that could lead to promising treatments for wound healing applications.

Keywords: auxetic, zwitterion, carboxylate, sulfonate, polymer, wound healing

Procedia PDF Downloads 140
542 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution

Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim

Abstract:

We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.

Keywords: chemical reduction, electrochemical, graphene, green synthesis

Procedia PDF Downloads 337
541 Production and Purification of Pectinase by Aspergillus Niger

Authors: M. Umar Dahot, G. S. Mangrio

Abstract:

In this study Agro-industrial waste was used as a carbon source, which is a low cost substrate. Along with this, various sugars and molasses of 2.5% and 5% were investigated as substrate/carbon source for the growth of A.niger and Pectinase production. Different nitrogen sources were also used. An overview of results obtained show that 5% sucrose, 5% molasses and 0.4% (NH4)2SO4 were found the best carbon and nitrogen sources for the production of pectinase by A. niger. The maximum production of pectinase (26.87units/ml) was observed at pH 6.0 after 72 hrs incubation. The optimum temperature for the maximum production of pectinase was achieved at 35ºC when maximum production of pectinase was obtained as 28.25Units/ml.Pectinase enzyme was purified with ammonium sulphate precipitation and dialyzed sample was finally applied on gel filtration chromatography (Sephadex G-100) and Ion Exchange DEAE A-50. The enzyme was purified 2.5 fold by gel chromatography on Sephadex G-100 and Four fractions were obtained, Fraction 1, 2, 4 showed single band while Fraction -3 showed multiple bands on SDS Page electrophoresis. Fraction -3 was pooled, dialyzed and separated on Sephdex A-50 and two fractions 3a and 3b showed single band. The molecular weights of the purified fractions were detected in the range of 33000 ± 2000 and 38000± 2000 Daltons. The purified enzyme was specifically most active with pure pectin, while pectin, Lemon pectin and orange peel given lower activity as compared to (control). The optimum pH and temperature for pectinase activity was found between pH 5.0 and 6.0 and 40°- 50°C, respectively. The enzyme was stable over the pH range 3.0-8.0. The thermostability of was determined and it was observed that the pectinase activity is heat stable and retains activity more than 40% when incubated at 90°C for 10 minutes. The pectinase activity of F3a and F3b was increased with different metal ions. The Pectinase activity was stimulated in the presence of CaCl2 up to 10-30%. ZnSO4, MnSO4 and Mg SO4 showed higher activity in fractions F3a and F3b, which indicates that the pectinase belongs to metalo-enzymes. It is concluded that A. niger is capable to produce pH stable and thermostable pectinase, which can be used for industrial purposes.

Keywords: pectinase, a. niger, production, purification, characterization

Procedia PDF Downloads 413
540 Analysis of Probiotic Properties of Lactobacillus Acidophilus from Commercial Yoghurt

Authors: Anwar Ali Abdulla, Thekra Abdulaali Abed Al-Chaabawi, Anwar Kadhim Al-Saffar, Hussein Kadhim Al-Saffar

Abstract:

Lactic acid bacteria are very significant to human health due to the production of some antimicrobial substances and ability to inhibit pathogenic bacteria. Furthermore, the bacteria are also used as starter culture in the production of various foods. The present study was focused on isolation and characterization of Lactobacillus acidophilus from yogurt and to demonstrate some of probiotic properties of these isolates. All isolates were phenotypically characterized including studying, biochemical, effect of sodium chloride and pH during growth, carbohydrates test and characterizing the antimicrobial activity of Lactobacillus acidophilus against pathogens. The present study demonstrates that Lactobacillus acidophilus produced a bacteriocin- like inhibitory substance with a broad spectrum of antimicrobial activity directed against pathogenic indicator organism suggesting its protective value against enteric pathogens.

Keywords: lactobacillus acidophilus, bacteriocin, antimicrobial activity, probiotic

Procedia PDF Downloads 538
539 Determination of the Element Contents in Turkish Coffee and Effect of Sugar Addition

Authors: M. M. Fercan, A. S. Kipcak, O. Dere Ozdemir, M. B. Piskin, E. Moroydor Derun

Abstract:

Coffee is a widely consumed beverage with many components such as caffeine, flavonoids, phenolic compounds, and minerals. Coffee consumption continues to increase due to its physiological effects, its pleasant taste, and aroma. Robusta and Arabica are two basic types of coffee beans. The coffee bean used for Turkish coffee is Arabica. There are many elements in the structure of coffee and have various effect on human health such as Sodium (Na), Boron (B), Magnesium (Mg) and Iron (Fe). In this study, the amounts of Mg, Na, Fe, and B contents in Turkish coffee are determined and effect of sugar addition is investigated for conscious consumption. The analysis of the contents of coffees was determined by using inductively coupled plasma optical emission spectrometry (ICP-OES). From the results of the experiments the Mg, Na, Fe and B contents of Turkish coffee after sugar addition were found as 19.83, 1.04, 0.02, 0.21 ppm, while without using sugar these concentrations were found 21.46, 0.81, 0.008 and 0.16 ppm. In addition, element contents were calculated for 1, 3 and 5 cups of coffee in order to investigate the health effects.

Keywords: health effect, ICP-OES, sugar, Turkish coffee

Procedia PDF Downloads 498
538 Synthesis and Characterization of Chromenoformimidate

Authors: Houcine Ammar

Abstract:

Chromenederivatives are an important class of heterocycles that are found in a wide range of natural products. Chromenes are commonly used as cosmetics, food additives, and possibly biodegradable agrochemicals. Recently, the synthesis of chromene derivatives has drawn more attention due to their pharmacological and biological applications. In the present work, we are interested in the synthesis and characterization of chromeno [2,3-b] pyridin-4-yl) formimidate, carried out in 4 steps: (i) the synthesis of 3-cyanoiminocoumarins is realized first by Knœvenagel reaction by reacting malonitrile with variously substituted o-phenolic benzaldehydes. In order to undergo reduction by sodium tetraborohydride NaBH4 to lead to new 2-amino-3-cyano-4H-chromenes, these compounds were easily transformed by the action of malonitrile leading to 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile under microwave activation. For the final step, the action of triethylorthoformate on 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile leads to new chromeno [2,3-b] pyridinheterocycles. -4-yl) formimidate. The synthesized compounds have been characterized by different spectroscopic techniques 1 H-NMR, 13 C-NMR, and IRTF.

Keywords: chromene, microwave, knovenagel condensation, chromeno [2, 3-b] pyridine

Procedia PDF Downloads 92
537 Measurements of Flow Mixing Behaviors Using a Wire-Mesh Sensor in a Wire-Wrapped 37-Pin Rod Assembly

Authors: Hyungmo Kim, Hwang Bae, Seok-Kyu Chang, Dong Won Lee, Yung Joo Ko, Sun Rock Choi, Hae Seob Choi, Hyeon Seok Woo, Dong-Jin Euh, Hyeong-Yeon Lee

Abstract:

Flow mixing characteristics in the wire-wrapped 37-pin rod bundle were measured by using a wire-mesh sensing system for a sodium-cooled fast reactor (SFR). The subchannel flow mixing in SFR core subchannels was an essential characteristic for verification of a core thermal design and safety analysis. A dedicated test facility including the wire-mesh sensor system and tracing liquid injection system was developed, and the conductivity fields at the end of 37-pin rod bundle were visualized in several different flow conditions. These experimental results represented the reasonable agreements with the results of CFD, and the uncertainty of the mixing experiments has been conducted to evaluate the experimental results.

Keywords: core thermal design, flow mixing, a wire-mesh sensor, a wire-wrap effect

Procedia PDF Downloads 629
536 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 237
535 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 244
534 Evaluation of the Behavior of Micronutrients in Salty Soils of Low Cheliff

Authors: N. Degui, Y. Daoud

Abstract:

The study investigates the assessment of micronutrient bioavailability and behavior in saline soils based on the determination of three cations and one anion on three soil profiles affected by secondary salinization in Lower Cheliff. The chemical fractionation method was used for the speciation study (different forms) of micronutrients in these soils. The results show that total form quantities of cations are height than norms in agricultural soils, thus the quantities of anion are lows. At the other hand, the quantities of available forms are lows. Statistical analysis reveals that cationic micronutrients localize preferentially in the coarse fraction of the soil in salty conditions and that sodicity causes a decrease in the iron reserve in the soil. The pH range ‘7.49 - 8.76’ represents a constraint for the complexation of micronutrients by organic matter. The study concluded that quantities of total and available forms of micronutrients in salty soils are influenced by soil properties such as: pH, electrical conductivity and exchangeable sodium.

Keywords: chemical fractionation, micronutrients, salty soils, speciation

Procedia PDF Downloads 158
533 Study of the Performances of an Environmental Concrete Based on Recycled Aggregates and Marble Waste Fillers Addition

Authors: Larbi Belagraa, Miloud Beddar, Abderrazak Bouzid

Abstract:

The needs of the construction sector still increasing for concrete. However, the shortage of natural resources of aggregate could be a problem for the concrete industry, in addition to the negative impact on the environment due to the demolition wastes. Recycling aggregate from construction and demolition (C&D) waste presents a major interest for users and researchers of concrete since this constituent can occupies more than 70% of concrete volume. The aim of the study here in is to assess the effect of sulfate resistant cement combined with the local mineral addition of marble waste fillers on the mechanical behavior of a recycled aggregate concrete (RAC). Physical and mechanical properties of RAC including the density, the flexural and the compressive strength were studied. The non destructive test methods (pulse-velocity, rebound hammer) were performed . The results obtained were compared to crushed aggregate concrete (CAC) using the normal compressive testing machine test method. The optimal content of 5% marble fillers showed an improvement for both used test methods (compression, flexion and NDT). Non-destructive methods (ultrasonic and rebound hammer test) can be used to assess the strength of RAC, but a correction coefficient is required to obtain a similar value to the compressive strength given by the compression tests. The study emphasizes that these waste materials can be successfully and economically utilized as additional inert filler in RAC formulation within similar performances compared to a conventional concrete.

Keywords: marble waste fillers, mechanical strength, natural aggregate, non-destructive testing (NDT), recycled aggregate concrete

Procedia PDF Downloads 312
532 Mechanistic Studies of Compacted and Sintered Rock Salt

Authors: Claudia H. Swanson, Jens Günster

Abstract:

This research addresses the densification via compaction and sintering of naturally occurring rock salt which was motivated by the fact that in a saline environment rock salt is thermodynamically stable and does show a mechanical behavior compatible to the surrounding host material. The sintering of rock salt powder compacts was systematically investigated using temperature and pressure as variables for the sinter process. The behavior of rock salt showed segregations of anhydrite, CaSO4 - the major impurity found in rock salt, to the grain boundaries between individual sodium chloride crystals. Powder compacts treated with lower pressures lost those anhydrite segregates over time while high pressure treated compacts remained with anhydrite segregates. The density reached in this study is 2.008 g cm-3 corresponding to a density of 92.5 % of the theoretical value. This high density is making the sintering a promising technique for rock salt as applications in underground appropriate environment.

Keywords: rock salt, sinter, anhydrite, nuclear safety

Procedia PDF Downloads 489
531 Selection and Preparation of High Performance, Natural and Cost-Effective Hydrogel as a Bio-Ink for 3D Bio-Printing and Organ on Chip Applications

Authors: Rawan Ashraf, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab

Abstract:

Background: Three-dimensional (3D) bio-printing has become a versatile and powerful method for generating a variety of biological constructs, including bone or extracellular matrix scaffolds endo- or epithelial, muscle tissue, as well as organoids. Aim of the study: Fabricate a low cost DIY 3D bio-printer to produce 3D bio-printed products such as anti-microbial packaging or multi-organs on chips. We demonstrate the alignment between two types of 3D printer technology (3D Bio-printer and DLP) on Multi-organ-on-a-chip (multi-OoC) devices fabrication. Methods: First, Design and Fabrication of the Syringe Unit for Modification of an Off-the-Shelf 3D Printer, then Preparation of Hydrogel based on natural polymers Sodium Alginate and Gelatin, followed by acquisition of the cell suspension, then modeling the desired 3D structure. Preparation for 3D printing, then Cell-free and cell-laden hydrogels went through the printing process at room temperature under sterile conditions and finally post printing curing process and studying the printed structure regards physical and chemical characteristics. The hard scaffold of the Organ on chip devices was designed and fabricated using the DLP-3D printer, following similar approaches as the Microfluidics system fabrication. Results: The fabricated Bio-Ink was based onHydrogel polymer mix of sodium alginate and gelatin 15% to 0.5%, respectively. Later the 3D printing process was conducted using a higher percentage of alginate-based hydrogels because of it viscosity and the controllable crosslinking, unlike the thermal crosslinking of Gelatin. The hydrogels were colored to simulate the representation of two types of cells. The adaption of the hard scaffold, whether for the Microfluidics system or the hard-tissues, has been acquired by the DLP 3D printers with fabricated natural bioactive essential oils that contain antimicrobial activity, followed by printing in Situ three complex layers of soft-hydrogel as a cell-free Bio-Ink to simulate the real-life tissue engineering process. The final product was a proof of concept for a rapid 3D cell culturing approaches that uses an engineered hard scaffold along with soft-tissues, thus, several applications were offered as products of the current prototype, including the Organ-On-Chip as a successful integration between DLP and 3D bioprinter. Conclusion: Multiple designs for the organ-on-a-chip (multi-OoC) devices have been acquired in our study with main focus on the low cost fabrication of such technology and the potential to revolutionize human health research and development. We describe circumstances in which multi-organ models are useful after briefly examining the requirement for full multi-organ models with a systemic component. Following that, we took a look at the current multi-OoC platforms, such as integrated body-on-a-chip devices and modular techniques that use linked organ-specific modules.

Keywords: 3d bio-printer, hydrogel, multi-organ on chip, bio-inks

Procedia PDF Downloads 174
530 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated.

Keywords: cellulose, carboxymethyle cellulose, olive pulp, hydrogel

Procedia PDF Downloads 474
529 Molecular Genetic Purity Test Using SSR Markers in Pigeon Pea

Authors: Rakesh C. Mathad, G. Y. Lokesh, Basavegowda

Abstract:

In agriculture using quality seeds of improved varieties is very important to ensure higher productivity thereby food security and sustainability. To ensure good productivity, seeds should have characters as described by the breeder. To know whether the characters as described by the breeder are expressing in a variety such as genuineness or genetic purity, field grow out test (GOT) is done. In pigeon pea which is long durational crop, conducting a GOT may take very long time and expensive also. Since in pigeon pea flower character is a most distinguishing character from the contaminants, conducting a field grow out test require 120-130 days or till flower emergence, which may increase cost of storage and seed production. This will also delay the distribution of seed inventory to the pigeon pea growing areas. In this view during 2014-15 with financial support of Govt. of Karnataka, India, a project to develop a molecular genetic test for newly developed variety of pigeon pea cv.TS3R was commissioned at Seed Unit, UAS, Raichur. A molecular test was developed with the help SSR markers to identify pure variety from possible off types in newly released pigeon pea variety TS3R. In the investigation, 44 primer pairs were screened to identify the specific marker associated with this variety. Pigeon pea cv. TS3R could be clearly identified by using the primer CCM 293 based on the banding pattern resolved on gel electrophoresis and PCR reactions. However some of the markers like AHSSR 46, CCM 82 and CCM 57 can be used to test other popular varieties in the region like Asha, GRG-811 and Maruti respectively. Further to develop this in to a lab test, the seed sample size was standardized to 200 seeds and a grow out matrix was developed. This matrix was used to sample 12 days old leaves to extract DNA. The lab test results were validated with actual field GOT test results and found variations within the acceptable limit of 1%. This molecular method can now be employed to test the genetic purity in pigeon pea cv TS3R which reduces the time and can be a cheaper alternative method for field GOT.

Keywords: genuineness, grow-out matrix, molecular genetic purity, SSR markers

Procedia PDF Downloads 284