Search results for: semantic memory
929 A Decentralized Application for Secure Data Handling of Wireless Networks Using Ethereum Smart Contracts
Authors: Midhun Xavier
Abstract:
This paper introduces a method to verify multi-agent systems in industrial control systems using blockchain technology. The proposed solution enables to record and verify each process that occurs while generating a customized product using Ethereum-based smart contracts. Node-Red software agents are developed with the help of semantic web technologies, and these software agents interact with IEC 61499 function blocks to execute the processes. The agent associated with each mechatronic component and its controller can communicate with the blockchain to record various events that occur during each process, and the latter smart contract helps to verify these process orders of the customized product.Keywords: blockchain, Ethereum, node-red, IEC 61499, multi-agent system, MQTT
Procedia PDF Downloads 95928 Constructing Digital Memory for Chinese Ancient Village: A Case on Village of Gaoqian
Authors: Linqing Ma, Huiling Feng, Jihong Liang, Yi Qian
Abstract:
In China, some villages have survived in the long history of changes and remain until today with their unique styles and featured culture developed in the past. Those ancient villages, usually aged for hundreds or thousands of years, are the mirror for traditional Chinese culture, especially the farming-studying culture represented by the Confucianism. Gaoqian, an ancient village with a population of 3,000 in Zhejiang province, is such a case. With a history dating back to Yuan Dynasty, Gaoqian Village has 13 well-preserved traditional Chinese houses with a courtyard, which were built in the Ming and Qing Dynasty. It is a fine specimen to study traditional rural China. In China, some villages have survived in the long history of changes and remain until today with their unique styles and featured culture developed in the past. Those ancient villages, usually aged for hundreds or thousands of years, are the mirror for traditional Chinese culture, especially the farming-studying culture represented by the Confucianism. Gaoqian, an ancient village with a population of 3,000 in Zhejiang province, is such a case. With a history dating back to Yuan Dynasty, Gaoqian Village has 13 well-preserved traditional Chinese houses with a courtyard, which were built in the Ming and Qing Dynasty. It is a fine specimen to study traditional rural China. Then a repository for the memory of the Village will be completed by doing arrangement and description for those multimedia resources such as texts, photos, videos and so on. Production of Creative products with digital technologies is also possible based a thorough understanding of the culture feature of Gaoqian Village using research tools for literature and history studies and a method of comparative study. Finally, the project will construct an exhibition platform for the Village and its culture by telling its stories with completed structures and treads.Keywords: ancient villages, digital exhibition, multimedia, traditional culture
Procedia PDF Downloads 587927 Presence and Severity of Language Deficits in Comprehension, Production and Pragmatics in a Group of ALS Patients: Analysis with Demographic and Neuropsychological Data
Authors: M. Testa, L. Peotta, S. Giusiano, B. Lazzolino, U. Manera, A. Canosa, M. Grassano, F. Palumbo, A. Bombaci, S. Cabras, F. Di Pede, L. Solero, E. Matteoni, C. Moglia, A. Calvo, A. Chio
Abstract:
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease of adulthood, which primarily affects the central nervous system and is characterized by progressive bilateral degeneration of motor neurons. The degeneration processes in ALS extend far beyond the neurons of the motor system, and affects cognition, behaviour and language. To outline the prevalence of language deficits in an ALS cohort and explore their profile along with demographic and neuropsychological data. A full neuropsychological battery and language assessment was administered to 56 ALS patients. Neuropsychological assessment included tests of executive functioning, verbal fluency, social cognition and memory. Language was assessed using tests for verbal comprehension, production and pragmatics. Patients were cognitively classified following the Revised Consensus Criteria and divided in three groups showing different levels of language deficits: group 1 - no language deficit; group 2 - one language deficit; group 3 - two or more language deficits. Chi-square for independence and non-parametric measures to compare groups were applied. Nearly half of ALS-CN patients (48%) reported one language test under the clinical cut-off, and only 13% of patents classified as ALS-CI showed no language deficits, while the rest 87% of ALS-CI reported two or more language deficits. ALS-BI and ALS-CBI cases all reported two or more language deficits. Deficits in production and in comprehension appeared more frequent in ALS-CI patients (p=0.011, p=0.003 respectively), with a higher percentage of comprehension deficits (83%). Nearly all ALS-CI reported at least one deficit in pragmatic abilities (96%) and all ALS-BI and ALS-CBI patients showed pragmatic deficits. Males showed higher percentage of pragmatic deficits (97%, p=0.007). No significant differences in language deficits have been found between bulbar and spinal onset. Months from onset and level of impairment at testing (ALS-FRS total score) were not significantly different between levels and type of language impairment. Age and education were significantly higher for cases showing no deficits in comprehension and pragmatics and in the group showing no language deficits. Comparing performances at neuropsychological tests among the three levels of language deficits, no significant differences in neuropsychological performances were found between group 1 and 2; compared to group 1, group 3 appeared to decay specifically on executive testing, verbal/visuospatial learning, and social cognition. Compared to group 2, group 3 showed worse performances specifically in tests of working memory and attention. Language deficits have found to be spread in our sample, encompassing verbal comprehension, production and pragmatics. Our study reveals that also cognitive intact patients (ALS-CN) showed at least one language deficit in 48% of cases. Pragmatic domain is the most compromised (84% of the total sample), present in nearly all ALS-CI (96%), likely due to the influence of executive impairment. Lower age and higher education seem to preserve comprehension, pragmatics and presence of language deficits. Finally, executive functions, verbal/visuospatial learning and social cognition differentiate the group with no language deficits from the group with a clinical language impairment (group 3), while attention and working memory differentiate the group with one language deficit from the clinical impaired group.Keywords: amyotrophic lateral sclerosis, language assessment, neuropsychological assessment, language deficit
Procedia PDF Downloads 164926 A New Modification of Nonlinear Conjugate Gradient Coefficients with Global Convergence Properties
Authors: Ahmad Alhawarat, Mustafa Mamat, Mohd Rivaie, Ismail Mohd
Abstract:
Conjugate gradient method has been enormously used to solve large scale unconstrained optimization problems due to the number of iteration, memory, CPU time, and convergence property, in this paper we find a new class of nonlinear conjugate gradient coefficient with global convergence properties proved by exact line search. The numerical results for our new βK give a good result when it compared with well-known formulas.Keywords: conjugate gradient method, conjugate gradient coefficient, global convergence
Procedia PDF Downloads 466925 Learning to Translate by Learning to Communicate to an Entailment Classifier
Authors: Szymon Rutkowski, Tomasz Korbak
Abstract:
We present a reinforcement-learning-based method of training neural machine translation models without parallel corpora. The standard encoder-decoder approach to machine translation suffers from two problems we aim to address. First, it needs parallel corpora, which are scarce, especially for low-resource languages. Second, it lacks psychological plausibility of learning procedure: learning a foreign language is about learning to communicate useful information, not merely learning to transduce from one language’s 'encoding' to another. We instead pose the problem of learning to translate as learning a policy in a communication game between two agents: the translator and the classifier. The classifier is trained beforehand on a natural language inference task (determining the entailment relation between a premise and a hypothesis) in the target language. The translator produces a sequence of actions that correspond to generating translations of both the hypothesis and premise, which are then passed to the classifier. The translator is rewarded for classifier’s performance on determining entailment between sentences translated by the translator to disciple’s native language. Translator’s performance thus reflects its ability to communicate useful information to the classifier. In effect, we train a machine translation model without the need for parallel corpora altogether. While similar reinforcement learning formulations for zero-shot translation were proposed before, there is a number of improvements we introduce. While prior research aimed at grounding the translation task in the physical world by evaluating agents on an image captioning task, we found that using a linguistic task is more sample-efficient. Natural language inference (also known as recognizing textual entailment) captures semantic properties of sentence pairs that are poorly correlated with semantic similarity, thus enforcing basic understanding of the role played by compositionality. It has been shown that models trained recognizing textual entailment produce high-quality general-purpose sentence embeddings transferrable to other tasks. We use stanford natural language inference (SNLI) dataset as well as its analogous datasets for French (XNLI) and Polish (CDSCorpus). Textual entailment corpora can be obtained relatively easily for any language, which makes our approach more extensible to low-resource languages than traditional approaches based on parallel corpora. We evaluated a number of reinforcement learning algorithms (including policy gradients and actor-critic) to solve the problem of translator’s policy optimization and found that our attempts yield some promising improvements over previous approaches to reinforcement-learning based zero-shot machine translation.Keywords: agent-based language learning, low-resource translation, natural language inference, neural machine translation, reinforcement learning
Procedia PDF Downloads 128924 A Proposed Approach for Emotion Lexicon Enrichment
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.Keywords: document analysis, sentimental analysis, emotion detection, WEKA tool, NRC lexicon
Procedia PDF Downloads 444923 The h3r Antagonist E159 Alleviates Neuroinflammation and Autistic-Like Phenotypes in BTBR T+ tf/J Mouse Model of Autism
Authors: Shilu Deepa Thomas, P. Jayaprakash, Dorota Łazewska, Katarzyna Kieć-Kononowicz, B. Sadek
Abstract:
A large body of evidence suggests the involvement of cognitive impairment, increased levels of inflammation and oxidative stress in the pathogenesis of autism spectrum disorder (ASD). ASD commonly coexists with psychiatric conditions like anxiety and cognitive challenges, and individuals with ASD exhibit significant levels of inflammation and immune system dysregulation. Previous Studies have identified elevated levels of pro-inflammatory markers such as IL-1β, IL-6, IL-2 and TNF-α, particularly in young children with ASD. The current therapeutic options for ASD show limited effectiveness, signifying the importance of exploring an efficient drugs to address the core symptoms. The role of histamine H3 receptors (H3Rs) in memory and the prospective role of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., ASD, is well-accepted. Hence, the effects of chronic systemic administration of H3R antagonist E159 on autistic-like repetitive behaviors, social deficits, memory and anxiety parameters, as well as neuroinflammation in Black and Tan BRachyury (BTBR) mice, were evaluated using Y maze, Barnes maze, self-grooming, open field and three chamber social test. E159 (2.5, 5 and 10 mg/kg, i.p.) dose-dependently ameliorated repetitive and compulsive behaviors by reducing the increased time spent in self-grooming and improved reduced spontaneous alternation in BTBR mice. Moreover, treatment with E159 attenuated disturbed anxiety levels and social deficits in tested male BTBR mice. Furthermore, E159 attenuated oxidative stress by significantly increasing GSH, CAT, and SOD and decreasing the increased levels of MDA in the cerebellum as well as the hippocampus. In addition, E159 decreased the elevated levels of proinflammatory cytokines (tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and IL-6). The observed results show that H3R antagonists like E159 may represent a promising novel pharmacological strategy for the future treatment of ASD.Keywords: histamine H3 receptors, antagonist E159, autism, behaviors, mice
Procedia PDF Downloads 66922 The Cultural and Semantic Danger of English Transparent Words Translated from English into Arabic
Authors: Abdullah Khuwaileh
Abstract:
While teaching and translating vocabulary is no longer a neglected area in ELT in general and in translation in particular, the psychology of its acquisition has been a neglected area. Our paper aims at exploring some of the learning and translating conditions under which vocabulary is acquired and translated properly. To achieve this objective, two teaching methods (experiments) were applied on 4 translators to measure their acquisition of a number of transparent vocabulary items. Some of these items were knowingly chosen from 'deceptively transparent words'. All the data, sample, etc., were taken from Jordan University of Science and Technology (JUST) and Yarmouk University, where the researcher is employed. The study showed that translators might translate transparent words inaccurately, particularly if these words are uncontextualised. It was also shown that the morphological structures of words may lead translators or even EFL learners to misinterpretations of meaning.Keywords: english, transparent, word, processing, translation
Procedia PDF Downloads 71921 The Biosphere as a Supercomputer Directing and Controlling Evolutionary Processes
Authors: Igor A. Krichtafovitch
Abstract:
The evolutionary processes are not linear. Long periods of quiet and slow development turn to rather rapid emergences of new species and even phyla. During Cambrian explosion, 22 new phyla were added to the previously existed 3 phyla. Contrary to the common credence the natural selection or a survival of the fittest cannot be accounted for the dominant evolution vector which is steady and accelerated advent of more complex and more intelligent living organisms. Neither Darwinism nor alternative concepts including panspermia and intelligent design propose a satisfactory solution for these phenomena. The proposed hypothesis offers a logical and plausible explanation of the evolutionary processes in general. It is based on two postulates: a) the Biosphere is a single living organism, all parts of which are interconnected, and b) the Biosphere acts as a giant biological supercomputer, storing and processing the information in digital and analog forms. Such supercomputer surpasses all human-made computers by many orders of magnitude. Living organisms are the product of intelligent creative action of the biosphere supercomputer. The biological evolution is driven by growing amount of information stored in the living organisms and increasing complexity of the biosphere as a single organism. Main evolutionary vector is not a survival of the fittest but an accelerated growth of the computational complexity of the living organisms. The following postulates may summarize the proposed hypothesis: biological evolution as a natural life origin and development is a reality. Evolution is a coordinated and controlled process. One of evolution’s main development vectors is a growing computational complexity of the living organisms and the biosphere’s intelligence. The intelligent matter which conducts and controls global evolution is a gigantic bio-computer combining all living organisms on Earth. The information is acting like a software stored in and controlled by the biosphere. Random mutations trigger this software, as is stipulated by Darwinian Evolution Theories, and it is further stimulated by the growing demand for the Biosphere’s global memory storage and computational complexity. Greater memory volume requires a greater number and more intellectually advanced organisms for storing and handling it. More intricate organisms require the greater computational complexity of biosphere in order to keep control over the living world. This is an endless recursive endeavor with accelerated evolutionary dynamic. New species emerge when two conditions are met: a) crucial environmental changes occur and/or global memory storage volume comes to its limit and b) biosphere computational complexity reaches critical mass capable of producing more advanced creatures. The hypothesis presented here is a naturalistic concept of life creation and evolution. The hypothesis logically resolves many puzzling problems with the current state evolution theory such as speciation, as a result of GM purposeful design, evolution development vector, as a need for growing global intelligence, punctuated equilibrium, happening when two above conditions a) and b) are met, the Cambrian explosion, mass extinctions, happening when more intelligent species should replace outdated creatures.Keywords: supercomputer, biological evolution, Darwinism, speciation
Procedia PDF Downloads 166920 Results and Insights from a Developmental Psychology Study on the Presentation of Juvenility in Punk Fanzines
Authors: Marc Dietrich
Abstract:
Youth cultures like Punk as much as media relevant to the specific scenes associated with them offer ample opportunity for young people or juvenile adults to construct their personal identities. However, developmental psychology has largely neglected such identity construction processes during the last decades. Such was not always the case: Early developmental psychologists intensely studied youth cultures and their meaningful objects and media in the early 20th century but lost interest when cultural studies and the social sciences occupied the field after World War II. Our project Constructions of Juvenility and Generation(ality), funded by the German Federal Ministry for Education and Research, reintegrates the study of youth cultures and their meaningful objects and media in a developmental psychology perspective. We present an empirical study of the ways in which youth, juvenility, and generation (ality) are constructed and negotiated in underground media like punk fanzines (a portmanteau of fan and magazine), including both semantic and aesthetic aspects of these construction processes within punk culture. The fanzine sample was accessed by the theoretical sampling strategy typical for GTM studies. Acknowledging fanzines as artful self-produced media by scene members for scene members, we conceptualize them as authentic documents of scene norms and values. Drawing on an analysis of both text and (cover) images in Punk fanzines published in Germany (and within a sample dating from 1981 until 2015) using a novel Visual Grounded Theory approach, we found that: a) Juvenility is a highly contested concept in punk culture. Its semantic quality and valuation varies with the perspectives present within the culture (e.g. embryo punks versus older punks); b) Juvenility is constructed as having energy and being socio-critical that does not depend on biological age; c) Juvenility is regarded not an ideal per se in German Punk culture; Punk culture constructs old age in a largely positive way (e.g., as marker of being real and a historical innovator); d) Juvenility is constructed as a habit that should be kept for life as it is constantly adapted to individual biographical trajectories like specific job situations or having a family. Consequently, identity negotiation as documented in the zines attempts to balance subculturally driven perspectives on life and society with the pragmatic requirements of a bourgeois life. The proposed paper will present the main results of this large-scale study of punk fanzines and show how developmental psychology perspectives as represented in the novel methodology applied in it can advance the study of youth cultures.Keywords: construction of juvenility, developmental psychology, visual GTM, youth culture, fanzines
Procedia PDF Downloads 293919 Human Behavior Modeling in Video Surveillance of Conference Halls
Authors: Nour Charara, Hussein Charara, Omar Abou Khaled, Hani Abdallah, Elena Mugellini
Abstract:
In this paper, we present a human behavior modeling approach in videos scenes. This approach is used to model the normal behaviors in the conference halls. We exploited the Probabilistic Latent Semantic Analysis technique (PLSA), using the 'Bag-of-Terms' paradigm, as a tool for exploring video data to learn the model by grouping similar activities. Our term vocabulary consists of 3D spatio-temporal patch groups assigned by the direction of motion. Our video representation ensures the spatial information, the object trajectory, and the motion. The main importance of this approach is that it can be adapted to detect abnormal behaviors in order to ensure and enhance human security.Keywords: activity modeling, clustering, PLSA, video representation
Procedia PDF Downloads 394918 A Case of Generalized Anxiety Disorder (GAD)
Authors: Muhammad Zeeshan
Abstract:
This case study is about a 54 years man named Mr. U, referred to Capital Hospital, Islamabad, with the presenting complaints of Generalized Anxiety Disorder (GAD). Contrary to his complaints, the client reported psychological symptoms such as restlessness, low mood and fear of darkness and fear from closed places from the last 30 days. He also had a fear of death and his existence in the grave. His sleep was also disturbed due to excessive urination due to diabetes. He was also suffering from semantic symptoms such as headache, numbness of feet and pain in the chest and blockage of the nose. A complete history was taken and informal assessment (clinical interview and MSE) and formal testing (BAI) was applied that showed the clear diagnosis of Generalized Anxiety Disorder. CBT, relaxation techniques, prayer chart and behavioural techniques were applied for the treatment purposes.Keywords: generalized anxiety disorder, presenting complaints, formal and informal assessment, diagnosis
Procedia PDF Downloads 286917 Using the Dokeos Platform for Industrial E-Learning Solution
Authors: Kherafa Abdennasser
Abstract:
The application of Information and Communication Technologies (ICT) to the training area led to the creation of this new reality called E-learning. That last one is described like the marriage of multi- media (sound, image and text) and of the internet (diffusion on line, interactivity). Distance learning became an important totality for training and that last pass in particular by the setup of a distance learning platform. In our memory, we will use an open source platform named Dokeos for the management of a distance training of GPS called e-GPS. The learner is followed in all his training. In this system, trainers and learners communicate individually or in group, the administrator setup and make sure of this system maintenance.Keywords: ICT, E-learning, learning plate-forme, Dokeos, GPS
Procedia PDF Downloads 478916 Multidisciplinary Approach to Diagnosis of Primary Progressive Aphasia in a Younger Middle Aged Patient
Authors: Robert Krause
Abstract:
Primary progressive aphasia (PPA) is a neurodegenerative disease similar to frontotemporal and semantic dementia, while having a different clinical image and anatomic pathology topography. Nonetheless, they are often included under an umbrella term: frontotemporal lobar degeneration (FTLD). In the study, examples of diagnosing PPA are presented through the multidisciplinary lens of specialists from different fields (neurologists, psychiatrists, clinical speech therapists, clinical neuropsychologists and others) using a variety of diagnostic tools such as MR, PET/CT, genetic screening and neuropsychological and logopedic methods. Thanks to that, specialists can get a better and clearer understanding of PPA diagnosis. The study summarizes the concrete procedures and results of different specialists while diagnosing PPA in a patient of younger middle age and illustrates the importance of multidisciplinary approach to differential diagnosis of PPA.Keywords: primary progressive aphasia, etiology, diagnosis, younger middle age
Procedia PDF Downloads 197915 Structural Balance and Creative Tensions in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development involves team members coming together and working in teams to come up with innovative solutions to problems, resulting in new products. Thus, a core attribute of a successful NPD team is their creativity and innovation. They need to be creative as a group, generating a breadth of ideas and innovative solutions that solve or address the problem they are targeting and meet the user’s needs. They also need to be very efficient in their teamwork as they work through the various stages of the development of these ideas, resulting in a POC (proof-of-concept) implementation or a prototype of the product. There are two distinctive traits that the teams need to have, one is ideational creativity, and the other is effective and efficient teamworking. There are multiple types of tensions that each of these traits cause in the teams, and these tensions reflect in the team dynamics. Ideational conflicts arising out of debates and deliberations increase the collective knowledge and affect the team creativity positively. However, the same trait of challenging each other’s viewpoints might lead the team members to be disruptive, resulting in interpersonal tensions, which in turn lead to less than efficient teamwork. Teams that foster and effectively manage these creative tensions are successful, and teams that are not able to manage these tensions show poor team performance. In this paper, it explore these tensions as they result in the team communication social network and propose a Creative Tension Balance index along the lines of Degree of Balance in social networks that has the potential to highlight the successful (and unsuccessful) NPD teams. Team communication reflects the team dynamics among team members and is the data set for analysis. The emails between the members of the NPD teams are processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. This social network is subjected to traditional social network analysis methods to arrive at some established metrics and structural balance analysis metrics. Traditional structural balance is extended to include team interaction pattern metrics to arrive at a creative tension balance metric that effectively captures the creative tensions and tension balance in teams. This CTB (Creative Tension Balance) metric truly captures the signatures of successful and unsuccessful (dissonant) NPD teams. The dataset for this research study includes 23 NPD teams spread out over multiple semesters and computes this CTB metric and uses it to identify the most successful and unsuccessful teams by classifying these teams into low, high and medium performing teams. The results are correlated to the team reflections (for team dynamics and interaction patterns), the team self-evaluation feedback surveys (for teamwork metrics) and team performance through a comprehensive team grade (for high and low performing team signatures).Keywords: team dynamics, social network analysis, new product development teamwork, structural balance, NPD teams
Procedia PDF Downloads 80914 Methodological Resolutions for Definition Problems in Turkish Navigation Terminology
Authors: Ayşe Yurdakul, Eckehard Schnieder
Abstract:
Nowadays, there are multilingual and multidisciplinary communication problems because of the increasing technical progress. Each technical field has its own specific terminology and in each particular language, there are differences in relation to definitions of terms. Besides, there could be several translations in the certain target language for one term of the source language. First of all, these problems of semantic relations between terms include the synonymy, antonymy, hypernymy/hyponymy, ambiguity, risk of confusion and translation problems. Therefore, the iglos terminology management system of the Institute for Traffic Safety and Automation Engineering of the Technische Universität Braunschweig has the goal to avoid these problems by a methodological standardisation of term definitions on the basis of the iglos sign model and iglos relation types. The focus of this paper should be on standardisation of navigation terminology as an example.Keywords: iglos, localisation, methodological approaches, navigation, positioning, definition problems, terminology
Procedia PDF Downloads 368913 Inferring Cognitive Skill in Concept Space
Authors: Rania A. Aboalela, Javed I. Khan
Abstract:
This research presents a learning assessment theory of Cognitive Skill in Concept Space (CS2) to measure the assessed knowledge in terms of cognitive skill levels of the concepts. The cognitive skill levels refer to levels such as if a student has acquired the state at the level of understanding, or applying, or analyzing, etc. The theory is comprised of three constructions: Graph paradigm of a semantic/ ontological scheme, the concept states of the theory and the assessment analytics which is the process to estimate the sets of concept state at a certain skill level. Concept state means if a student has already learned, or is ready to learn, or is not ready to learn a certain skill level. The experiment is conducted to prove the validation of the theory CS2.Keywords: cognitive skill levels, concept states, concept space, knowledge assessment theory
Procedia PDF Downloads 324912 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds
Authors: Periklis Brakatsoulas
Abstract:
Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.Keywords: forecasting, long memory, momentum, returns
Procedia PDF Downloads 103911 An Integrated Lightweight Naïve Bayes Based Webpage Classification Service for Smartphone Browsers
Authors: Mayank Gupta, Siba Prasad Samal, Vasu Kakkirala
Abstract:
The internet world and its priorities have changed considerably in the last decade. Browsing on smart phones has increased manifold and is set to explode much more. Users spent considerable time browsing different websites, that gives a great deal of insight into user’s preferences. Instead of plain information classifying different aspects of browsing like Bookmarks, History, and Download Manager into useful categories would improve and enhance the user’s experience. Most of the classification solutions are server side that involves maintaining server and other heavy resources. It has security constraints and maybe misses on contextual data during classification. On device, classification solves many such problems, but the challenge is to achieve accuracy on classification with resource constraints. This on device classification can be much more useful in personalization, reducing dependency on cloud connectivity and better privacy/security. This approach provides more relevant results as compared to current standalone solutions because it uses content rendered by browser which is customized by the content provider based on user’s profile. This paper proposes a Naive Bayes based lightweight classification engine targeted for a resource constraint devices. Our solution integrates with Web Browser that in turn triggers classification algorithm. Whenever a user browses a webpage, this solution extracts DOM Tree data from the browser’s rendering engine. This DOM data is a dynamic, contextual and secure data that can’t be replicated. This proposal extracts different features of the webpage that runs on an algorithm to classify into multiple categories. Naive Bayes based engine is chosen in this solution for its inherent advantages in using limited resources compared to other classification algorithms like Support Vector Machine, Neural Networks, etc. Naive Bayes classification requires small memory footprint and less computation suitable for smartphone environment. This solution has a feature to partition the model into multiple chunks that in turn will facilitate less usage of memory instead of loading a complete model. Classification of the webpages done through integrated engine is faster, more relevant and energy efficient than other standalone on device solution. This classification engine has been tested on Samsung Z3 Tizen hardware. The Engine is integrated into Tizen Browser that uses Chromium Rendering Engine. For this solution, extensive dataset is sourced from dmoztools.net and cleaned. This cleaned dataset has 227.5K webpages which are divided into 8 generic categories ('education', 'games', 'health', 'entertainment', 'news', 'shopping', 'sports', 'travel'). Our browser integrated solution has resulted in 15% less memory usage (due to partition method) and 24% less power consumption in comparison with standalone solution. This solution considered 70% of the dataset for training the data model and the rest 30% dataset for testing. An average accuracy of ~96.3% is achieved across the above mentioned 8 categories. This engine can be further extended for suggesting Dynamic tags and using the classification for differential uses cases to enhance browsing experience.Keywords: chromium, lightweight engine, mobile computing, Naive Bayes, Tizen, web browser, webpage classification
Procedia PDF Downloads 165910 A Review of Lexical Retrieval Intervention in Primary Progressive Aphasia and Alzheimer's Disease: Mechanisms of Change, Cognition, and Generalisation
Authors: Ashleigh Beales, Anne Whitworth, Jade Cartwright
Abstract:
Background: While significant benefits of lexical retrieval intervention are evident within the Primary Progressive Aphasia (PPA) and Alzheimer’s disease (AD) literature, an understanding of the mechanisms that underlie change or improvement is limited. Change mechanisms have been explored in the non-progressive post-stroke literature that may offer insight into how interventions affect change with progressive language disorders. The potential influences of cognitive factors may also play a role here, interacting with the aims of intervention. Exploring how such processes have been applied is likely to grow our understanding of how interventions have, or have not, been effective, and how and why generalisation is likely, or not, to occur. Aims: This review of the literature aimed to (1) investigate the proposed mechanisms of change which underpin lexical interventions, mapping the PPA and AD lexical retrieval literature to theoretical accounts of mechanisms that underlie change within the broader intervention literature, (2) identify whether and which nonlinguistic cognitive functions have been engaged in intervention with these populations and any proposed influence, and (3) explore evidence of linguistic generalisation, with particular reference to change mechanisms employed in interventions. Main contribution: A search of Medline, PsycINFO, and CINAHL identified 36 articles that reported data for individuals with PPA or AD following lexical retrieval intervention. A review of the mechanisms of change identified 10 studies that used stimulation, 21 studies utilised relearning, three studies drew on reorganisation, and two studies used cognitive-relay. Significant treatment gains, predominantly based on linguistic performance measures, were reported for all client groups for each of the proposed mechanisms. Reorganisation and cognitive-relay change mechanisms were only targeted in PPA. Eighteen studies incorporated nonlinguistic cognitive functions in intervention; these were limited to autobiographical memory (16 studies), episodic memory (three studies), or both (one study). Linguistic generalisation outcomes were inconsistently reported in PPA and AD studies. Conclusion: This review highlights that individuals with PPA and AD may benefit from lexical retrieval intervention, irrespective of the mechanism of change. Thorough application of a theory of intervention is required to gain a greater understanding of the change mechanisms, as well as the interplay of nonlinguistic cognitive functions.Keywords: Alzheimer's disease, lexical retrieval, mechanisms of change, primary progressive aphasia
Procedia PDF Downloads 204909 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing
Authors: Kedibone Masenya, Memory Tekere, Jasper Rees
Abstract:
Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.Keywords: bacteria, multitrophic, sorghum, target sequencing
Procedia PDF Downloads 286908 5iD Viewer: Observation of Fish School Behaviour in Labyrinths and Use of Semantic and Syntactic Entropy for School Structure Definition
Authors: Dalibor Štys, Kryštof M. Stys, Maryia Chkalova, Petr Kouba, Aliaxandr Pautsina, Dalibor Štys Jr., Jana Pečenková, Denis Durniev, Tomáš Náhlík, Petr Císař
Abstract:
In this article, a construction and some properties of the 5iD viewer, the system recording simultaneously five views of a given experimental object is reported. Properties of the system are demonstrated on the analysis of fish schooling behavior. It is demonstrated the method of instrument calibration which allows inclusion of image distortion and it is proposed and partly tested also the method of distance assessment in the case that only two opposite cameras are available. Finally, we demonstrate how the state trajectory of the behavior of the fish school may be constructed from the entropy of the system.Keywords: 3D positioning, school behavior, distance calibration, space vision, space distortion
Procedia PDF Downloads 390907 An Ontology for Smart Learning Environments in Music Education
Authors: Konstantinos Sofianos, Michail Stefanidakis
Abstract:
Nowadays, despite the great advances in technology, most educational frameworks lack a strong educational design basis. E-learning has become prevalent, but it faces various challenges such as student isolation and lack of quality in the learning process. An intelligent learning system provides a student with educational material according to their learning background and learning preferences. It records full information about the student, such as demographic information, learning styles, and academic performance. This information allows the system to be fully adapted to the student’s needs. In this paper, we propose a framework and an ontology for music education, consisting of the learner model and all elements of the learning process (learning objects, teaching methods, learning activities, assessment). This framework can be integrated into an intelligent learning system and used for music education in schools for the development of professional skills and beyond.Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web
Procedia PDF Downloads 140906 Semantic Differential Technique as a Kansei Engineering Tool to Enquire Public Space Design Requirements: The Case of Parks in Tehran
Authors: Nasser Koleini Mamaghani, Sara Mostowfi
Abstract:
The complexity of public space design makes it difficult for designers to simultaneously consider all issues for thorough decision-making. Among public spaces, the public space around people’s house is the most prominent space that affects and impacts people’s daily life. Considering recreational public spaces in cities, their main purpose would be to design for experiences that enable a deep feeling of peace and a moment of being away from the hectic daily life. Respecting human emotions and restoring natural environments, although difficult and to some extent out of reach, are key issues for designing such spaces. In this paper we propose to analyse the structure of recreational public spaces and the related emotional impressions. Furthermore, we suggest investigating how these structures influence people’s choice for public spaces by using differential semantics. According to Kansei methodology, in order to evaluate a situation appropriately, the assessment variables must be adapted to the user’s mental scheme. This means that the first step would have to be the identification of a space’s conceptual scheme. In our case study, 32 Kansei words and 4 different locations, each with a different sensual experience, were selected. The 4 locations were all parks in the city of Tehran (Iran), each with a unique structure and artifacts such as a fountain, lighting, sculptures, and music. It should be noted that each of these parks has different combination and structure of environmental and artificial elements like: fountain, lightning, sculpture, music (sound) and so forth. The first one was park No.1, a park with natural environment, the selected space was a fountain with motion light and sculpture. The second park was park No.2, in which there are different styles of park construction: ways from different countries, the selected space was traditional Iranian architecture with a fountain and trees. The third one was park No.3, the park with modern environment and spaces, and included a fountain that moved according to music and lighting. The fourth park was park No.4, the park with combination of four elements: water, fire, earth, wind, the selected space was fountains squirting water from the ground up. 80 participant (55 males and 25 females) aged from 20-60 years participated in this experiment. Each person filled the questionnaire in the park he/she was in. Five-point semantic differential scale was considered to determine the relation between space details and adjectives (kansei words). Received data were analyzed by multivariate statistical technique (factor analysis using SPSS statics). Finally the results of this analysis are criteria as inspiration which can be used in future space designing for creating pleasant feeling in users.Keywords: environmental design, differential semantics, Kansei engineering, subjective preferences, space
Procedia PDF Downloads 408905 The Use of Social Stories and Digital Technology as Interventions for Autistic Children; A State-Of-The-Art Review and Qualitative Data Analysis
Authors: S. Hussain, C. Grieco, M. Brosnan
Abstract:
Background and Aims: Autism is a complex neurobehavioural disorder, characterised by impairments in the development of language and communication skills. The study involved a state-of-art systematic review, in addition to qualitative data analysis, to establish the evidence for social stories as an intervention strategy for autistic children. An up-to-date review of the use of digital technologies in the delivery of interventions to autistic children was also carried out; to propose the efficacy of digital technologies and the use of social stories to improve intervention outcomes for autistic children. Methods: Two student researchers reviewed a range of randomised control trials and observational studies. The aim of the review was to establish if there was adequate evidence to justify recommending social stories to autistic patients. Students devised their own search strategies to be used across a range of search engines, including Ovid-Medline, Google Scholar and PubMed. Students then critically appraised the generated literature. Additionally, qualitative data obtained from a comprehensive online questionnaire on social stories was also thematically analysed. The thematic analysis was carried out independently by each researcher, using a ‘bottom-up’ approach, meaning contributors read and analysed responses to questions and devised semantic themes from reading the responses to a given question. The researchers then placed each response into a semantic theme or sub-theme. The students then joined to discuss the merging of their theme headings. The Inter-rater reliability (IRR) was calculated before and after theme headings were merged, giving IRR for pre- and post-discussion. Lastly, the thematic analysis was assessed by a third researcher, who is a professor of psychology and the director for the ‘Centre for Applied Autism Research’ at the University of Bath. Results: A review of the literature, as well as thematic analysis of qualitative data found supporting evidence for social story use. The thematic analysis uncovered some interesting themes from the questionnaire responses, relating to the reasons why social stories were used and the factors influencing their effectiveness in each case. However, overall, the evidence for digital technologies interventions was limited, and the literature could not prove a causal link between better intervention outcomes for autistic children and the use of technologies. However, they did offer valid proposed theories for the suitability of digital technologies for autistic children. Conclusions: Overall, the review concluded that there was adequate evidence to justify advising the use of social stories with autistic children. The role of digital technologies is clearly a fast-emerging field and appears to be a promising method of intervention for autistic children; however, it should not yet be considered an evidence-based approach. The students, using this research, developed ideas on social story interventions which aim to help autistic children.Keywords: autistic children, digital technologies, intervention, social stories
Procedia PDF Downloads 121904 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other AI-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.Keywords: machine learning, text classification, NLP techniques, semantic representation
Procedia PDF Downloads 103903 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii
Authors: Ananya Gupta, Sangeeta Bhaskar
Abstract:
Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination
Procedia PDF Downloads 188902 Forming-Free Resistive Switching Effect in ZnₓTiᵧHfzOᵢ Nanocomposite Thin Films for Neuromorphic Systems Manufacturing
Authors: Vladimir Smirnov, Roman Tominov, Vadim Avilov, Oleg Ageev
Abstract:
The creation of a new generation micro- and nanoelectronics elements opens up unlimited possibilities for electronic devices parameters improving, as well as developing neuromorphic computing systems. Interest in the latter is growing up every year, which is explained by the need to solve problems related to the unstructured classification of data, the construction of self-adaptive systems, and pattern recognition. However, for its technical implementation, it is necessary to fulfill a number of conditions for the basic parameters of electronic memory, such as the presence of non-volatility, the presence of multi-bitness, high integration density, and low power consumption. Several types of memory are presented in the electronics industry (MRAM, FeRAM, PRAM, ReRAM), among which non-volatile resistive memory (ReRAM) is especially distinguished due to the presence of multi-bit property, which is necessary for neuromorphic systems manufacturing. ReRAM is based on the effect of resistive switching – a change in the resistance of the oxide film between low-resistance state (LRS) and high-resistance state (HRS) under an applied electric field. One of the methods for the technical implementation of neuromorphic systems is cross-bar structures, which are ReRAM cells, interconnected by cross data buses. Such a structure imitates the architecture of the biological brain, which contains a low power computing elements - neurons, connected by special channels - synapses. The choice of the ReRAM oxide film material is an important task that determines the characteristics of the future neuromorphic system. An analysis of literature showed that many metal oxides (TiO2, ZnO, NiO, ZrO2, HfO2) have a resistive switching effect. It is worth noting that the manufacture of nanocomposites based on these materials allows highlighting the advantages and hiding the disadvantages of each material. Therefore, as a basis for the neuromorphic structures manufacturing, it was decided to use ZnₓTiᵧHfzOᵢ nanocomposite. It is also worth noting that the ZnₓTiᵧHfzOᵢ nanocomposite does not need an electroforming, which degrades the parameters of the formed ReRAM elements. Currently, this material is not well studied, therefore, the study of the effect of resistive switching in forming-free ZnₓTiᵧHfzOᵢ nanocomposite is an important task and the goal of this work. Forming-free nanocomposite ZnₓTiᵧHfzOᵢ thin film was grown by pulsed laser deposition (Pioneer 180, Neocera Co., USA) on the SiO2/TiN (40 nm) substrate. Electrical measurements were carried out using a semiconductor characterization system (Keithley 4200-SCS, USA) with W probes. During measurements, TiN film was grounded. The analysis of the obtained current-voltage characteristics showed a resistive switching from HRS to LRS resistance states at +1.87±0.12 V, and from LRS to HRS at -2.71±0.28 V. Endurance test shown that HRS was 283.21±32.12 kΩ, LRS was 1.32±0.21 kΩ during 100 measurements. It was shown that HRS/LRS ratio was about 214.55 at reading voltage of 0.6 V. The results can be useful for forming-free nanocomposite ZnₓTiᵧHfzOᵢ films in neuromorphic systems manufacturing. This work was supported by RFBR, according to the research project № 19-29-03041 mk. The results were obtained using the equipment of the Research and Education Center «Nanotechnologies» of Southern Federal University.Keywords: nanotechnology, nanocomposites, neuromorphic systems, RRAM, pulsed laser deposition, resistive switching effect
Procedia PDF Downloads 132901 A Deep Learning Approach to Subsection Identification in Electronic Health Records
Authors: Nitin Shravan, Sudarsun Santhiappan, B. Sivaselvan
Abstract:
Subsection identification, in the context of Electronic Health Records (EHRs), is identifying the important sections for down-stream tasks like auto-coding. In this work, we classify the text present in EHRs according to their information, using machine learning and deep learning techniques. We initially describe briefly about the problem and formulate it as a text classification problem. Then, we discuss upon the methods from the literature. We try two approaches - traditional feature extraction based machine learning methods and deep learning methods. Through experiments on a private dataset, we establish that the deep learning methods perform better than the feature extraction based Machine Learning Models.Keywords: deep learning, machine learning, semantic clinical classification, subsection identification, text classification
Procedia PDF Downloads 220900 Implementation of ADETRAN Language Using Message Passing Interface
Authors: Akiyoshi Wakatani
Abstract:
This paper describes the Message Passing Interface (MPI) implementation of ADETRAN language, and its evaluation on SX-ACE supercomputers. ADETRAN language includes pdo statement that specifies the data distribution and parallel computations and pass statement that specifies the redistribution of arrays. Two methods for implementation of pass statement are discussed and the performance evaluation using Splitting-Up CG method is presented. The effectiveness of the parallelization is evaluated and the advantage of one dimensional distribution is empirically confirmed by using the results of experiments.Keywords: iterative methods, array redistribution, translator, distributed memory
Procedia PDF Downloads 271