Search results for: satellite applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7095

Search results for: satellite applications

6375 Production of Geopolymers for Structural Applications from Fluidized Bed Combustion Bottom Ash

Authors: Thapelo Aubrey Motsieng

Abstract:

Fluidized bed combustion (FBC) is a clean coal technology used in the combustion of low-grade coals for power generation. The production of large solid wastes such as bottom ashes from this process is a problem. The bottom ash contains some toxic elements which can leach out soils and contaminate surface and ground water; for this reason, they can neither be disposed of in landfills nor lagoons anymore. The production of geopolymers from bottom ash for structural and concrete applications is an option for their disposal. In this study, the waste bottom ash obtained from the combustion of three low grade South African coals in a bubbling fluidized bed reactor was used to produce geopolymers. The geopolymers were cured in a household microwave. The results showed that the microwave curing enhanced the reactivity and strength of the geopolymers.

Keywords: bottom ash, geopolymers, coal, compressive strength

Procedia PDF Downloads 323
6374 A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor

Authors: Theoktisti Makridou, Konstantinos Tsaprailis, George Arvanitakis, Charalampos Kontoes

Abstract:

In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance.

Keywords: mosquito abundance, supervised machine learning, culex pipiens, spatial sampling, west nile virus, earth observation data

Procedia PDF Downloads 149
6373 [Keynote Talk]: Aerodynamic Effects of Ice and Its Influences on Flight Characteristics of Low Speed Unmanned Aerial Vehicles

Authors: I. McAndrew, K. L. Witcher, E. Navarro

Abstract:

This paper presents the theory and application of low speed flight for unmanned aerial vehicles when subjected to surface environmental conditions such as ice on the leading edge and upper surface. A model was developed and tested in a wind tunnel to see how theory compares with practice at various speed including take-off, landing and operational applications where head winds substantially alter parameters. Furthermore, a comparison is drawn with maned operations and how that this subject is currently under supported with accurate theory or knowledge for designers or operators to make informed decision or accommodate individual applications. The effects of ice formation for lift and drag are determined for a range of different angles of attacks.

Keywords: aerodynamics, low speed flight, unmanned vehicles, environmental influences

Procedia PDF Downloads 438
6372 Blockchain for Transport: Performance Simulations of Blockchain Network for Emission Monitoring Scenario

Authors: Dermot O'Brien, Vasileios Christaras, Georgios Fontaras, Igor Nai Fovino, Ioannis Kounelis

Abstract:

With the rise of the Internet of Things (IoT), 5G, and blockchain (BC) technologies, vehicles are becoming ever increasingly connected and are already transmitting substantial amounts of data to the original equipment manufacturers (OEMs) servers. This data could be used to help detect mileage fraud and enable more accurate vehicle emissions monitoring. This would not only help regulators but could enable applications such as permitting efficient drivers to pay less tax, geofencing for air quality improvement, as well as pollution tolling and trading platforms for transport-related businesses and EU citizens. Other applications could include traffic management and shared mobility systems. BC enables the transmission of data with additional security and removes single points of failure while maintaining data provenance, identity ownership, and the possibility to retain varying levels of privacy depending on the requirements of the applied use case. This research performs simulations of vehicles interacting with European member state authorities and European Commission BC nodes that are running hyperleger fabric and explores whether the technology is currently feasible for transport applications such as the emission monitoring use-case.

Keywords: future transportation systems, technological innovations, policy approaches for transportation future, economic and regulatory trends, blockchain

Procedia PDF Downloads 177
6371 Validation of the Formal Model of Web Services Applications for Digital Reference Service of Library Information System

Authors: Zainab Magaji Musa, Nordin M. A. Rahman, Julaily Aida Jusoh

Abstract:

The web services applications for digital reference service (WSDRS) of LIS model is an informal model that claims to reduce the problems of digital reference services in libraries. It uses web services technology to provide efficient way of satisfying users’ needs in the reference section of libraries. The formal WSDRS model consists of the Z specifications of all the informal specifications of the model. This paper discusses the formal validation of the Z specifications of WSDRS model. The authors formally verify and thus validate the properties of the model using Z/EVES theorem prover.

Keywords: validation, verification, formal, theorem prover

Procedia PDF Downloads 517
6370 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 548
6369 Leading People in a Digital Era: A Theoretical Study of Challenges and Opportunities of Online Networking Platforms

Authors: Pawel Korzynski

Abstract:

Times where leaders communicate mainly while walking along the hallways have passed away. Currently, millennials, people that were born between the early 1980s and the early 2000s, extensively use applications based on Web 2.0 model that assumes content creation and edition by all Internet users in a collaborative fashion. Leaders who are willing to engage their subordinates in a digital era, increasingly often use above-mentioned applications. This paper discusses challenges and opportunities that are related to leaders’ online networking. First, online networking-related terms that appeared in literature are analyzed. Then, types of online networking platforms for leaders and ways how these platforms can be used are discussed. Finally, several trends in online networking studies and extrapolation of some findings to leadership are explained.

Keywords: social media, digital era, leadership, online networking

Procedia PDF Downloads 294
6368 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok

Abstract:

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: multi-slotted antenna, microstrip patch antenna, frequency selective surface, artificial magnetic conduction

Procedia PDF Downloads 381
6367 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 170
6366 A Comparative Study of Motion Events Encoding in English and Italian

Authors: Alfonsina Buoniconto

Abstract:

The aim of this study is to investigate the degree of cross-linguistic and intra-linguistic variation in the encoding of motion events (MEs) in English and Italian, these being typologically different languages both showing signs of disobedience to their respective types. As a matter of fact, the traditional typological classification of MEs encoding distributes languages into two macro-types, based on the preferred locus for the expression of Path, the main ME component (other components being Figure, Ground and Manner) characterized by conceptual and structural prominence. According to this model, Satellite-framed (SF) languages typically express Path information in verb-dependent items called satellites (e.g. preverbs and verb particles) with main verbs encoding Manner of motion; whereas Verb-framed languages (VF) tend to include Path information within the verbal locus, leaving Manner to adjuncts. Although this dichotomy is valid altogether, languages do not always behave according to their typical classification patterns. English, for example, is usually ascribed to the SF type due to the rich inventory of postverbal particles and phrasal verbs used to express spatial relations (i.e. the cat climbed down the tree); nevertheless, it is not uncommon to find constructions such as the fog descended slowly, which is typical of the VF type. Conversely, Italian is usually described as being VF (cf. Paolo uscì di corsa ‘Paolo went out running’), yet SF constructions like corse via in lacrime ‘She ran away in tears’ are also frequent. This paper will try to demonstrate that such a typological overlapping is due to the fact that the semantic units making up MEs are distributed within several loci of the sentence –not only verbs and satellites– thus determining a number of different constructions stemming from convergent factors. Indeed, the linguistic expression of motion events depends not only on the typological nature of languages in a traditional sense, but also on a series morphological, lexical, and syntactic resources, as well as on inferential, discursive, usage-related, and cultural factors that make semantic information more or less accessible, frequent, and easy to process. Hence, rather than describe English and Italian in dichotomic terms, this study focuses on the investigation of cross-linguistic and intra-linguistic variation in the use of all the strategies made available by each linguistic system to express motion. Evidence for these assumptions is provided by parallel corpora analysis. The sample texts are taken from two contemporary Italian novels and their respective English translations. The 400 motion occurrences selected (200 in English and 200 in Italian) were scanned according to the MODEG (an acronym for Motion Decoding Grid) methodology, which grants data comparability through the indexation and retrieval of combined morphosyntactic and semantic information at different levels of detail.

Keywords: construction typology, motion event encoding, parallel corpora, satellite-framed vs. verb-framed type

Procedia PDF Downloads 261
6365 Nanosilver Loaded Biomaterial for Wound Healing Applications: In Vitro Studies

Authors: Sathish Sundar Dhilip Kumar, Nicolette Houreld, Heidi Abrahamse

Abstract:

Silver nanoparticles (AgNPs) are classified as metal-based nanomaterials and have received considerable attention globally for wound healing and tissue engineering applications. Naturally available materials are a significant source of medicinal products to treat numerous diseases; polysaccharides are among them. Polysaccharides are non-toxic, safe, and inexpensive, and it has good biocompatibility and biodegradability. Most polysaccharides are shown to have a positive effect on wound healing processes, including chitosan and gum tragacanth. The present study evaluated the improvement of cellular wound healing by nanosilver-loaded polysaccharide-based biomaterial (CGT-NS) in WS1 cells. The physicochemical properties of prepared CGT-NS were studied using different characterization techniques, and it exhibited better stability and swelling properties in various pH conditions. Surface morphology was studied using scanning electron microscopy, and it revealed the porous morphology of the synthesized CGT-NS. The synthesized biomaterial displayed acceptable antibacterial properties against Gram-positive and Gram-negative bacterial strains, and it may prevent infection. The biocompatibility of the synthesized CGT-NS biomaterial was studied in WS1 cells, where it may lead to promote increased cell adhesion and proliferation properties. Thus, the CGT-NS biomaterial has good potential as a biomaterial in wound healing applications.

Keywords: biomaterial, wound healing, nano, silver nanoparticles

Procedia PDF Downloads 184
6364 Towards a Common Architecture for Cloud Computing Interoperability

Authors: Sana Kouchi, Hassina Nacer, Kadda Beghdad-bey

Abstract:

Cloud computing is growing very fast in the market and has become one of the most controversial discussed developments in recent years. Cloud computing providers become very numerous in these areas and each of them prefers its own cloud computing infrastructure, due to the incompatibility of standards and cloud access formats, which prevents them from accepting to support cloud computing applications in a standardized manner, this heterogeneity creates the problem of interoperability between clouds, and considering that cloud customers are probably in search of an interoperable cloud computing, where they will have total control over their applications and simply migrate their services as needed, without additional development investment. A cloud federation strategy should be considered. In this article, we propose a common architecture for the cloud that is based on existing architectures and also the use of best practices from ICT frameworks, such as IBM, ITIL, NIST, etc., to address the interoperability of architectures issues in a multi-cloud system.

Keywords: cloud computing, reference architecture, interoperability, standard

Procedia PDF Downloads 174
6363 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 85
6362 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
6361 Two-Dimensional Transition Metal Dichalcogenides for Photodetection and Biosensing

Authors: Mariam Badmus, Bothina Manasreh

Abstract:

Transition metal dichalcogenides (TMDs) have gained significant attention as two-dimensional (2D) materials due to their intrinsic band gaps and unique properties, which make them ideal candidates for electronic and photonic applications. Unlike graphene, which lacks a band gap, TMDs (MX₂, where M is a transition metal and X is a chalcogen such as sulfur, selenium, or tellurium) exhibit semiconductor behavior and can be exfoliated into monolayers, enhancing their properties. The properties of these materials are investigated using density functional theory, a quantum mechanical computational method to solve Schrodinger equation for many body problems to calculate electron density of the atoms involved on which the energy and properties of a system depend. They show promise for use in photodetectors, biosensors, memory devices, and other technologies in communications, health, and energy sectors. In particular, metallic TMDs, which lack an intrinsic band gap, benefit from doping with transition metals, this improves their electronic and optical properties. Doping monolayer TMDs yields more significant improvements than doping bulk materials. Notably, doping with metals such as vanadium enhances the magnetization of TMDs, expanding their potential applications in spintronics. This work highlights the effects of doping on TMDs and explores strategies for optimizing their performance for advanced technological applications.

Keywords: concentration, doping, magnetization, monolayer

Procedia PDF Downloads 16
6360 Automated Java Testing: JUnit versus AspectJ

Authors: Manish Jain, Dinesh Gopalani

Abstract:

Growing dependency of mankind on software technology increases the need for thorough testing of the software applications and automated testing techniques that support testing activities. We have outlined our testing strategy for performing various types of automated testing of Java applications using AspectJ which has become the de-facto standard for Aspect Oriented Programming (AOP). Likewise JUnit, a unit testing framework is the most popular Java testing tool. In this paper, we have evaluated our proposed AOP approach for automated testing and JUnit on various parameters. First we have provided the similarity between the two approaches and then we have done a detailed comparison of the two testing techniques on factors like lines of testing code, learning curve, testing of private members etc. We established that our AOP testing approach using AspectJ has got several advantages and is thus particularly more effective than JUnit.

Keywords: aspect oriented programming, AspectJ, aspects, JU-nit, software testing

Procedia PDF Downloads 331
6359 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 444
6358 Capacity Estimation of Hybrid Automated Repeat Request Protocol for Low Earth Orbit Mega-Constellations

Authors: Arif Armagan Gozutok, Alper Kule, Burak Tos, Selman Demirel

Abstract:

Wireless communication chain requires effective ways to keep throughput efficiency high while it suffers location-dependent, time-varying burst errors. Several techniques are developed in order to assure that the receiver recovers the transmitted information without errors. The most fundamental approaches are error checking and correction besides re-transmission of the non-acknowledged packets. In this paper, stop & wait (SAW) and chase combined (CC) hybrid automated repeat request (HARQ) protocols are compared and analyzed in terms of throughput and average delay for the usage of low earth orbit (LEO) mega-constellations case. Several assumptions and technological implementations are considered as well as usage of low-density parity check (LDPC) codes together with several constellation orbit configurations.

Keywords: HARQ, LEO, satellite constellation, throughput

Procedia PDF Downloads 145
6357 Ecosystem Modeling along the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty, R. Gayathri, V. Ranga Rao

Abstract:

Modeling on coupled physical and biogeochemical processes of coastal waters is vital to identify the primary production status under different natural and anthropogenic conditions. About 7, 500 km length of Indian coastline is occupied with number of semi enclosed coastal bodies such as estuaries, inlets, bays, lagoons, and other near shore, offshore shelf waters, etc. This coastline is also rich in wide varieties of ecosystem flora and fauna. Directly/indirectly extensive domestic and industrial sewage enter into these coastal water bodies affecting the ecosystem character and create environment problems such as water quality degradation, hypoxia, anoxia, harmful algal blooms, etc. lead to decline in fishery and other related biological production. The present study is focused on the southeast coast of India, starting from Pulicat to Gulf of Mannar, which is rich in marine diversity such as lagoon, mangrove and coral ecosystem. Three dimensional Massachusetts Institute of Technology general circulation model (MITgcm) along with Darwin biogeochemical module is configured for the western Bay of Bengal (BoB) to study the biogeochemistry over this region. The biogeochemical module resolves the cycling of carbon, phosphorous, nitrogen, silica, iron and oxygen through inorganic, living, dissolved and particulate organic phases. The model domain extends from 4°N-16.5°N and 77°E-86°E with a horizontal resolution of 1 km. The bathymetry is derived from General Bathymetric Chart of the Oceans (GEBCO), which has a resolution of 30 sec. The model is initialized by using the temperature, salinity filed from the World Ocean Atlas (WOA2013) of National Oceanographic Data Centre with a resolution of 0.25°. The model is forced by the surface wind stress from ASCAT and the photosynthetically active radiation from the MODIS-Aqua satellite. Seasonal climatology of nutrients (phosphate, nitrate and silicate) for the southwest BoB region are prepared using available National Institute of Oceanography (NIO) in-situ data sets and compared with the WOA2013 seasonal climatology data. The model simulations with the two different initial conditions viz., WOA2013 and the generated NIO climatology, showed evident changes in the concentration and the evolution of the nutrients in the study region. It is observed that the availability of nutrients is more in NIO data compared to WOA in the model domain. The model simulated primary productivity is compared with the spatially distributed satellite derived chlorophyll data and at various locations with the in-situ data. The seasonal variability of the model simulated primary productivity is also studied.

Keywords: Bay of Bengal, Massachusetts Institute of Technology general circulation model, MITgcm, biogeochemistry, primary productivity

Procedia PDF Downloads 141
6356 Current Strategic Trends – A Comparative Analysis of Hungarian Corporations

Authors: Gyula Fülöp, Bettina Hernádi

Abstract:

This paper deals with the current strategic challenges related to the reshaping of the basic conditions of corporate operations. With the help of the experimental analysis of some domestic corporations, it presents the form and extent the Hungarian corporations are prepared for the current strategic challenges. The study examines how strategic directions and answer opportunities changed in the following interrelated areas in the past five years: economic globalization, corporate sustainability, IT applications, labour force diversity and ethical competences. The conclusions of the empirical survey give a reliable basis for economic organizations and enterprises to formulate their strategy.

Keywords: economic globalization, corporate sustainability, IT applications, labour force diversity, ethical competences

Procedia PDF Downloads 393
6355 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
6354 Instance Segmentation of Wildfire Smoke Plumes using Mask-RCNN

Authors: Jamison Duckworth, Shankarachary Ragi

Abstract:

Detection and segmentation of wildfire smoke plumes from remote sensing imagery are being pursued as a solution for early fire detection and response. Smoke plume detection can be automated and made robust by the application of artificial intelligence methods. Specifically, in this study, the deep learning approach Mask Region-based Convolutional Neural Network (RCNN) is being proposed to learn smoke patterns across different spectral bands. This method is proposed to separate the smoke regions from the background and return masks placed over the smoke plumes. Multispectral data was acquired using NASA’s Earthdata and WorldView and services and satellite imagery. Due to the use of multispectral bands along with the three visual bands, we show that Mask R-CNN can be applied to distinguish smoke plumes from clouds and other landscape features that resemble smoke.

Keywords: deep learning, mask-RCNN, smoke plumes, spectral bands

Procedia PDF Downloads 128
6353 Thermal Reduction of Perfect Well Identified Hexagonal Graphene Oxide Nano-Sheets for Super-Capacitor Applications

Authors: A. N. Fouda

Abstract:

A novel well identified hexagonal graphene oxide (GO) nano-sheets were synthesized using modified Hummer method. Low temperature thermal reduction at 350°C in air ambient was performed. After thermal reduction, typical few layers of thermal reduced GO (TRGO) with dimension of few hundreds nanometers were observed using high resolution transmission electron microscopy (HRTEM). GO has a lot of structure models due to variation of the preparation process. Determining the atomic structure of GO is essential for a better understanding of its fundamental properties and for realization of the future technological applications. Structural characterization was identified by x-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR) measurements. A comparison between exper- imental and theoretical IR spectrum were done to confirm the match between experimentally and theoretically proposed GO structure. Partial overlap of the experimental IR spectrum with the theoretical IR was confirmed. The electrochemical properties of TRGO nano-sheets as electrode materials for supercapacitors were investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) measurements. An enhancement in supercapacitance after reduction was confirmed and the area of the CV curve for the TRGO electrode is larger than those for the GO electrode indicating higher specific capacitance which is promising in super-capacitor applications

Keywords: hexagonal graphene oxide, thermal reduction, cyclic voltammetry

Procedia PDF Downloads 494
6352 Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet

Authors: Mashayekh Amir Shahriar, Akhlaghi Morteza, Rajaee Hajar, Khani Mohammad Reza, Shokri Babak

Abstract:

A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated, characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability.

Keywords: Atmospheric Pressure Plasma Jet (APPJ), Plasma Medicine, Cancer cell treatment, leukemia, Optical Emission

Procedia PDF Downloads 661
6351 Block Matching Based Stereo Correspondence for Depth Calculation

Authors: G. Balakrishnan

Abstract:

Stereo Correspondence plays a major role in estimation of distance of an object from the stereo camera pair for various applications. In this paper, a stereo correspondence algorithm based on block-matching technique is presented. Initially, an energy matrix is calculated for every disparity obtained using modified Sum of Absolute Difference (SAD). Higher energy matrix errors are removed by using threshold value in order to reduce the mismatch errors. A smoothening filter is applied to eliminate unreliable disparity estimate across the object boundaries. The purpose is to improve the reliability of calculation of disparity map. The experimental results obtained shows that the final depth map produce better results and can be used to all the applications using stereo cameras.

Keywords: stereo matching, filters, energy matrix, disparity

Procedia PDF Downloads 215
6350 Factors Affecting M-Government Deployment and Adoption

Authors: Saif Obaid Alkaabi, Nabil Ayad

Abstract:

Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.

Keywords: e-government, m-government, system dependability, system security, trust

Procedia PDF Downloads 383
6349 Management and Evaluation of the Importance of Porous Media in Biomedical Engineering as Associated with Magnetic Resonance Imaging Besides Drug Delivery

Authors: Fateme Nokhodchi Bonab

Abstract:

Studies related to magnetic resonance imaging (MRI) and drug delivery are reviewed in this study to demonstrate the role of transport theory in porous media in facilitating advances in biomedical applications. Diffusion processes are believed to be important in many therapeutic modalities such as: B. Delivery of drugs to the brain. We analyse the progress in the development of diffusion equations using the local volume average method and the evaluation of applications related to diffusion equations. Torsion and porosity have significant effects on diffusive transport. In this study, various relevant models of torsion are presented and mathematical modeling of drug release from biodegradable delivery systems is analysed. In this study, a new model of drug release kinetics from porous biodegradable polymeric microspheres under bulk and surface erosion of the polymer matrix is presented. Solute drug diffusion, drug dissolution from the solid phase, and polymer matrix erosion have been found to play a central role in controlling the overall drug release process. This work paves the way for MRI and drug delivery researchers to develop comprehensive models based on porous media theory that use fewer assumptions compared to other approaches.

Keywords: MRI, porous media, drug delivery, biomedical applications

Procedia PDF Downloads 90
6348 The Effect of Artificial Intelligence on the Production of Agricultural Lands and Labor

Authors: Ibrahim Makram Ibrahim Salib

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: agriculture land, agriculture land loss, Kabul city, urban land expansion, urbanization agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models drone, precision agriculture, farmer income

Procedia PDF Downloads 76
6347 Service-Based Application Adaptation Strategies: A Survey

Authors: Sahba Paktinat, Afshin Salajeghe, Mir Ali Seyyedi, Yousef Rastegari

Abstract:

Service Oriented Architecture (SOA) allows modeling of dynamic interaction between incongruous providers, which enables governing the development of complex applications. However, implementation of SOA comes with some challenges, including its adaptability and robustness. Dynamism is inherent to the nature of service-based applications and of their running environment. These factors lead to necessity for dynamic adaptation. In this paper, we try to describe basics and main structure of SOA adaptation process with a conceptual view to this issue. In this survey, we will review the relevant adaptation approaches. This paper allows studying how different approaches deal with service oriented architecture adaptation life-cycle and provides basic guidelines for their analysis, evaluation and comparison.

Keywords: context-aware, dynamic adaptation, quality of services, service oriented architecture, service based application

Procedia PDF Downloads 456
6346 Integrating AI in Education: Enhancing Learning Processes and Personalization

Authors: Waleed Afandi

Abstract:

Artificial intelligence (AI) has rapidly transformed various sectors, including education. This paper explores the integration of AI in education, emphasizing its potential to revolutionize learning processes, enhance teaching methodologies, and personalize education. We examine the historical context of AI in education, current applications, and the potential challenges and ethical considerations associated with its implementation. By reviewing a wide range of literature, this study aims to provide a comprehensive understanding of how AI can be leveraged to improve educational outcomes and the future directions of AI-driven educational innovations. Additionally, the paper discusses the impact of AI on student engagement, teacher support, and administrative efficiency. Case studies highlighting successful AI applications in diverse educational settings are presented, showcasing the practical benefits and real-world implications. The analysis also addresses potential disparities in access to AI technologies and suggests strategies to ensure equitable implementation. Through a balanced examination of the promises and pitfalls of AI in education, this study seeks to inform educators, policymakers, and technologists about the optimal pathways for integrating AI to foster an inclusive, effective, and innovative educational environment.

Keywords: artificial intelligence, education, personalized learning, teaching methodologies, educational outcomes, AI applications, student engagement, teacher support, administrative efficiency, equity in education

Procedia PDF Downloads 35