Search results for: pore pressure coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6430

Search results for: pore pressure coefficient

5710 Transport of Analytes under Mixed Electroosmotic and Pressure Driven Flow of Power Law Fluid

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal

Abstract:

In this study, we have analyzed the transport of analytes under a two dimensional steady incompressible flow of power-law fluids through rectangular nanochannel. A mathematical model based on the Cauchy momentum-Nernst-Planck-Poisson equations is considered to study the combined effect of mixed electroosmotic (EO) and pressure driven (PD) flow. The coupled governing equations are solved numerically by finite volume method. We have studied extensively the effect of key parameters, e.g., flow behavior index, concentration of the electrolyte, surface potential, imposed pressure gradient and imposed electric field strength on the net average flow across the channel. In addition to study the effect of mixed EOF and PD on the analyte distribution across the channel, we consider a nonlinear model based on general convective-diffusion-electromigration equation. We have also presented the retention factor for various values of electrolyte concentration and flow behavior index.

Keywords: electric double layer, finite volume method, flow behavior index, mixed electroosmotic/pressure driven flow, non-Newtonian power-law fluids, numerical simulation

Procedia PDF Downloads 311
5709 Gas Lift Optimization to Improve Well Performance

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie

Abstract:

Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.

Keywords: optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure

Procedia PDF Downloads 413
5708 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: gas pipelines, incident radiation, numerical simulation, safety distance

Procedia PDF Downloads 332
5707 Assessment of the Impact of CSR on the Business Performance of Australian Banks

Authors: Montoya C.A., Erina J., Erina I.

Abstract:

The purpose of this research is to assess the performance and impact of CSR on business in the banking sector in Australia by applying the financial indicators of 20 ASX banks for the period from 2016-2017. The authors carried out CSR assessment in several stages of research: 1) gathering the nonfinancial and financial indicators of 20 ASX listed banks (available were only 16) from the annual reports of Australian banks for 2016 and 2017; 2) calculation of bank performance indicators using such financial indicators as return on assets (ROA), return on equity (ROE), efficiency ratio and net interest margin; 3) analysis of financial data using cross-sectional regression and answers to the research questions. Based on the obtained research results, the authors obtained answers to the initially raised research questions and came to a conclusion that Q1 - Insignificant positive coefficient result - slight positive relationship between CSR disclosure and business performance 2016; Q2 - Insignificant negative coefficient result - slight negative relationship between CSR disclosure and business performance 2017; Q3 - Insignificant positive coefficient result - slight positive relationship between CSR disclosure and business performance.

Keywords: Australia, banks, business performance, CSR

Procedia PDF Downloads 74
5706 The Hepatoprotective Effects of Aquatic Extract of Levesticum Officinale against Paraquat Toxicity of Hepatocytes

Authors: Hasan Afarnegan, Ali Shahraki, Jafar Shahraki

Abstract:

Paraquat is widely used as a strong nitrogen-based herbicide for controlling of weeds in agriculture. This poison is extremely toxic for humans which induces several – organ failure by accumulation in cells and many instances of death occurred due to its poisoning. Paraquat metabolized primarily in the liver. The purpose of this study was to assess the effects of aquatic extract of levisticum officinale on oxidative status and biochemical factors in hepatocytes exposed to paraquat. Our results determined that hepatocytes destruction induced by paraquat is mediated by reactive oxygen species (ROS) production, lipid peroxidation and decrease of mitochondrial membrane potential were significantly (P<0.05) prevented by aquatic extract of Levisicum officinale (100, 200 and 300 µg/ml). These effects of paraquat also prevented via antioxidants and ROS scavengers (α-tocopherol, DMSO, manitol), mitochondrial permeability transition (MPT) pore sealing compound (carnitine).MPT pore sealing compound inhibited the hepatotoxicity, indicating that paraquat induced cell death via mithochondrial pathway. Pretreatment of hepatocytes with aquatic extracts of Levisticum officinale, antioxidants and ROS scavengers also blocked hepatic cell death caused by paraquat, suggesting that oxidative stress may be directly induced decline of mithochondrial membrane potential. In conclusion, paraquat hepatotoxicity can be attributed to oxidative stress and continued by mithochondrial membrane potential disruption. Levisticum officinale aquatic extract, presumably due to its strong antoxidant properties, could protect the destructive effects of paraquat on rat hepatocytes.

Keywords: hepatocyte protection, levisticum officinale, oxidative stress, paraquat

Procedia PDF Downloads 222
5705 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 88
5704 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 101
5703 Inelastic and Elastic Taping in Plantar Pressure of Runners Pronators: Clinical Trial

Authors: Liana Gomide, Juliana Rodrigues

Abstract:

The morphology of the foot defines its mode of operation and a biomechanical reform indispensable for a symmetrical distribution of plantar pressures in order not to overload some of its components in isolation. High plantar pressures at specific points in the foot may be a causal factor in several orthopedic disorders that affect the feet such as pain and stress fracture. With digital baro-podometry equipment one can observe an intensity of pressures along the entire foot and quantify some of the movements, such as a subtalar pronation present in the midfoot region. Although, they are involved in microtraumas. In clinical practice, excessive movement has been limited with the use of different taping techniques applied on the plantar arch. Thus, the objective of the present study was to analyze and compare the influence of the inelastic and elastic taping on the distribution of plantar pressure of runners pronators. This is a randomized clinical trial and blind-crossover. Twenty (20) male subjects, mean age 33 ± 7 years old, mean body mass of 71 ± 7 kg, mean height of 174 ± 6 cm, were included in the study. A data collection was carried out by a single research through barop-odometry equipment - Tekscan, model F-scan mobile. The tests were performed at three different times. In the first, an initial barop-odometric evaluation was performed, without a bandage application, with edges at a speed of 9.0 km/h. In the second and third moments, the inelastic or elastic taping was applied consecutively, according to the definition defined in the randomization. As results, it was observed that both as inelastic and elastic taping, provided significant reductions in contact pressure and peak pressure values when compared to the moment without a taping. However, an elastic taping was more effective in decreasing contact pressure (no bandage = 714 ± 201, elastic taping = 690 ± 210 and inelastic taping = 716 ± 180) and no peak pressure in the midfoot region (no bandage = 1490 ± 42, elastic taping = 1273 ± 323 and inelastic taping = 1487 ± 437). It is possible to conclude that it is an elastic taping provided by pressure in the middle region, thereby reducing the subtalar pronunciation event during the run.

Keywords: elastic taping, inelastic taping, running, subtalar pronation

Procedia PDF Downloads 156
5702 Changes in Blood Pressure in a Longitudinal Cohort of Vietnamese Women

Authors: Anh Vo Van Ha, Yun Zhao, Luat Cong Nguyen, Tan Khac Chu, Phung Hoang Nguyen, Minh Ngoc Pham, Colin W. Binns, Andy H. Lee

Abstract:

This study aims to study longitudinal changes in blood pressure (BP) during the 1-year postpartum period and to evaluate the influence of parity, maternal age at delivery, prepregnancy BMI, gestational weight gain, gestational age at delivery and postpartum maternal weight. A prospective longitudinal cohort study of 883 singleton Vietnamese women was conducted in Hanoi, Haiphong, and Ho Chi Minh City, Vietnam during 2015-2017. Women diagnosed with gestational diabetes mellitus at 24-28 weeks of gestation, pre-eclampsia, and hypoglycemia was excluded from analysis. BP was repeatedly measured at discharge, 6 and 12 months postpartum using automatic blood pressure monitors. Linear mixed model with repeated measures was used to describe changes occurring during pregnancy to 1-year postpartum. Parity, self-reported prepregnancy BMI, gestational weight gain, maternal age and gestational age at delivery will be treated as time-invariant variables and measured maternal weight will be treated as a time-varying variable in models. Women with higher measured postpartum weight had higher mean systolic blood pressure (SBP), 0.20 mmHg, 95% CI [0.12, 0.28]. Similarly, women with higher measured postpartum weight had higher mean diastolic blood pressure (DBP), 0.15 mmHg, 95% CI [0.08, 0.23]. These differences were both statistically significant, P < 0.001. There were no differences in SBP and DBP depending on parity, maternal age at delivery, prepregnancy BMI, gestational weight gain and gestational age at delivery. Compared with discharge measurement, SBP was significantly higher in 6 months postpartum, 6.91 mmHg, 95% CI [6.22, 7.59], and 12 months postpartum, 6.39 mmHg, 95% CI [5.64, 7.15]. Similarly, DBP was also significantly higher in 6 and months postpartum than at discharge, 10.46 mmHg 95% CI [9.75, 11.17], and 11.33 mmHg 95% CI [10.54, 12.12]. In conclusion, BP measured repeatedly during the postpartum period (6 and 12 months postpartum) showed a statistically significant increase, compared with after discharge from the hospital. Maternal weight was a significant predictor of postpartum blood pressure over the 1-year postpartum period.

Keywords: blood pressure, maternal weight, postpartum, Vietnam

Procedia PDF Downloads 206
5701 Exact Solutions of Discrete Sine-Gordon Equation

Authors: Chao-Qing Dai

Abstract:

Two families of exact travelling solutions for the discrete sine-Gordon equation are constructed based on the variable-coefficient Jacobian elliptic function method and different transformations. When the modulus of Jacobian elliptic function solutions tends to 1, soliton solutions can be obtained. Some soliton solutions degenerate into the known solutions in literatures. Moreover, dynamical properties of exact solutions are investigated. Our analysis and results may have potential values for certain applications in modern nonlinear science and textile engineering.

Keywords: exact solutions, variable-coefficient Jacobian elliptic function method, discrete sine-Gordon equation, dynamical behaviors

Procedia PDF Downloads 420
5700 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor

Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.

Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor

Procedia PDF Downloads 461
5699 Predicting the Relationship Between the Corona Virus Anxiety and Psychological Hardiness in Staff Working at Hospital in Shiraz Iran

Authors: Gholam Reza Mirzaei, Mehran Roost

Abstract:

This research was conducted with the aim of predicting the relationship between coronavirus anxiety and psychological hardiness in employees working at Shahid Beheshti Hospital in Shiraz. The current research design was descriptive and correlational. The statistical population of the research consisted of all the employees of Shahid Beheshti Hospital in Shiraz in 2021. From among the statistical population, 220 individuals were selected and studied based on available sampling. To collect data, Kobasa's psychological hardiness questionnaire and coronavirus anxiety questionnaire were used. After collecting the data, the scores of the participants were analyzed using Pearson's correlation coefficient multiple regression analysis and SPSS-24 statistical software. The results of Pearson's correlation coefficient showed that there is a significant negative correlation between psychological hardiness and its components (challenge, commitment, and control) with coronavirus anxiety; also, psychological hardiness with a beta coefficient of 0.20 could predict coronavirus anxiety in hospital employees. Based on the results, plans can be made to enhance psychological hardiness through educational workshops to relieve the anxiety of the healthcare staff.

Keywords: the corona virus, commitment, hospital employees, psychological hardiness

Procedia PDF Downloads 61
5698 Comparison of the Glidescope Visualization and Neck Flexion with Lateral Neck Pressure Nasogastric Tube Insertion Techniques in Anaesthetized Patients: A Prospective Randomized Clinical Study

Authors: Pitchaporn Purngpiputtrakul, Suttasinee Petsakul, Sunisa Chatmongkolchart

Abstract:

Nasogastric tube (NGT) insertion in anaesthetized and intubated patients can be challenging even for experienced anesthesiologists. Various techniques have been proposed to facilitate NGT insertion in these patients. This study aimed to compare the success rate and time required for NGT insertion between the GlideScope visualization and neck flexion with lateral neck pressure techniques. This randomized clinical trial was performed at a teaching hospital on 86 adult patients undergoing abdominal surgery under relaxant general anaesthesia who required intraoperative NGT insertion. The patients were randomized into two groups, the GlideScope group (group G) and the neck flexion with lateral neck pressure group (group F). The success rate of first and second attempts, duration of insertion, and complications were recorded. The total success rate was 79.1% in Group G compared with 76.7% in Group F (P=1) The median time required for NGT insertion was significantly longer in Group G, for both first and second attempts (97 vs 42 seconds P<0.001) and (70 vs 48.5 seconds P=0.015), respectively. Complications were reported in 23 patients (53.5%) in group G and 13 patients (30.2%) in group F. Bleeding and kinking were the most common complications in both techniques. Using GlideScope visualization to facilitate NGT insertion was comparable to neck flexion with lateral neck pressure technique in degree of success rate of insertion, while neck flexion with lateral neck pressure technique had fewer complications and was less time-consuming.

Keywords: anaesthesia, nasogastric tube, GlideScope, intubation

Procedia PDF Downloads 165
5697 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 408
5696 Parametric Study and Modelling of Orthogonal Cutting Process for AISI 4340 and Ti-6Al-4V Alloy

Authors: Purnank Bhatt, Mit Shah, Pawan Nagda, Vimal Jasoliya

Abstract:

The influence of parameters like velocity and depth of cut on cutting forces is investigated for the empirical relation of the coefficient of friction derived for CRS 1018 for different materials like AISI 4340 and Ti6Al4V. For this purpose, turning tests were carried out on the above materials using coated cemented carbide tool inserts for steel grade and uncoated cemented carbide cutting tool inserts for Titanium with different chip breaker geometries. The cutting forces were measured using a Kistler dynamometer where the multiplication factor taken is 200.The effect of cutting force variation was analyzed experimentally and are compared with the analytical results.

Keywords: cutting forces, coefficient of friction, carbide tool inserts, titanium

Procedia PDF Downloads 375
5695 Simultaneous Measurement of Wave Pressure and Wind Speed with the Specific Instrument and the Unit of Measurement Description

Authors: Branimir Jurun, Elza Jurun

Abstract:

The focus of this paper is the description of an instrument called 'Quattuor 45' and defining of wave pressure measurement. Special attention is given to measurement of wave pressure created by the wind speed increasing obtained with the instrument 'Quattuor 45' in the investigated area. The study begins with respect to theoretical attitudes and numerous up to date investigations related to the waves approaching the coast. The detailed schematic view of the instrument is enriched with pictures from ground plan and side view. Horizontal stability of the instrument is achieved by mooring which relies on two concrete blocks. Vertical wave peak monitoring is ensured by one float above the instrument. The synthesis of horizontal stability and vertical wave peak monitoring allows to create a representative database for wave pressure measuring. Instrument ‘Quattuor 45' is named according to the way the database is received. Namely, the electronic part of the instrument consists of the main chip ‘Arduino', its memory, four load cells with the appropriate modules and the wind speed sensor 'Anemometers'. The 'Arduino' chip is programmed to store two data from each load cell and two data from the anemometer on SD card each second. The next part of the research is dedicated to data processing. All measured results are stored automatically in the database and after that detailed processing is carried out in the MS Excel. The result of the wave pressure measurement is synthesized by the unit of measurement kN/m². This paper also suggests a graphical presentation of the results by multi-line graph. The wave pressure is presented on the left vertical axis, while the wind speed is shown on the right vertical axis. The time of measurement is displayed on the horizontal axis. The paper proposes an algorithm for wind speed measurements showing the results for two characteristic winds in the Adriatic Sea, called 'Bura' and 'Jugo'. The first of them is the northern wind that reaches high speeds, causing low and extremely steep waves, where the pressure of the wave is relatively weak. On the other hand, the southern wind 'Jugo' has a lower speed than the northern wind, but due to its constant duration and constant speed maintenance, it causes extremely long and high waves that cause extremely high wave pressure.

Keywords: instrument, measuring unit, waves pressure metering, wind seed measurement

Procedia PDF Downloads 198
5694 Strength of Soft Clay Reinforced with Polypropylene Column

Authors: Muzamir Hasan, Anas Bazirgan

Abstract:

Granular columns is a technique that has the properties of improving bearing capacity, accelerating the dissipation of excess pore water pressure and reducing settlement in a weak soft soil. This research aims to investigate the role of Polypropylene column in improving the shear strength and compressibility of soft reconstituted kaolin clay by determining the effects of area replacement ratio, height penetrating ratio and volume replacement ratio of a singular Polypropylene column on the strength characteristics. Reinforced kaolin samples were subjected to Unconfined Compression (UCT) and Unconsolidated Undrained (UU) triaxial tests. The kaolin samples were 50 mm in diameter and 100 mm in height. Using the PP column reinforcement, with an area replacement ratio of 0.8, 0.5 and 0.3, shear strength increased approximately 5.27%, 26.22% and 64.28%, and 37.14%, 42.33% and 51.17%, for area replacement ratios of 25% and 10.24%. Meanwhile, UU testing showed an increase in shear strength of 24.01%, 23.17% and 23.49% and 28.79%, 27.29 and 30.81% for the same ratios. Based on the UCT results, the undrained shear strength generally increased with the decrease in height penetration ratio. However, based on the UU test results Mohr-Coulomb failure criteria, the installation of Polypropylene columns did not show any significant difference in effective friction angle. However, there was an increase in the apparent cohesion and undrained shear strength of the kaolin clay. In conclusion, Polypropylene column greatly improved the shear strength; and could therefore be implemented in reducing the cost of soil improvement as a replacement for non-renewable materials.

Keywords: polypropylene, UCT, UU test, Kaolin S300, ground improvement

Procedia PDF Downloads 329
5693 Effects of Pressure and Temperature on the Extraction of Benzyl Isothiocyanate by Supercritical Fluids from Tropaeolum majus L. Leaves

Authors: Espinoza S. Clara, Gamarra Q. Flor, Marianela F. Ramos Quispe S. Miguel, Flores R. Omar

Abstract:

Tropaeolum majus L. is a native plant to South and Central America, used since ancient times by our ancestors to combat different diseases. Glucotropaeolonin is one of its main components, which when hydrolyzed, forms benzyl isothiocyanate (BIT) that promotes cellular apoptosis (programmed cell death in cancer cells). Therefore, the present research aims to evaluate the effect of the pressure and temperature of BIT extraction by supercritical CO2 from Tropaeolum majus L. The extraction was carried out in a supercritical fluid extractor equipment Speed SFE BASIC Brand: Poly science, the leaves of Tropaeolum majus L. were ground for one hour and lyophilized until obtaining a humidity of 6%. The extraction with supercritical CO2 was carried out with pressures of 200 bar and 300 bar, temperatures of 50°C, 60°C and 70°C, obtained by the conjugation of these six treatments. BIT was identified by thin layer chromatography using 98% BIT as the standard, and as the mobile phase hexane: dichloromethane (4:2). Subsequently, BIT quantification was performed by high performance liquid chromatography (HPLC). The highest yield of oleoresin by supercritical CO2 extraction was obtained pressure 300 bar and temperature at 60°C; and the higher content of BIT at pressure 200 bar and 70°C for 30 minutes to obtain 113.615 ± 0.03 mg BIT/100 g dry matter was obtained.

Keywords: solvent extraction, Tropaeolum majus L., supercritical fluids, benzyl isothiocyanate

Procedia PDF Downloads 438
5692 Failure Analysis of Pipe System at a Hydroelectric Power Plant

Authors: Ali Göksenli, Barlas Eryürek

Abstract:

In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factor

Keywords: failure analysis, hydroelectric plant, crack, shock wave, welding seam

Procedia PDF Downloads 344
5691 The Contact between a Rigid Substrate and a Thick Elastic Layer

Authors: Nicola Menga, Giuseppe Carbone

Abstract:

Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.

Keywords: contact mechanics, adhesion, friction, thick layer

Procedia PDF Downloads 510
5690 Waist Circumference-Related Performance of Tense Indices during Varying Pediatric Obesity States and Metabolic Syndrome

Authors: Mustafa Metin Donma

Abstract:

Obesity increases the risk of elevated blood pressure, which is a metabolic syndrome (MetS) component. Waist circumference (WC) is accepted as an indispensable parameter for the evaluation of these health problems. The close relationship of height with blood pressure values revealed the necessity of including height in tense indices. The association of tense indices with WC has also become an increasingly important topic. The purpose of this study was to develop a tense index that could contribute to differential diagnosis of MetS more than the indices previously introduced. One hundred and ninety-four children, aged 06-11 years, were considered to constitute four groups. The study was performed on normal weight (Group 1), overweight+obese (Group 2), morbid obese [without (Group 3) and with (Group 4) MetS findings] children. Children were included in the groups according to the recommendations of World Health Organization based on age- and gender dependent body mass index percentiles. For MetS group, MetS components well-established before were considered. Anthropometric measurements, as well as blood pressure values were taken. Tense indices were computed. The formula for the first tense index was (SP+DP)/2. The second index was Advanced Donma Tense Index (ADTI). The formula for this index was [(SP+DP)/2] * Height. Statistical calculations were performed. 0.05 was accepted as the p value indicating statistical significance. There were no statistically significant differences between the groups for pulse pressure, systolic-to-diastolic pressure ratio and tense index. Increasing values were observed from Group 1 to Group 4 in terms of mean arterial blood pressure and advanced Donma tense index (ADTI), which was highly correlated with WC in all groups except Group 1. Both tense index and ADTI exhibited significant correlations with WC in Group 3. However, in Group 4, ADTI, which includes height parameter in the equation, was unique in establishing a strong correlation with WC. In conclusion, ADTI was suggested as a tense index while investigating children with MetS.

Keywords: blood pressure, child, height, metabolic syndrome, waist circumference

Procedia PDF Downloads 58
5689 The Effectiveness of Transcranial Electrical Stimulation on Brain Wave Pattern and Blood Pressure in Patients with Generalized Anxiety Disorder

Authors: Mahtab Baghaei, Seyed Mahmoud Tabatabaei

Abstract:

Aim & Background: Electrical stimulation of transcranial direct current is considered one of the treatment methods for mental disorders. The aim of this study was to evaluate the effectiveness of transcranial electrical stimulation on the delta, theta, alpha, beta and systolic and diastolic blood pressure in patients with generalized anxiety disorder. Materials and Methods: The present study was a double-blind intervention with a pre-test and post-test design on people with generalized anxiety disorder in Tabriz in 1400. In this study, 30 patients with generalized anxiety disorder were selected by purposive sampling method based on the criteria specified in DSM-5 and randomly divided into an experimental group (n = 15) and a control group (n = 15). The experimental group received two sessions of 30 minutes of electrical stimulation of transcranial direct current with an intensity of 2 mA in the area of the lateral dorsal prefrontal cortex, and the control group also received artificial stimulation. Results: The results showed that transcranial electrical stimulation reduces delta and theta waves and increases beta and alpha brain waves in the experimental group. On the other hand, this method also showed a significant decrease in systolic and diastolic blood pressure in these patients (p <0.01). Conclusion: The results show that transcranial electrical stimulation has a statistically significant effect on brain waves and blood pressure, and this non-invasive method can be used as one of the treatment methods in people with generalized anxiety disorder.

Keywords: transcranial direct current electrical stimulation, brain waves, systolic blood pressure, diastolic blood pressure

Procedia PDF Downloads 102
5688 Aerodynamic Analysis of a Frontal Deflector for Vehicles

Authors: C. Malça, N. Alves, A. Mateus

Abstract:

This work was one of the tasks of the Manufacturing2Client project, whose objective was to develop a frontal deflector to be commercialized in the automotive industry, using new project and manufacturing methods. In this task, in particular, it was proposed to develop the ability to predict computationally the aerodynamic influence of flow in vehicles, in an effort to reduce fuel consumption in vehicles from class 3 to 8. With this aim, two deflector models were developed and their aerodynamic performance analyzed. The aerodynamic study was done using the Computational Fluid Dynamics (CFD) software Ansys CFX and allowed the calculation of the drag coefficient caused by the vehicle motion for the different configurations considered. Moreover, the reduction of diesel consumption and carbon dioxide (CO2) emissions associated with the optimized deflector geometry could be assessed.

Keywords: erodynamic analysis, CFD, CO2 emissions, drag coefficient, frontal deflector, fuel consumption

Procedia PDF Downloads 407
5687 Termite Mound Floors: Ready-to-Use Ecological Materials

Authors: Yanné Etienne

Abstract:

The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction.

Keywords: termite mound soil, ecological materials, building materials, geotechnical tests, physical and mechanical tests

Procedia PDF Downloads 184
5686 Study of the Kinetic of the Reduction of Alpha and Beta PbO2 in H2SO4 on the Microcavity Electrode

Authors: N. Chahmana, I. Zerroual

Abstract:

The aim of our work is the contribution to the improvement of the performances of the positive plate of the lead acid battery. For that, we synthesized two varieties of PbO2 used in industry, alpha and beta PbO2 by electrochemical way starting from the not formed industrial plates. We studied the kinetics of reduction of the alpha varieties and PbO2 beta on electrode with microcavity in sulphuric medium. The electrochemical study of the powders of α and β-PbO2 was made by cyclic voltamperometry with sweeping of potential by using a traditional assembly with three electrodes. Values of the coefficient of diffusion of the proton in α and β-PbO2 are respectively equal to 0.498*10-8cm2 /s and 0.793*10-8 cm2 /s. During the cycling of the two varieties of PbO2, we obtain a clear increase in the capacity.

Keywords: lead accumulator, α and β - PbO2, synthesis, kinetics, cyclic voltametry, coefficient of diffusion

Procedia PDF Downloads 577
5685 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques

Authors: Kishor Chandra Kandpal, Amit Kumar

Abstract:

The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.

Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests

Procedia PDF Downloads 203
5684 Optic Nerve Sheath Measurement in Children with Head Trauma

Authors: Sabiha Sahin, Kursad Bora Carman, Coskun Yarar

Abstract:

Introduction: Measuring the diameter of the optic nerve sheath is a noninvasive and easy to use imaging technique to predict intracranial pressure in children and adults. The aim was to measure the diameter of the optic nerve sheath in pediatric head trauma. Methods: The study group consisted of 40 children with healthy and 40 patients with head trauma. Transorbital sonographic measurement of the optic nerve sheath diameter was performed. Conclusion: The mean diameters of the optic nerve sheath of right and left eyes were 0.408 ± 0.064 mm and 0.417 ± 0.065 mm, respectively, in the trauma group. These results were higher in patients than in control group. There was a negative correlation between optic nerve sheath diameters and Glasgow Coma Scales in patients with head trauma (p < 0.05). There was a positive correlation between optic nerve sheath diameters and positive CT findings, systolic blood pressure in patients with head trauma. The clinical status of the patients at admission, blood pH and lactate level were related to the optic nerve sheath diameter. Conclusion: Measuring the diameter of the optic nerve sheath is not an invasive technique and can be easily used to predict increased intracranial pressure and to prevent secondary brain injury.

Keywords: head trauma, intracranial pressure, optic nerve, sonography

Procedia PDF Downloads 158
5683 Computational Study of Blood Flow Analysis for Coronary Artery Disease

Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey

Abstract:

The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.

Keywords: angiography, computational fluid dynamics (CFD), time-average wall shear stress (TAWSS), wall pressure, wall shear stress (WSS)

Procedia PDF Downloads 183
5682 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 98
5681 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 157