Search results for: physical layer technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15052

Search results for: physical layer technology

14332 Influence of Non-Formal Physical Education Curriculum, Based on Olympic Pedagogy, for 11-13 Years Old Children Physical Development

Authors: Asta Sarkauskiene

Abstract:

The pedagogy of Olympic education is based upon the main idea of P. de Coubertin, that physical education can and has to support the education of the perfect person, the one who was an aspiration in archaic Greece, when it was looking towards human as a one whole, which is composed of three interconnected functions: physical, psychical and spiritual. The following research question was formulated in the present study: What curriculum of non-formal physical education in school can positively influence physical development of 11-13 years old children? The aim of this study was to formulate and implement curriculum of non-formal physical education, based on Olympic pedagogy, and assess its effectiveness for physical development of 11-13 years old children. The research was conducted in two stages. In the first stage 51 fifth grade children (Mage = 11.3 years) participated in a quasi-experiment for two years. Children were organized into 2 groups: E and C. Both groups shared the duration (1 hour) and frequency (twice a week) but were different in their education curriculum. Experimental group (E) worked under the program developed by us. Priorities of the E group were: training of physical powers in unity with psychical and spiritual powers; integral growth of physical development, physical activity, physical health, and physical fitness; integration of children with lower health and physical fitness level; content that corresponds children needs, abilities, physical and functional powers. Control group (C) worked according to NFPE programs prepared by teachers and approved by school principal and school methodical group. Priorities of the C group were: motion actions teaching and development; physical qualities training; training of the most physically capable children. In the second stage (after four years) 72 sixth graders (Mage = 13.00) attended in the research from the same comprehensive schools. Children were organized into first and second groups. The curriculum of the first group was modified and the second - the same as group C. The focus groups conducted anthropometric (height, weight, BMI) and physiometric (VC, right and left handgrip strength) measurements. Dependent t test indicated that over two years E and C group girls and boys height, weight, right and left handgrip strength indices increased significantly, p < 0.05. E group girls and boys BMI indices did not change significantly, p > 0.05, i.e. height and weight ratio of girls, who participated in NFPE in school, became more proportional. C group girls VC indices did not differ significantly, p > 0.05. Independent t test indicated that in the first and second research stage differences of anthropometric and physiometric measurements of the groups are not significant, p > 0.05. Formulated and implemented curriculum of non-formal education in school, based on olympic pedagogy, had the biggest positive influence on decreasing 11-13 years old children level of BMI and increasing level of VC.

Keywords: non – formal physical education, olympic pedagogy, physical development, health sciences

Procedia PDF Downloads 558
14331 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 112
14330 Solar Cell Using Chemical Bath Deposited PbS:Bi3+ Films as Electron Collecting Layer

Authors: Melissa Chavez Portillo, Mauricio Pacio Castillo, Hector Juarez Santiesteban, Oscar Portillo Moreno

Abstract:

Chemical bath deposited PbS:Bi3+ as an electron collection layer is introduced between the silicon wafer and the Ag electrode the performance of the PbS heterojunction thin film solar thin film solar cells with 1 cm2 active area. We employed Bi-doping to transform it into an n-type semiconductor. The experimental results reveal that the cell response parameters depend critically on the deposition procedures in terms of bath temperature, deposition time. The device achieves an open-circuit voltage of 0.4 V. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: Bi doping, PbS, thin films, solar cell

Procedia PDF Downloads 510
14329 Effects of the Ambient Temperature and the Defect Density on the Performance the Solar Cell (HIT)

Authors: Bouzaki Mohammed Moustafa, Benyoucef Boumediene, Benouaz Tayeb, Benhamou Amina

Abstract:

The ambient temperature and the defects density in the Hetero-junction with Intrinsic Thin layers solar cells (HIT) strongly influence their performances. In first part, we presented the bands diagram on the front/back simulated solar cell based on a-Si: H / c-Si (p)/a-Si:h. In another part, we modeled the following layers structure: ZnO/a-Si:H(n)/a-Si:H(i)/c-Si(p)/a-Si:H(p)/Ag where we studied the effect of the ambient temperature and the defects density in the gap of the crystalline silicon layer on the performance of the heterojunction solar cell with intrinsic layer (HIT).

Keywords: heterojunction solar cell, solar cell performance, bands diagram, ambient temperature, defect density

Procedia PDF Downloads 503
14328 A CMOS-Integrated Hall Plate with High Sensitivity

Authors: Jin Sup Kim, Min Seo

Abstract:

An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT.

Keywords: cross-shaped hall plate, sensitivity, CMOS technology, Helmholtz coil

Procedia PDF Downloads 193
14327 Frequency Modulation Continuous Wave Radar Human Fall Detection Based on Time-Varying Range-Doppler Features

Authors: Xiang Yu, Chuntao Feng, Lu Yang, Meiyang Song, Wenhao Zhou

Abstract:

The existing two-dimensional micro-Doppler features extraction ignores the correlation information between the spatial and temporal dimension features. For the range-Doppler map, the time dimension is introduced, and a frequency modulation continuous wave (FMCW) radar human fall detection algorithm based on time-varying range-Doppler features is proposed. Firstly, the range-Doppler sequence maps are generated from the echo signals of the continuous motion of the human body collected by the radar. Then the three-dimensional data cube composed of multiple frames of range-Doppler maps is input into the three-dimensional Convolutional Neural Network (3D CNN). The spatial and temporal features of time-varying range-Doppler are extracted by the convolution layer and pool layer at the same time. Finally, the extracted spatial and temporal features are input into the fully connected layer for classification. The experimental results show that the proposed fall detection algorithm has a detection accuracy of 95.66%.

Keywords: FMCW radar, fall detection, 3D CNN, time-varying range-doppler features

Procedia PDF Downloads 116
14326 Atomic Layer Deposition of MoO₃ on Mesoporous γ-Al₂O₃ Prepared by Sol-Gel Method as Efficient Catalyst for Oxidative Desulfurization of Refractory Dibenzothiophene Compound

Authors: S. Said, Asmaa A. Abdulrahman

Abstract:

MoOₓ/Al₂O₃ based catalyst has long been widely used as an active catalyst in oxidative desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 & 9wt.% MoO₃ grafted on mesoporous γ-Al₂O₃ has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO₃/Al₂O₃ sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal-support interaction was evaluated using different characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N₂-physisorption, transmission electron microscopy (TEM), H₂- temperature-programmed reduction and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 wt.%MoO₃/Al₂O₃ (ALD) catalyst in the ODS reaction of model fuel oil shows enhanced catalytic performance with ~90%, which has been attributed to the more Mo⁶⁺ surface concentrations relative to Al³⁺ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo first-order rate reaction.

Keywords: mesoporous Al₂O₃, xMoO₃/Al₂O₃, atomic layer deposition, wetness impregnation, ODS, DBT

Procedia PDF Downloads 100
14325 Correlation between General Intelligence, Emotional Intelligence and Stress Response after One Month Practice of Moderate Intensity Physical Exercise

Authors: Mohita Singh, Sunil Sachdev, Amrita Singh

Abstract:

Background and Aim: Physical aerobic exercises promote positive changes in one’s mental health, intelligence, and ability to cope with stressful encounters. The present study was designed to explore the correlation between intelligence and stress parameters and to assess the correlation between the same parameters after the practice of one month of moderate-intensity physical exercise. Method: The study was conducted on thirty-five healthy male volunteer students to assess the correlation between stress parameters in subjects with varying level of general intelligence (GI) and emotional intelligence (EI). Correlation studies were again conducted after one month between the same parameters to evaluate the effect of moderate-intensity physical exercise (MIPE). Baseline values were recorded using standard scales. Result: IQ and EQ correlated negatively with both acute and chronic stress parameters and positively with each other. A positive correlation was found between acute and chronic stress. With the practice of one month of moderate-intensity physical exercise, there was significant increment between the parameters under study and hence improved results. Conclusion: MIPE improved correlation between GI, EI, stress parameters, and thus reduced stress and improved intelligence.

Keywords: emotional intelligence, general intelligence, moderate intensity physical exercise, stress response

Procedia PDF Downloads 142
14324 Facts of Near Field Communication

Authors: Amin Hamrahi

Abstract:

Near Field Communication (NFC) is one of the latest wireless communication technologies. NFC enables electronic devices to communicate in short range using the radio waves. NFC offers safe yet simple communication between electronic devices. This technology provides the fastest way to communicate two device with in a fraction of second. With NFC technology, communication occurs when an NFC-compatible device is brought within a few centimeters of another NFC device. NFC is an open-platform technology that is being standardized in the NFC Forum. NFC is based on and extends on RFID. It operates on 13.56 MHz frequency.

Keywords: near field communication, NFC technology, wireless communication technologies, NFC-compatible device, NFC, communication

Procedia PDF Downloads 459
14323 Developing an Indigenous Mathematics, Science and Technology Education Master’s Program: A Three Universities Collaboration

Authors: Mishack Thiza Gumbo

Abstract:

The participatory action research study reported in this paper aims to explore indigenous mathematics, science, and technology to develop an indigenous Mathematics, Science and Technology Education Master’s Programme ultimately. The study is based on an ongoing collaborative project between the Mathematics, Science and Technology Education Departments of the University of South Africa, University of Botswana and Chinhoyi University of Technology. The study targets the Mathematics, Science and Technology Education Master’s students and indigenous knowledge holders in these three contexts as research participants. They will be interviewed; documents of existing Mathematics, Science and Technology Education Master’s Programmes will be analysed; mathematics, science and technology-related artefacts will also be collected and analysed. Mathematics, Science, and Technology Education are traditionally referred to as gateway subjects because the world economy revolves around them. Scores of scholars call for the indigenisation of research and methodologies so that research can suit and advance indigenous knowledge and sustainable development. There are ethnomathematics, ethnoscience and ethnotechnology which exist in indigenous contexts such as blacksmithing, woodcarving, textile-weaving and dyeing, but the current curricula and research in institutions of learning reflect the Western notions of these subjects. Indigenisation of the academic programmecontributes toward the decolonisation of education. Hence, the development of an indigenous Mathematics, Science and Technology Education Master’s Programme, which will be jointly offered by the three universities mentioned above, will contribute to the transformation of higher education in this sense.

Keywords: indigenous, mathematics, science, technology, master's program, universities, collaboration

Procedia PDF Downloads 155
14322 Ultrasonic Atomizer for Turbojet Engines

Authors: Aman Johri, Sidhant Sood, Pooja Suresh

Abstract:

This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.

Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations

Procedia PDF Downloads 236
14321 Preventive Effects of Silymarin in Retinal Intoxication with Methanol in Rat: Transmission Electron Microscope Study

Authors: A. Zarenezhad, A. Esfandiari, E. Zarenezhad, M. Mardkhoshnood

Abstract:

The aim of this study was to investigate the ultra-structure of the photoreceptor layer of male rats under the effect of methanol intoxication and protective effect of silymarin against the methanol toxicity. Fifteen adult male rats were divided into three groups: Control group, Experimental group I (received 4g/kg methanol by intraperitoneal injection for five days), Experimental group II (received 4 g/kg methanol by intraperitoneal injection for five days and received 250 mg/kg silymarin orally for three months). At the end of the experiment, the eyes were removed; retina was separated near the optic disc and studied by transmission electron microscope. Results showed that the retina in the experimental group I exhibited loss of outer segments and disorganization in inner segment. Increased extra cellular space, disappearance of outer limiting membrane and pyknotic nuclei were seen in this group. But normal outer segment, organized inner segment and normal outer limiting membrane were obvious after treatment with silymarin in experimental group II. These findings show that methanol causes damage in the photoreceptor layer of the rat retina and silymarin can protect the damage to retina against the methanol intoxication.

Keywords: ultra-structure, photoreceptor layer, methanol intoxication, silymarin, rat

Procedia PDF Downloads 287
14320 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape

Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif

Abstract:

The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.

Keywords: abundance, diversity, Mediterranean Sea, phytoplankton

Procedia PDF Downloads 154
14319 Technology and Educational Gaps: A Literature Review on the Proportionate Infusion of Technology into Education

Authors: Tamika Gordon

Abstract:

As technology continues to progress every second, educational institutions attempt to stay abreast of the latest developments through the acquisition of technological devices. Within schools, soft and hard technologies have assisted with reaching more students and expedient communication. As schools continue to grow, the need for simultaneous communication and efficient feedback has grown, and technology has allowed for these avenues to be explored and incorporated within a variety of daily operations. With the rapid inclusion of technology comes the potential for less face-to-face interactions among stakeholders. Although technology plays an integral role in education, the elements of both soft and hard technological devices must be proportionally utilized and coexist for the overall advancement and longevity of organizations. Over 20 articles were referenced to obtain a multitude of views on technology reflecting effects for students and teachers. Throughout this literature review, the effects of technology in the workplace will be discussed including views of current researchers, pros and cons surrounding technological inclusion, and implications for future research and further consideration. Upon the completion of the literature review, the benefits and necessity of technology remained high, however, low availability of resources, limited exposure to technological devices, and decreasing soft skills remained high as well. Recommendations are made for proportionate balances of technology and face-to-face interactions in order to minimize societal, educational, and organizational gaps.

Keywords: communication, devices, education, organizations, technology

Procedia PDF Downloads 227
14318 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach

Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe

Abstract:

This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.

Keywords: paving stones, physical properties, mechanical properties, ANFIS

Procedia PDF Downloads 337
14317 Structured Access Control Mechanism for Mesh-based P2P Live Streaming Systems

Authors: Chuan-Ching Sue, Kai-Chun Chuang

Abstract:

Peer-to-Peer (P2P) live streaming systems still suffer a challenge when thousands of new peers want to join into the system in a short time, called flash crowd, and most of new peers suffer long start-up delay. Recent studies have proposed a slot-based user access control mechanism, which periodically determines a certain number of new peers to enter the system, and a user batch join mechanism, which divides new peers into several tree structures with fixed tree size. However, the slot-based user access control mechanism is difficult for accurately determining the optimal time slot length, and the user batch join mechanism is hard for determining the optimal tree size. In this paper, we propose a structured access control (SAC) mechanism, which constructs new peers to a multi-layer mesh structure. The SAC mechanism constructs new peer connections layer by layer to replace periodical access control, and determines the number of peers in each layer according to the system’s remaining upload bandwidth and average video rate. Furthermore, we propose an analytical model to represent the behavior of the system growth if the system can utilize the upload bandwidth efficiently. The analytical result has shown the similar trend in system growth as the SAC mechanism. Additionally, the extensive simulation is conducted to show the SAC mechanism outperforms two previously proposed methods in terms of system growth and start-up delay.

Keywords: peer-to-peer, live video streaming system, flash crowd, start-up delay, access control

Procedia PDF Downloads 313
14316 The Benefits of Mountain Climbing in the Physical Well-Being of Young People

Authors: Zylfi Shehu, Rozeta Shatku

Abstract:

The aim of this study is the identification of the goods and the consequences it brings up the mountain climbing to the youth, how mountain climbing influences in physical activity and the health of young people. Taken to study 37 young people aged 18-30 years, 25 males and 12 females. The selection was made at random and voluntary. Subjects were not professionals but amateurs climbing in the mountain. They were informed and instructed for the test to be carried out. The ascent was made in January 2016 in the Mount of Gjallica in Kukës, Albania, the height of the mountain is 2489 m above sea level. Backpack for each subject weighing 32 kg. Time of ascent, attitude and descent was 6 days. In 22 males, 2 of them did not afford the ascent on the first day and went back. Of the 12 women, 5 of them withdrew on the first day. During the descent on day six, 20 males 7 of them had minor injuries, three with serious injuries. While a total of 7 women, 4 of them had minor injuries and one with serious injuries. Most of the men and women who deal with physical activity throughout life faced the light and were not injured, and the rest that were not dealt with physical activity were more injured. Lack of experience and knowledge was one of the causes of injuries. The subjects had anxiety all the time, uncertainty and fear of avalanches of snow and difficult terrain.

Keywords: climbing, physical activity, young people

Procedia PDF Downloads 339
14315 Graphene/ZnO/Polymer Nanocomposite Thin Film for Separation of Oil-Water Mixture

Authors: Suboohi Shervani, Jingjing Ling, Jiabin Liu, Tahir Husain

Abstract:

Offshore oil-spill has become the most emerging problem in the world. In the current paper, a graphene/ZnO/polymer nanocomposite thin film is coated on stainless steel mesh via layer by layer deposition method. The structural characterization of materials is determined by Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The total petroleum hydrocarbons (TPHs) and separation efficiency have been measured via gas chromatography – flame ionization detector (GC-FID). TPHs are reduced to 2 ppm and separation efficiency of the nanocomposite coated mesh is reached ≥ 99% for the final sample. The nanocomposite coated mesh acts as a promising candidate for the separation of oil- water mixture.

Keywords: oil spill, graphene, oil-water separation, nanocomposite

Procedia PDF Downloads 169
14314 Experimental Study of Geotextile Effect on Improving Soil Bearing Capacity in Aggregate Surfaced Roads

Authors: Mahdi Taghipour Masoumi, Ali Abdi Kordani, Mahmoud Nazirizad

Abstract:

Geosynthetics utilization plays an important role in the construction of highways with no additive layers, such as asphalt concrete or cement concrete, or in a subgrade layer which affects the bearing capacity of unbounded layers. This laboratory experimental study was carried out to evaluate changes in the load bearing capacity of reinforced soil with these materials in highway roadbed with regard to geotextile properties. California Bearing Ratio (CBR) test samples were prepared with two types of soil: Clayey and sandy containing non-reinforced and reinforced soil. The samples comprised three types of geotextiles with different characteristics (150, 200, 300 g/m2) and depths (H= 5, 10, 20, 30, 50, 100 mm), and were grouped into two forms, one-layered and two-layered, based on the sample materials in order to perform defined tests. The results showed that the soil bearing characteristics increased when one layer of geotextile was used in clayey and sandy samples reinforced by geotextile. However, the bearing capacity of the soil, in the presence of a geotextile layer material with depth of more than 30 mm, had no remarkable effect. Furthermore, when the two-layered geotextile was applied in material samples, although it increased the soil resistance, it also showed that through the addition of a number or weights of geotextile into samples, the natural composition of the soil changed and the results are unreliable.

Keywords: reinforced soil, geosynthetics, geotextile, transportation capacity, CBR experiments

Procedia PDF Downloads 294
14313 Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions

Authors: M. Y. Malika, Farzana, Abdul Rehman

Abstract:

The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs.

Keywords: boundary layer flow, exponentially stretched surface, Maxwell fluid, numerical solution

Procedia PDF Downloads 581
14312 An Aesthetic Spatial Turn - AI and Aesthetics in the Physical, Psychological, and Symbolic Spaces of Brand Advertising

Authors: Yu Chen

Abstract:

In line with existing philosophical approaches, this research proposes a conceptual model with an innovative spatial vision and aesthetic principles for Artificial Intelligence (AI) application in brand advertising. The model first identifies the major constituencies in contemporary advertising on three spatial levels—physical, psychological, and symbolic. The model further incorporates the relationships among AI, aesthetics, branding, and advertising and their interactions with the major actors in all spaces. It illustrates that AI may follow the aesthetic principles-- beauty, elegance, and simplicity-- to reinforce brand identity and consistency in advertising, to collaborate with stakeholders, and to satisfy different advertising objectives on each level. It proposes that, with aesthetic guidelines, AI may assist consumers to emerge into the physical, psychological, and symbolic advertising spaces and helps transcend the tangible advertising messages to meaningful brand symbols. Conceptually, the research illustrates that even though consumers’ engagement with brand mostly begins with physical advertising and later moves to psychological-symbolic, AI-assisted advertising should start with the understanding of brand symbolic-psychological and consumer aesthetic preferences before the physical design to better resonate. Limits of AI and future AI functions in advertising are discussed.

Keywords: AI, spatial, aesthetic, brand advertising

Procedia PDF Downloads 75
14311 The Associations between Self-Determined Motivation and Physical Activity in Patients with Coronary Heart Disease

Authors: I. Hua Chu, Hsiang-Chi Yu, Hsuan Su

Abstract:

Purpose: To examine the associations between self-determined motivation and physical activity in patients with coronary heart disease (CHD) in a longitudinal study. Methods: Patients with CHD were recruited for this study. Their motivations for exercise were measured by the Behavioral Regulation in Exercise Questionnaire-2 (BREQ-2). Physical activity was assessed using the 7-day physical activity recall questionnaire. Duration and energy expenditure of moderate to vigorous physical activity (MVPA) were used in data analysis. All outcome measures were assessed at baseline and 12 months follow up. Data were analyzed using Pearson correlation analysis and regression analysis. Results: The results of the 45 participants (mean age 60.24 yr; 90.2% male) revealed that there were significant negative correlations between amotivation at baseline and duration (r=-.295, p=.049) and energy expenditure (r=-.300, p=.045) of MVPA at 12 months. In contrast, there were significant positive correlations between calculated relative autonomy index (RAI) at baseline and duration (r=.377, p=.011) and energy expenditure (r=.382, p=.010) of MVPA at 12 months. There was no significant correlation between other subscales of the BREQ-2 and duration or energy expenditure of MVPA. Regression analyses revealed that RAI was a significant predictor of duration (p=.011) and energy expenditure (p=.010) of MVPA at 12 months follow-up. Conclusions: These results suggest that the relative degree of self-determined motivation could predict long-term MVPA behaviors in CHD patients. Physical activity interventions are recommended to target enhancing one’s identified and intrinsic motivation to increase the likelihood of physical activity participation in this population.

Keywords: self-determined motivation, physical activity, coronary heart disease, relative autonomy index (RAI)

Procedia PDF Downloads 425
14310 Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon

Authors: Teguh Endah Saraswati, Kusumandari Kusumandari, Candra Purnawan, Annisa Dinan Ghaisani, Aufara Mahayum

Abstract:

The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved.

Keywords: activated carbon, DBD plasma, graphite, methylene blue, photocatalysis

Procedia PDF Downloads 121
14309 Decolonising Postgraduate Research Curricula and Its Impact on a Sustainable Protein Supply in Rural-Based Communities

Authors: Fabian Nde Fon

Abstract:

Decolonisation is one of the hottest topics in most African Universities; this is because many researchers focus on research that does not speak to their immediate community. This research looked at postgraduate research projects that can take students to the community to apply the knowledge that they have learned as an attempt to transform their community. In regards to this, an honours project was designed to try and provide a cheaper and continuous source of protein (egg) using amber-link layers and to investigate the potential of the project to promote postgraduate student development and entrepreneurship. Two ban layer production systems were created: (1) Production system one on a Hill (PS-I) and (2) Production system two in a valley, closer to a dam (PS-II) at Nqutshini, Gingindlovu, KwaZulu-Natal Province. Forty point-of-lay (18 weeks old) amber links were bought at Inverness Rearers and divided into PS-I (20), and PS-II (20), and each of the production systems was further divided into two groups of ten (PS-I-1 and PS-II-1 (partially supplemented) and PS-I-2 and PS-II-2 (supplemented with layer mash)) by a random selection. Birds' weights were balanced in each group to avoid bias. The two groups in each production system were caged separately (1.5x1.5m² for ten birds) and in close proximity. Partially supplemented birds received 0.6 kg of layer mash (60g/per bird/day) and kitchen leftovers daily, and supplemented birds were fed 1.2 kg of layer mash (120g/per bird/day). Egg collection was daily after feeding in the morning while was given ad libitium. The eggs were assessed for internal and external quality after weighing before recording. Egg production from fully supplemented birds (PS-I-2 and PS-II-2) was generally higher (P<0.05) than those of PS-I-1 and PS-II-1. The difference in production was only 6% in the valley while on the Hill, it was only 3%. However, some of the birds in the valley showed signs of respiratory infections, which was not observed with those on the Hill. There are no differences in the internal and external qualities of eggs (york colour and egg shell) determined. This implies that both systems were sustainable. It was suggested members in the community living at the valley or Hill can use these hardy layers as a cheaper source of protein and preferable to the partially supplemented systems because it is relatively cheaper. The smallholder farmers are still pursuing the project long after the students graduate; hence the benefit of the project is reciprocal for both the university and the community (entrepreneurship).

Keywords: animal nutrition, ban layer, production, postgraduate curricula, entrepreneurship

Procedia PDF Downloads 109
14308 Numerical Investigation on Design Method of Timber Structures Exposed to Parametric Fire

Authors: Robert Pečenko, Karin Tomažič, Igor Planinc, Sabina Huč, Tomaž Hozjan

Abstract:

Timber is favourable structural material due to high strength to weight ratio, recycling possibilities, and green credentials. Despite being flammable material, it has relatively high fire resistance. Everyday engineering practice around the word is based on an outdated design of timber structures considering standard fire exposure, while modern principles of performance-based design enable use of advanced non-standard fire curves. In Europe, standard for fire design of timber structures EN 1995-1-2 (Eurocode 5) gives two methods, reduced material properties method and reduced cross-section method. In the latter, fire resistance of structural elements depends on the effective cross-section that is a residual cross-section of uncharred timber reduced additionally by so called zero strength layer. In case of standard fire exposure, Eurocode 5 gives a fixed value of zero strength layer, i.e. 7 mm, while for non-standard parametric fires no additional comments or recommendations for zero strength layer are given. Thus designers often implement adopted 7 mm rule also for parametric fire exposure. Since the latest scientific evidence suggests that proposed value of zero strength layer can be on unsafe side for standard fire exposure, its use in the case of a parametric fire is also highly questionable and more numerical and experimental research in this field is needed. Therefore, the purpose of the presented study is to use advanced calculation methods to investigate the thickness of zero strength layer and parametric charring rates used in effective cross-section method in case of parametric fire. Parametric studies are carried out on a simple solid timber beam that is exposed to a larger number of parametric fire curves Zero strength layer and charring rates are determined based on the numerical simulations which are performed by the recently developed advanced two step computational model. The first step comprises of hygro-thermal model which predicts the temperature, moisture and char depth development and takes into account different initial moisture states of timber. In the second step, the response of timber beam simultaneously exposed to mechanical and fire load is determined. The mechanical model is based on the Reissner’s kinematically exact beam model and accounts for the membrane, shear and flexural deformations of the beam. Further on, material non-linear and temperature dependent behaviour is considered. In the two step model, the char front temperature is, according to Eurocode 5, assumed to have a fixed temperature of around 300°C. Based on performed study and observations, improved levels of charring rates and new thickness of zero strength layer in case of parametric fires are determined. Thus, the reduced cross section method is substantially improved to offer practical recommendations for designing fire resistance of timber structures. Furthermore, correlations between zero strength layer thickness and key input parameters of the parametric fire curve (for instance, opening factor, fire load, etc.) are given, representing a guideline for a more detailed numerical and also experimental research in the future.

Keywords: advanced numerical modelling, parametric fire exposure, timber structures, zero strength layer

Procedia PDF Downloads 162
14307 Techno-Psych Serv: Technology-Based Psychological Services Extended to Adults Experiencing Symptoms of Mild Anxiety and Depression

Authors: Marissa C. Esperal

Abstract:

This university-based research project attempted to determine the relevance and effectiveness of the technology-based psychological services extended to selected adults experiencing symptoms of mild anxiety and depression. Ninety-seven participants who voluntarily availed the free online psychological services advertised through a Facebook page (Techno-Psych Serv) signed up for the Informed Consent and Psychological Services Contract Agreement form. These clients availed a maximum of 5 online sessions devoted to online assessment, online counseling and brief therapy sessions using the Google Meet App. Participants who, upon evaluation, were found to still be needing extended psychological and other services were referred to other mental health services institutions. Post-evaluations were conducted using Google Forms upon termination. Findings showed that with a mean of 4.87 (n=97), it was noted that the services provided through the online platform were effective. However, it was noted that the majority of those who availed the services were professionals and skilled workers, thus defeating the objective of extending free psychological services to the marginalized group. It was concluded that offering free technology-based psychological services, though proven effective, is found to be less relevant if the intention is to reach out to the less fortunate and marginalized group. It was further concluded that there is still a need for psychoeducation and mental health promotion among the marginalized sectors. It was recommended that if mental health services are extended to the community of marginalized group, providing physical services are still a better option.

Keywords: technology-based psychological services, adults, mild anxiety, depression

Procedia PDF Downloads 65
14306 An Approach to Physical Performance Analysis for Judo

Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich

Abstract:

Sport performance analysis is a technique that is becoming every year more important for athletes of every level. Many techniques have been developed to measure and analyse efficiently the performance of athletes in some sports, but in combat sports these techniques found in many times their limits, due to the high interaction between the two opponents during the competition. In this paper the problem will be framed. Moreover the physical performance measurement problem will be analysed and three different techniques to manage it will be presented. All the techniques have been used to analyse the performance of 22 high level Judo athletes.

Keywords: sport performance, physical performance, judo, performance coefficients

Procedia PDF Downloads 408
14305 An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga

Authors: Ç. Erdoğan, T. Turan

Abstract:

Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.

Keywords: cancer treatment, children, nursing, yoga

Procedia PDF Downloads 223
14304 Investigation and Research on Construction Technology of Tenon and Mortise in Traditional Chinese Architecture

Authors: Liang Zhang

Abstract:

Chinese traditional architecture has developed a school of its own in the world. It has a different structure and construction technology from western architecture. Tenon and mortise structure and construction technology, as the key to the construction of traditional Chinese architecture, have been inherited for thousands of years by traditional craftsmen in various regions of China. However, the traditional architecture varies greatly in different times and regional cultures in China. It is still a lack of research whether this difference extends to mortise and tenon technology. In this study, we measured the mortise and tenon of traditional buildings in Fujian province, Yunnan province, and Northern China; Interviewed some old craftsmen about their traditional construction methods, And compared the today's traditional mortise and tenon technology with that of Song and Qing Dynasties. The results showed that although Chinese traditional architecture has the same origin, the mortise and tenon construction technology systems have been developed at different times, regions, and cultures. For example, tenon and mortise technology in Yunnan Province needs to ensure the ability of buildings to resist earthquakes, while that in Fujian Province needs to ensure the ability of buildings to withstand typhoons. People in different regions, cultures, and times have a different understanding of architectural aesthetics, and the evolution of tools also has different effects on mortise and tenon technology. This study explains the manifestations and causes of these differences. At the same time, due to the impact of modern architectural technology, mortise, and tenon, traditional technology is also rapidly disappearing. As a sorting and collection of mortise and tenon techniques of traditional Chinese architecture, this paper puts forward the corresponding traditional technology protection strategy, to guide the protection and maintenance of local traditional buildings.

Keywords: tenon and mortise, traditional Chinese architecture, traditional craftsmen, construction technology

Procedia PDF Downloads 146
14303 Online Formative Assessment Challenges Experienced by Grade 10 Physical Sciences Teachers during Remote Teaching and Learning

Authors: Celeste Labuschagne, Sam Ramaila, Thasmai Dhurumraj

Abstract:

Although formative assessment is acknowledged as crucial for teachers to gauge students’ understanding of subject content, applying formative assessment in an online context is more challenging than in a traditional Physical Sciences classroom. This study examines challenges experienced by Grade 10 Physical Sciences teachers when enacting online formative assessment. The empirical investigation adopted a generic qualitative design and involved three purposively selected Grade 10 Physical Sciences teachers from three different schools and quintiles within the Tshwane North District in South Africa. Data were collected through individual and focus group interviews. Technological, pedagogical, and content knowledge (TPACK) was utilised as a theoretical framework underpinning the study. The study identified a myriad of challenges experienced by Grade 10 Physical Sciences teachers when enacting online formative assessment. These challenges include the utilisation of Annual Teaching Plans, lack of technological knowledge, and internet connectivity. The Department of Basic Education faces the key imperative to provide continuous teacher professional development and concomitant online learning materials that can facilitate meaningful enactment of online formative assessment in various educational settings.

Keywords: COVID-19, challenges, online formative assessment, physical sciences, TPACK

Procedia PDF Downloads 63