Search results for: advanced care planning
1614 Outcome of Bowel Management Program in Patient with Spinal Cord Injury
Authors: Roongtiwa Chobchuen, Angkana Srikhan, Pattra Wattanapan
Abstract:
Background: Neurogenic bowel is common condition after spinal cord injury. Most of spinal cord injured patients have motor weakness, mobility impairment which leads to constipation. Moreover, the neural pathway involving bowel function is interrupted. Therefore, the bowel management program should be implemented in nursing care in the earliest time after the onset of the disease to prevent the morbidity and mortality. Objective: To study the outcome of bowel management program of the patients with spinal cord injury who admitted for rehabilitation program. Study design: Descriptive study. Setting: Rehabilitation ward in Srinagarind Hospital. Populations: patients with subacute to chronic spinal cord injury who admitted at rehabilitation ward, Srinagarind hospital, aged over 18 years old. Instrument: The neurogenic bowel dysfunction score (NBDS) was used to determine the severity of neurogenic bowel. Procedure and statistical analysis: All participants were asked to complete the demographic data; age gender, duration of disease, diagnosis. The individual bowel function was assessed using NBDS at admission. The patients and caregivers were trained by nurses about the bowel management program which consisted of diet modification, abdominal massage, digital stimulation, stool evacuation including medication and physical activity. The outcome of the bowel management program was assessed by NBDS at discharge. The chi-square test was used to detect the difference in severity of neurogenic bowel at admission and discharge. Results: Sixteen spinal cord injured patients were enrolled in the study (age 45 ± 17 years old, 69% were male). Most of them (50%) were tetraplegia. On the admission, 12.5%, 12.5%, 43.75% and 31.25% were categorized as very minor (NBDS 0-6), minor (NBDS 7-9), moderate (NBDS 10-13) and severe (NBDS 14+) respectively. The severity of neurogenic bowel was decreased significantly at discharge (56.25%, 18.755%, 18.75% and 6.25% for very minor, minor, moderate and severe group respectively; p < 0.001) compared with NBDS at admission. Conclusions: Implementation of the effective bowel program decrease the severity of the neurogenic bowel in patient with spinal cord injury.Keywords: neurogenic bowel, NBDS, spinal cord injury, bowel program
Procedia PDF Downloads 2441613 Characterization of Forest Fire Fuel in Shivalik Himalayas Using Hyperspectral Remote Sensing
Authors: Neha Devi, P. K. Joshi
Abstract:
Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. One of the most significant forms of global disturbance, impacting community dynamics, biogeochemical cycles and local and regional climate across a wide range of ecosystems ranging from boreal forests to tropical rainforest is wildfire Assessment of fire danger is a function of forest type, fuelwood stock volume, moisture content, degree of senescence and fire management strategy adopted in the ground. Remote sensing has potential of reduction the uncertainty in mapping fuels. Hyperspectral remote sensing is emerging to be a very promising technology for wildfire fuels characterization. Fine spectral information also facilitates mapping of biophysical and chemical information that is directly related to the quality of forest fire fuels including above ground live biomass, canopy moisture, etc. We used Hyperion imagery acquired in February, 2016 and analysed four fuel characteristics using Hyperion sensor data on-board EO-1 satellite, acquired over the Shiwalik Himalayas covering the area of Champawat, Uttarakhand state. The main objective of this study was to present an overview of methodologies for mapping fuel properties using hyperspectral remote sensing data. Fuel characteristics analysed include fuel biomass, fuel moisture, and fuel condition and fuel type. Fuel moisture and fuel biomass were assessed through the expression of the liquid water bands. Fuel condition and type was assessed using green vegetation, non-photosynthetic vegetation and soil as Endmember for spectral mixture analysis. Linear Spectral Unmixing, a partial spectral unmixing algorithm, was used to identify the spectral abundance of green vegetation, non-photosynthetic vegetation and soil.Keywords: forest fire fuel, Hyperion, hyperspectral, linear spectral unmixing, spectral mixture analysis
Procedia PDF Downloads 1651612 Effectiveness of the Model in the Development of Teaching Materials for Malay Language in Primary Schools in Singapore
Authors: Salha Mohamed Hussain
Abstract:
As part of the review on the Malay Language curriculum and pedagogy in Singapore conducted in 2010, some recommendations were made to nurture active learners who are able to use the Malay Language efficiently in their daily lives. In response to the review, a new Malay Language teaching and learning package for primary school, called CEKAP (Cungkil – Elicit; Eksplorasi – Exploration; Komunikasi – Communication; Aplikasi – Application; Penilaian – Assessment), was developed from 2012 and implemented for Primary 1 in all primary schools from 2015. Resources developed in this package include the text book, activity book, teacher’s guide, big books, small readers, picture cards, flash cards, a game kit and Information and Communication Technology (ICT) resources. The development of the CEKAP package is continuous until 2020. This paper will look at a model incorporated in the development of the teaching materials in the new Malay Language Curriculum for Primary Schools and the rationale for each phase of development to ensure that the resources meet the needs of every pupil in the teaching and learning of Malay Language in the primary schools. This paper will also focus on the preliminary findings of the effectiveness of the model based on the feedback given by members of the working and steering committees. These members are academicians and educators who were appointed by the Ministry of Education to provide professional input on the soundness of pedagogical approach proposed in the revised syllabus and to make recommendations on the content of the new instructional materials. Quantitative data is derived from the interviews held with these members to gather their input on the model. Preliminary findings showed that the members provided positive feedback on the model and that the comprehensive process has helped to develop good and effective instructional materials for the schools. Some recommendations were also gathered from the interview sessions. This research hopes to provide useful information to those involved in the planning of materials development for teaching and learning.Keywords: Malay language, materials development, model, primary school
Procedia PDF Downloads 1121611 Women's Challenges in Access to Urban Spaces and Infrastructures: A Comparative Study of the Urban Infrastructures Conforming to Women's Needs in Tehran and Istanbul
Authors: Parastoo Kazemiyan
Abstract:
Over the past 80 years, in compliance with the advent of modernity in Iran and Turkey, the presence of women in economic and social arenas has creates serious challenges in the capacity of urban spaces to respond to their presence and transport because urban spaces up until then were based on masculine criteria and therefore, women could use such spaces in the company of their fathers or husbands. However, as modernity expanded by Reza Shah and Ataturk, women found the opportunity to work and be present in urban spaces alongside men and their presence in economic and social domains resulted in their presence in these spaces in the early and late hours of the day. Therefore, the city had to be transformed in structural, social, and environmental terms to accommodate women's activities and presence in various urban arenas, which was a huge step in transition from a masculine man-based culture to an all-inclusive human-based culture in these two countries. However, the optimization of urban space was subject to political changes in the two countries, leading to significant differences in designing urban spaces in Tehran and Istanbul. What shows the importance and novelty of the present study lie in the differences in urban planning and optimization in the two capital cities, which gave rise to different outcomes in desirability and quality of living in these two capital cities. Due to the importance of the topic, one of the most significant factors in desirability and acceptability of urban space for women was examined using a descriptive-analytic method based on qualitative methodology in Tehran and Istanbul. The results showed that the infrastructural factors in Istanbul, including safety of access, variety, and number of public transport modes, transparency, and supervision over public spaces have provided women with a safer and more constant presence compared to Tehran. It seems that challenges involved in providing access to urban spaces in Tehran in terms of infrastructure and function have made Tehran unable to respond to the most basic needs of its female citizens.Keywords: gender differences, urban space security, access to transportation systems, women's challenges
Procedia PDF Downloads 1261610 Supporting Regulation and Shared Attention to Facilitate the Foundations for Development of Children and Adolescents with Complex Individual Profiles
Authors: Patsy Tan, Dana Baltutis
Abstract:
This presentation demonstrates the effectiveness of music therapy in co-treatment with speech pathology and occupational therapy as an innovative way when working with children and adolescents with complex individual differences to facilitate communication, emotional, motor and social skills development. Each child with special needs and their carer has an individual profile which encompasses their visual-spatial, auditory, language, learning, mental health, family dynamic, sensory-motor, motor planning and sequencing profiles. The most common issues among children with special needs, especially those diagnosed with Autism Spectrum Disorder, are in the areas of regulation, communication, and social-emotional development. The ability of children living with challenges to communicate and use language and understand verbal and non-verbal information, as well as move their bodies to explore and interact with their environments in social situations, depends on the children being regulated both internally and externally and trusting their communication partners and understanding what is happening in the moment. For carers, it is about understanding the tempo, rhythm, pacing, and timing of their own individual profile, as well as the profile of the child they are interacting with, and how these can sync together. In this study, music therapy is used in co-treatment sessions with a speech pathologist and/or an occupational therapist using the DIRFloortime approach to facilitate the regulation, attention, engagement, reciprocity and social-emotional capacities of children presenting with complex individual differences. Documented changes in 10 domains of children’s development over a 12-month period using the Individual Music Therapy Assessment Profile (IMTAP) were observed. Children were assessed biannually, and results show significant improvements in the social-emotional, musicality and receptive language domains indicating that co-treatment with a music therapist using the DIRFloortime framework is highly effective. This presentation will highlight strategies that facilitate regulation, social-emotional and communication development for children and adolescents with complex individual profiles.Keywords: communication, shared attention, regulation, social emotional
Procedia PDF Downloads 2561609 Using a Train-the-Trainer Model to Deliver Post-Partum Haemorrhage Simulation in Rural Uganda
Authors: Michael Campbell, Malaz Elsaddig, Kevin Jones
Abstract:
Background: Despite encouraging progress, global maternal mortality has remained stubbornly high since the declaration of the Millennium development goals. Sub-Saharan Africa accounts for well over half of maternal deaths with Post-Partum Haemorrhage (PPH) being the lead cause. ‘In house’ simulation training delivered by local doctors may be a sustainable approach for improving emergency obstetric care. The aim of this study was to evaluate the use of a Train-the-Trainer (TtT) model in a rural Ugandan hospital to ascertain whether it can feasibly improve practitioners’ management of PPH. Methods: Three Ugandan doctors underwent a training course to enable them to design and deliver simulation training. These doctors used MamaNatalie® models to simulate PPH scenarios for midwives, nurses and medical students. The main outcome was improvement in participants’ knowledge and confidence, assessed using self-reported scores on a 10-point scale. Results: The TtT model produced significant improvements in the confidence and knowledge scores of the ten participants. The mean confidence score rose significantly (p=0.0005) from 6.4 to 8.6 following the simulation training. There was also a significant increase in the mean knowledge score from 7.2 to 9.0 (p=0.04). Medical students demonstrated the greatest overall increase in confidence scores whilst increases in knowledge scores were largest amongst nurses. Conclusions: This study demonstrates that a TtT model can be used in a low resource setting to improve healthcare professionals’ confidence and knowledge in managing obstetric emergencies. This Train-the-Trainer model represents a sustainable approach to addressing skill deficits in low resource settings. We believe that its expansion across healthcare institutions in Sub-Saharan Africa will help to reduce the region’s high maternal mortality rate and step closer to achieving the ambitions of the Millennium development goals.Keywords: low resource setting, post-partum haemorrhage, simulation training, train the trainer
Procedia PDF Downloads 1781608 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 1801607 Metal Binding Phage Clones in a Quest for Heavy Metal Recovery from Water
Authors: Tomasz Łęga, Marta Sosnowska, Mirosława Panasiuk, Lilit Hovhannisyan, Beata Gromadzka, Marcin Olszewski, Sabina Zoledowska, Dawid Nidzworski
Abstract:
Toxic heavy metal ion contamination of industrial wastewater has recently become a significant environmental concern in many regions of the world. Although the majority of heavy metals are naturally occurring elements found on the earth's surface, anthropogenic activities such as mining and smelting, industrial production, and agricultural use of metals and metal-containing compounds are responsible for the majority of environmental contamination and human exposure. The permissible limits (ppm) for heavy metals in food, water and soil are frequently exceeded and considered hazardous to humans, other organisms, and the environment as a whole. Human exposure to highly nickel-polluted environments causes a variety of pathologic effects. In 2008, nickel received the shameful name of “Allergen of the Year” (GILLETTE 2008). According to the dermatologist, the frequency of nickel allergy is still growing, and it can’t be explained only by fashionable piercing and nickel devices used in medicine (like coronary stents and endoprostheses). Effective remediation methods for removing heavy metal ions from soil and water are becoming increasingly important. Among others, methods such as chemical precipitation, micro- and nanofiltration, membrane separation, conventional coagulation, electrodialysis, ion exchange, reverse and forward osmosis, photocatalysis and polymer or carbon nanocomposite absorbents have all been investigated so far. The importance of environmentally sustainable industrial production processes and the conservation of dwindling natural resources has highlighted the need for affordable, innovative biosorptive materials capable of recovering specific chemical elements from dilute aqueous solutions. The use of combinatorial phage display techniques for selecting and recognizing material-binding peptides with a selective affinity for any target, particularly inorganic materials, has gained considerable interest in the development of advanced bio- or nano-materials. However, due to the limitations of phage display libraries and the biopanning process, the accuracy of molecular recognition for inorganic materials remains a challenge. This study presents the isolation, identification and characterisation of metal binding phage clones that preferentially recover nickel.Keywords: Heavy metal recovery, cleaning water, phage display, nickel
Procedia PDF Downloads 991606 Integrated Steering Method for Mitigating Performance Degradation in Six-Wheel Robot Caused by Obstacle Traversing
Authors: Saleh Kasiri Bidhendi, Shiva Tashakori
Abstract:
With the increasing application of six-wheel robots in various industries, including agriculture and environmental monitoring, there is a growing demand for efficient and reliable control systems that can improve manoeuvrability and at the same time reduce energy consumption. Moving on uneven terrains, various factors such as obstacles or soil heterogeneity can cause the robot to slip. There is limited research addressing this issue. Although the robot is supposed to track a predetermined path, sudden lateral deviation necessitates path planning. To further address this issue, explicit steering is added by activating actuators on steerable wheels, while the SMC controller still commands differential traction forces on all wheels. This integration improves energy efficiency and obstacle traversability while maintaining the merits of skid-steering, such as tight turning manoeuvrability. However, achieving the desired steer angles presents certain challenges. Inverse kinematics was initially employed to achieve the needed steering angles from the desired position, but this approach led to excessive steering without yawing the body. Switching to desired velocity values instead of position limited over-steering but caused zero lateral velocity on horizontal paths, which was problematic for unforeseen skidding. To overcome this, a proportional controller has been employed, using lateral error as its input and providing a proportional yaw angle as output, the P-controller contributes to modifying the steering angles. The controller's robustness has been verified through sensitivity analyses under critical speeds and turning radius conditions. Our findings offer valuable insights into designing more efficient steering controls for rocker-bogie mechanisms in challenging situations, emphasizing the importance of reducing energy¬ consumption.Keywords: six-wheel robots, inverse kinematics, integrated steering, path following, manoeuvrability, energy efficiency, uneven terrains
Procedia PDF Downloads 341605 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe
Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis
Abstract:
The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.Keywords: Terrain Builder, WebGL, Virtual Globe, CesiumJS, Tiled Map Service, TMS, Height-Map, Regular Grid, Geovisual Analytics, DTM
Procedia PDF Downloads 4271604 Associations between Sharing Bike Usage and Characteristics of Urban Street Built Environment in Wuhan, China
Authors: Miao Li, Mengyuan Xu
Abstract:
As a low-carbon travel mode, bicycling has drawn increasing political interest in the contemporary Chinese urban context, and the public sharing bikes have become the most popular ways of bike usage in China now. This research aims to explore the spatial-temporal relationship between sharing bike usage and different characteristics of the urban street built environment. In the research, street segments were used as the analytic unit of the street built environment defined by street intersections. The sharing bike usage data in the research include a total of 2.64 million samples that are the entire sharing bike distribution data recorded in two days in 2018 within a neighborhood of 185.4 hectares in the city of Wuhan, China. And these data are assigned to the 97 urban street segments in this area based on their geographic location. The built environment variables used in this research are categorized into three sections: 1) street design characteristics, such as street width, street greenery, types of bicycle lanes; 2) condition of other public transportation, such as the availability of metro station; 3) Street function characteristics that are described by the categories and density of the point of interest (POI) along the segments. Spatial Lag Models (SLM) were used in order to reveal the relationships of specific urban streets built environment characteristics and the likelihood of sharing bicycling usage in whole and different periods a day. The results show: 1) there is spatial autocorrelation among sharing bicycling usage of urban streets in case area in general, non-working day, working day and each period of a day, which presents a clustering pattern in the street space; 2) a statistically strong association between bike sharing usage and several different built environment characteristics such as POI density, types of bicycle lanes and street width; 3) the pattern that bike sharing usage is influenced by built environment characteristics depends on the period within a day. These findings could be useful for policymakers and urban designers to better understand the factors affecting bike sharing system and thus propose guidance and strategy for urban street planning and design in order to promote the use of sharing bikes.Keywords: big data, sharing bike usage, spatial statistics, urban street built environment
Procedia PDF Downloads 1461603 Groundwater Geophysical Studies in the Developed and Sub-Urban BBMP Area, Bangalore, Karnataka, South India
Authors: G. Venkatesha, Urs Samarth, H. K. Ramaraju, Arun Kumar Sharma
Abstract:
The projection for Groundwater states that the total domestic water demand for greater Bangalore would increase from 1,170 MLD in 2010 to 1,336 MLD in 2016. Dependence on groundwater is ever increasing due to rapid Industrialization & Urbanization. It is estimated that almost 40% of the population of Bangalore is dependent on groundwater. Due to the unscientific disposal of domestic and industrial waste generated, groundwater is getting highly polluted in the city. The scale of this impact will depend mainly upon the water-service infrastructure, the superficial geology and the regional setting. The quality of ground water is equally important as that of quantity. Jointed and fractured granites and gneisses constitute the major aquifer system of BBMP area. Two new observatory Borewells were drilled and lithology report has been prepared. Petrographic Analysis (XRD/XRF) and Water quality Analysis were carried out as per the standard methods. Petrographic samples were analysed by collecting chip of rock from the borewell for every 20ft depth, most of the samples were similar and samples were identified as Biotite-Gneiss, Schistose Amphibolite. Water quality analysis was carried out for individual chemical parameters for two borewells drilled. 1st Borewell struck water at 150ft (Total depth-200ft) & 2nd struck at 740ft (Total depth-960ft). 5 water samples were collected till end of depth in each borewell. Chemical parameter values such as, Total Hardness (360-348, 280-320) mg/ltr, Nitrate (12.24-13.5, 45-48) mg/ltr, Chloride (104-90, 70-70)mg/ltr, Fe (0.75-0.09, 1.288-0.312)mg/ltr etc. are calculated respectively. Water samples were analysed from various parts of BBMP covering 750 sq kms, also thematic maps (IDW method) of water quality is generated for these samples for Post-Monsoon season. The study aims to explore the sub-surface Lithological layers and the thickness of weathered zone, which indirectly helps to know the Groundwater pollution source near surface water bodies, dug wells, etc. The above data are interpreted for future ground water resources planning and management.Keywords: lithology, petrographic, pollution, urbanization
Procedia PDF Downloads 2931602 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy
Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.
Abstract:
Background: Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality
Procedia PDF Downloads 391601 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing
Authors: Tolulope Aremu
Abstract:
This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving
Procedia PDF Downloads 351600 Exploring the Perspective of Service Quality in mHealth Services during the COVID-19 Pandemic
Authors: Wan-I Lee, Nelio Mendoza Figueredo
Abstract:
The impact of COVID-19 has a significant effect on all sectors of society globally. Health information technology (HIT) has become an effective health strategy in this age of distancing. In this regard, Mobile Health (mHealth) plays a critical role in managing patient and provider workflows during the COVID-19 pandemic. Therefore, the users' perception of service quality about mHealth services plays a significant role in shaping confidence and subsequent behaviors regarding the mHealth users' intention of use. This study's objective was to explore levels of user attributes analyzed by a qualitative method of how health practitioners and patients are satisfied or dissatisfied with using mHealth services; and analyzed the users' intention in the context of Taiwan during the COVID-19 pandemic. This research explores the experienced usability of a mHealth services during the Covid-19 pandemic. This study uses qualitative methods that include in-depth and semi-structured interviews that investigate participants' perceptions and experiences and the meanings they attribute to them. The five cases consisted of health practitioners, clinic staff, and patients' experiences using mHealth services. This study encourages participants to discuss issues related to the research question by asking open-ended questions, usually in one-to-one interviews. The findings show the positive and negative attributes of mHealth service quality. Hence, the significant importance of patients' and health practitioners' issues on several dimensions of perceived service quality is system quality, information quality, and interaction quality. A concept map for perceptions regards to emergency uses' intention of mHealth services process is depicted. The findings revealed that users pay more attention to "Medical care", "ease of use" and "utilitarian benefits" and have less importance for "Admissions and Convenience" and "Social influence". To improve mHealth services, the mHealth providers and health practitioners should better manage users' experiences to enhance mHealth services. This research contributes to the understanding of service quality issues in mHealth services during the COVID-19 pandemic.Keywords: COVID-19, mobile health, service quality, use intention
Procedia PDF Downloads 1481599 Genetics, Law and Society: Regulating New Genetic Technologies
Authors: Aisling De Paor
Abstract:
Scientific and technological developments are driving genetics and genetic technologies into the public sphere. Scientists are making genetic discoveries as to the make up of the human body and the cause and effect of disease, diversity and disability amongst individuals. Technological innovation in the field of genetics is also advancing, with the development of genetic testing, and other emerging genetic technologies, including gene editing (which offers the potential for genetic modification). In addition to the benefits for medicine, health care and humanity, these genetic advances raise a range of ethical, legal and societal concerns. From an ethical perspective, such advances may, for example, change the concept of humans and what it means to be human. Science may take over in conceptualising human beings, which may push the boundaries of existing human rights. New genetic technologies, particularly gene editing techniques create the potential to stigmatise disability, by highlighting disability or genetic difference as something that should be eliminated or anticipated. From a disability perspective, use (and misuse) of genetic technologies raise concerns about discrimination and violations to the dignity and integrity of the individual. With an acknowledgement of the likely future orientation of genetic science, and in consideration of the intersection of genetics and disability, this paper highlights the main concerns raised as genetic science and technology advances (particularly with gene editing developments), and the consequences for disability and human rights. Through the use of traditional doctrinal legal methodologies, it investigates the use (and potential misuse) of gene editing as creating the potential for a unique form of discrimination and stigmatization to develop, as well as a potential gateway to a form of new, subtle eugenics. This article highlights the need to maintain caution as to the use, application and the consequences of genetic technologies. With a focus on the law and policy position in Europe, it examines the need to control and regulate these new technologies, particularly gene editing. In addition to considering the need for regulation, this paper highlights non-normative approaches to address this area, including awareness raising and education, public discussion and engagement with key stakeholders in the field and the development of a multifaceted genetics advisory network.Keywords: disability, gene-editing, genetics, law, regulation
Procedia PDF Downloads 3611598 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 1281597 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 1001596 Utilizing Spatial Uncertainty of On-The-Go Measurements to Design Adaptive Sampling of Soil Electrical Conductivity in a Rice Field
Authors: Ismaila Olabisi Ogundiji, Hakeem Mayowa Olujide, Qasim Usamot
Abstract:
The main reasons for site-specific management for agricultural inputs are to increase the profitability of crop production, to protect the environment and to improve products’ quality. Information about the variability of different soil attributes within a field is highly essential for the decision-making process. Lack of fast and accurate acquisition of soil characteristics remains one of the biggest limitations of precision agriculture due to being expensive and time-consuming. Adaptive sampling has been proven as an accurate and affordable sampling technique for planning within a field for site-specific management of agricultural inputs. This study employed spatial uncertainty of soil apparent electrical conductivity (ECa) estimates to identify adaptive re-survey areas in the field. The original dataset was grouped into validation and calibration groups where the calibration group was sub-grouped into three sets of different measurements pass intervals. A conditional simulation was performed on the field ECa to evaluate the ECa spatial uncertainty estimates by the use of the geostatistical technique. The grouping of high-uncertainty areas for each set was done using image segmentation in MATLAB, then, high and low area value-separate was identified. Finally, an adaptive re-survey was carried out on those areas of high-uncertainty. Adding adaptive re-surveying significantly minimized the time required for resampling whole field and resulted in ECa with minimal error. For the most spacious transect, the root mean square error (RMSE) yielded from an initial crude sampling survey was minimized after an adaptive re-survey, which was close to that value of the ECa yielded with an all-field re-survey. The estimated sampling time for the adaptive re-survey was found to be 45% lesser than that of all-field re-survey. The results indicate that designing adaptive sampling through spatial uncertainty models significantly mitigates sampling cost, and there was still conformity in the accuracy of the observations.Keywords: soil electrical conductivity, adaptive sampling, conditional simulation, spatial uncertainty, site-specific management
Procedia PDF Downloads 1341595 The Effect of Implant Design on the Height of Inter-Implant Bone Crest: A 10-Year Retrospective Study of the Astra Tech Implant and Branemark Implant
Authors: Daeung Jung
Abstract:
Background: In case of patients with missing teeth, multiple implant restoration has been widely used and is inevitable. To increase its survival rate, it is important to understand the influence of different implant designs on inter-implant crestal bone resorption. There are several implant systems designed to minimize loss of crestal bone, and the Astra Tech and Brånemark Implant are two of them. Aim/Hypothesis: The aim of this 10-year study was to compare the height of inter-implant bone crest in two implant systems; the Astra Tech and the Brånemark implant system. Material and Methods: In this retrospective study, 40 consecutively treated patients were utilized; 23 patients with 30 sites for Astra Tech system and 17 patients with 20 sites for Brånemark system. The implant restoration was comprised of splinted crown in partially edentulous patients. Radiographs were taken immediately after 1st surgery, at impression making, at prosthetics setting, and annually after loading. Lateral distance from implant to bone crest, inter-implant distance was gauged, and crestal bone height was measured from the implant shoulder to the first bone contact. Calibrations were performed with known length of thread pitch distance for vertical measurement, and known diameter of abutment or fixture for horizontal measurement using ImageJ. Results: After 10 years, patients treated with Astra Tech implant system demonstrated less inter-implant crestal bone resorption when implants had a distance of 3mm or less between them. In cases of implants that had a greater than 3 mm distance between them, however, there appeared to be no statistically significant difference in crestal bone loss between two systems. Conclusion and clinical implications: In the situation of partially edentulous patients planning to have more than two implants, the inter-implant distance is one of the most important factors to be considered. If it is impossible to make sure of having sufficient inter-implant distance, the implants with less micro gap in the fixture-abutment junction, less traumatic 2nd surgery approach, and the adequate surface topography would be choice of appropriate options to minimize inter-implant crestal bone resorption.Keywords: implant design, crestal bone loss, inter-implant distance, 10-year retrospective study
Procedia PDF Downloads 1661594 Adoption of Electronic Logistics Management Information System for Life-Saving Maternal, Neonatal and Child Health Medicines: A Bangladesh Perspective
Authors: Mohammad Julhas Sujan, Md. Ferdous Alam
Abstract:
Maternal, neonatal, and child health (MNCH) holds one of the prime focuses in Bangladesh’s national healthcare system. To save the lives of mothers and children, knowing the stock of MNCH medicines in different healthcare facilities and when to replenish them are essential. A robust information system not only facilitates efficient management of the essential MNCH medicines but also helps effective allocation of scarce resources. In Bangladesh, Supply chain management of the 25-essential life-saving medicines are currently tracked and monitored via an electronic logistics management information system (eLMIS). Our aim was to conduct a cross-sectional study with a year (2020) worth of data from 24 districts of Bangladesh to evaluate how eLMIS is helping the Government and other stakeholders in efficient supply chain management. Data were collected from 4711 healthcare facilities ranging from primary to secondary levels within a district. About 90% (4143) are community clinics which are considered primary health care facilities in Bangladesh. After eLMIS implementation, the average reporting rate across the districts has been increased (> 97%). The month of stock (MOS) of zinc is an average 6 months compared to Inj. Magnesium Sulphate which will take 2.5 years to consume according to the current average monthly consumption (AMC). Due to first approaching expiry, Tab. Misoprostol, 7.1% Chlorhexidine and Inj. Oxytocin may become unusable. Moreover, Inj. Oxytocin is temperature sensitive and may reduce its efficacy if it is stocked for a longer period. In contrast, Zinc should be sufficiently stocked to prevent sporadic stockouts. To understand how data are collected, transmitted, processed, and aggregated for MNCH medicines in a faster and timely manner, an electronic logistics management information system (eLMIS) is necessary. We recommend the use of such a system in developing countries like Bangladesh for efficient supply chain management of essential MNCH medicines.Keywords: adaption, eLMIS, MNCH, live-saving medicines
Procedia PDF Downloads 1621593 Corporate Digital Responsibility in Construction Engineering-Construction 4.0: Ethical Guidelines for Digitization and Artificial Intelligence
Authors: Weber-Lewerenz Bianca
Abstract:
Digitization is developing fast and has become a powerful tool for digital planning, construction, and operations. Its transformation bears high potentials for companies, is critical for success, and thus, requires responsible handling. This study provides an assessment of calls made in the sustainable development goals by the United Nations (SDGs), White Papers on AI by international institutions, EU-Commission and German Government requesting for the consideration and protection of values and fundamental rights, the careful demarcation between machine (artificial) and human intelligence and the careful use of such technologies. The study discusses digitization and the impacts of artificial intelligence (AI) in construction engineering from an ethical perspective by generating data via conducting case studies and interviewing experts as part of the qualitative method. This research evaluates critically opportunities and risks revolving around corporate digital responsibility (CDR) in the construction industry. To the author's knowledge, no study has set out to investigate how CDR in construction could be conceptualized, especially in relation to the digitization and AI, to mitigate digital transformation both in large, medium-sized, and small companies. No study addressed the key research question: Where can CDR be allocated, how shall its adequate ethical framework be designed to support digital innovations in order to make full use of the potentials of digitization and AI? Now is the right timing for constructive approaches and apply ethics-by-design in order to develop and implement a safe and efficient AI. This represents the first study in construction engineering applying a holistic, interdisciplinary, inclusive approach to provide guidelines for orientation, examine benefits of AI and define ethical principles as the key driver for success, resources-cost-time efficiency, and sustainability using digital technologies and AI in construction engineering to enhance digital transformation. Innovative corporate organizations starting new business models are more likely to succeed than those dominated by conservative, traditional attitudes.Keywords: construction engineering, digitization, digital transformation, artificial intelligence, ethics, corporate digital responsibility, digital innovation
Procedia PDF Downloads 2541592 Identifying and Quantifying Factors Affecting Traffic Crash Severity under Heterogeneous Traffic Flow
Authors: Praveen Vayalamkuzhi, Veeraragavan Amirthalingam
Abstract:
Studies on safety on highways are becoming the need of the hour as over 400 lives are lost every day in India due to road crashes. In order to evaluate the factors that lead to different levels of crash severity, it is necessary to investigate the level of safety of highways and their relation to crashes. In the present study, an attempt is made to identify the factors that contribute to road crashes and to quantify their effect on the severity of road crashes. The study was carried out on a four-lane divided rural highway in India. The variables considered in the analysis includes components of horizontal alignment of highway, viz., straight or curve section; time of day, driveway density, presence of median; median opening; gradient; operating speed; and annual average daily traffic. These variables were considered after a preliminary analysis. The major complexities in the study are the heterogeneous traffic and the speed variation between different classes of vehicles along the highway. To quantify the impact of each of these factors, statistical analyses were carried out using Logit model and also negative binomial regression. The output from the statistical models proved that the variables viz., horizontal components of the highway alignment; driveway density; time of day; operating speed as well as annual average daily traffic show significant relation with the severity of crashes viz., fatal as well as injury crashes. Further, the annual average daily traffic has significant effect on the severity compared to other variables. The contribution of highway horizontal components on crash severity is also significant. Logit models can predict crashes better than the negative binomial regression models. The results of the study will help the transport planners to look into these aspects at the planning stage itself in the case of highways operated under heterogeneous traffic flow condition.Keywords: geometric design, heterogeneous traffic, road crash, statistical analysis, level of safety
Procedia PDF Downloads 3051591 First Rank Symptoms in Mania: An Indistinct Diagnostic Strand
Authors: Afshan Channa, Sameeha Aleem, Harim Mohsin
Abstract:
First rank symptoms (FRS) are considered to be pathognomic for Schizophrenia. However, FRS is not a distinctive feature of Schizophrenia. It has also been noticed in affective disorder, albeit not inclusive in diagnostic criteria. The presence of FRS in Mania leads to misdiagnosis of psychotic illness, further complicating the management and delay of appropriate treatment. FRS in Mania is associated with poor clinical and functional outcome. Its existence in the first episode of bipolar disorder may be a predictor of poor short-term outcome and decompensating course of illness. FRS in Mania is studied in west. However, the cultural divergence and detriments make it pertinent to study the frequency of FRS in affective disorder independently in Pakistan. Objective: The frequency of first rank symptoms in manic patients, who were under treatment at psychiatric services of tertiary care hospital. Method: The cross sectional study was done at psychiatric services of Aga Khan University Hospital, Karachi, Pakistan. One hundred and twenty manic patients were recruited from November 2014 to May 2015. The patients who were unable to comprehend Urdu or had comorbid psychiatric or organic disorder were excluded. FRS was assessed by administration of validated Urdu version of Present State Examination (PSE) tool. Result: The mean age of the patients was 37.62 + 12.51. The mean number of previous manic episode was 2.17 + 2.23. 11.2% males and 30.6% females had FRS. This association of first rank symptoms with gender in patients of mania was found to be significant with a p-value of 0.008. All-inclusive, 19.2% exhibited FRS in their course of illness. 43.5% had thought broadcasting, made feeling, impulses, action and somatic passivity. 39.1% had thought insertion, 30.4% had auditory perceptual distortion, and 17.4% had thought withdrawal. However, none displayed delusional perception. Conclusion: The study confirms the presence of FRS in mania in both male and female, irrespective of the duration of current manic illness or previous number of manic episodes. A substantial difference was established between both the genders. Being married had no protective effect on the presence of FRS.Keywords: first rank symptoms, Mania, psychosis, present state examination
Procedia PDF Downloads 3791590 Pediatric Health Nursing Research in Jordan: Evaluating the State of Knowledge and Determining Future Research Direction
Authors: Inaam Khalaf, Nadin M. Abdel Razeq, Hamza Alduraidi, Suhaila Halasa, Omayyah S. Nassar, Eman Al-Horani, Jumana Shehadeh, Anna Talal
Abstract:
Background: Nursing researchers are responsible for generating knowledge that corresponds to national and global research priorities in order to promote, restore, and maintain the health of individuals and societies. The objectives of this scoping review of Jordanian literature are to assess the existing research on pediatric nursing in terms of evolution, authorship and collaborations, funding sources, methodologies, topics of research, and pediatric subjects' age groups so as to identify gaps in research. Methodology: A search was conducted using related keywords obtained from national and international databases. The reviewed literature included pediatric health articles published through December 2019 in English and Arabic, authored by nursing researchers. The investigators assessed the retrieved studies and extracted data using a data-mining checklist. Results: The review included 265 articles authored by Jordanian nursing researchers concerning children's health, published between 1987 and 2019; 95% were published between 2009 and 2019. The most commonly applied research methodology was the descriptive non-experimental method (76%). The main generic topics were health promotion and disease prevention (23%), chronic physical conditions (19%), mental health, behavioral disorders, and forensic issues (16%). Conclusion: The review findings identified a grave shortage of evidence concerning nursing care issues for children below five years of age, especially those between ages two and five years. The research priorities identified in this review resonate with those identified in international reports. Implications: Nursing researchers are encouraged to conduct more research targeting topics of national-level importance in collaboration with clinically involved nurses and international scholars.Keywords: Jordan, scoping review, children health nursing, pediatric, adolescents
Procedia PDF Downloads 891589 Policy Recommendations for Reducing CO2 Emissions in Kenya's Electricity Generation, 2015-2030
Authors: Paul Kipchumba
Abstract:
Kenya is an East African Country lying at the Equator. It had a population of 46 million in 2015 with an annual growth rate of 2.7%, making a population of at least 65 million in 2030. Kenya’s GDP in 2015 was about 63 billion USD with per capita GDP of about 1400 USD. The rural population is 74%, whereas urban population is 26%. Kenya grapples with not only access to energy but also with energy security. There is direct correlation between economic growth, population growth, and energy consumption. Kenya’s energy composition is at least 74.5% from renewable energy with hydro power and geothermal forming the bulk of it; 68% from wood fuel; 22% from petroleum; 9% from electricity; and 1% from coal and other sources. Wood fuel is used by majority of rural and poor urban population. Electricity is mostly used for lighting. As of March 2015 Kenya had installed electricity capacity of 2295 MW, making a per capital electricity consumption of 0.0499 KW. The overall retail cost of electricity in 2015 was 0.009915 USD/ KWh (KES 19.85/ KWh), for installed capacity over 10MW. The actual demand for electricity in 2015 was 3400 MW and the projected demand in 2030 is 18000 MW. Kenya is working on vision 2030 that aims at making it a prosperous middle income economy and targets 23 GW of generated electricity. However, cost and non-cost factors affect generation and consumption of electricity in Kenya. Kenya does not care more about CO2 emissions than on economic growth. Carbon emissions are most likely to be paid by future costs of carbon emissions and penalties imposed on local generating companies by sheer disregard of international law on C02 emissions and climate change. The study methodology was a simulated application of carbon tax on all carbon emitting sources of electricity generation. It should cost only USD 30/tCO2 tax on all emitting sources of electricity generation to have solar as the only source of electricity generation in Kenya. The country has the best evenly distributed global horizontal irradiation. Solar potential after accounting for technology efficiencies such as 14-16% for solar PV and 15-22% for solar thermal is 143.94 GW. Therefore, the paper recommends adoption of solar power for generating all electricity in Kenya in order to attain zero carbon electricity generation in the country.Keywords: co2 emissions, cost factors, electricity generation, non-cost factors
Procedia PDF Downloads 3651588 The Evaluation of a Novel Cardiac Index derived from Anthropometric and Biochemical Parameters in Pediatric Morbid Obesity and Metabolic Syndrome
Authors: Mustafa Metin Donma
Abstract:
Metabolic syndrome (MetS) components are noteworthy among children with obesity and morbid obesity because they point out the cases with MetS, which have the great tendency to severe health problems such as cardiovascular diseases both in childhood and adulthood. In clinical practice, considerable efforts are being observed to bring into the open the striking differences between morbid obese cases and those with MetS findings. The most privileged aspect is concerning cardiometabolic features. The aim of this study was to derive an index which behaves different in children with and without MetS from the cardiac point of view. For the purpose, aspartate transaminase (AST), a cardiac enzyme still being used independently to predict cardiac-related problems, was used. One hundred and twenty four children were recruited from the outpatient clinic of Department of Pediatrics in Tekirdag Namik Kemal University, Faculty of Medicine. Forty-three children with normal body mass index, forty-one and forty morbid obese (MO) children with MetS and without the characteristic features of MetS, respectively, were included in the study. Weight, height, waist circumference (WC), hip C (HC), head C (HdC), neck C (NC), systolic and diastolic blood pressure values were measured and recorded. Body mass index and anthropometric ratios were calculated. Fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein cholesterol (HDL-C) analyses were performed. The values for AST, alanin transaminase (ALT) and AST/ALT were obtained. Advanced Donma cardiac index (ADCI) values were calculated. The formula for the index was [(TRG/HDL-C) * (INS/FBG)] * [(WC+HC)/Height] * [(HdC+NC)/Height]. Statistical evaluations including correlation analysis were done by a statistical package program. The statistical significance degree was accepted as p<0.05. The index, ADCI, was developed from both anthropometric and biochemical parameters. All anthropometric measurements except weight were included in the equation. Besides all biochemical parameters concerning MetS components were also added. This index was tested in each of three groups. Its performance was compared with the performance of cardiometabolic index (CMI). It was also checked whether it was compatible with AST activity. The performance of ADCI was better than that of CMI. Instead of double increase, the increase of three times was observed in children with MetS compared to MO children. The index was correlated with AST in MO group and with AST/ALT in MetS group. In conclusion, this index was superior in discovering cardiac problems in MO and in diagnosing MetS in MetS groups. It was also arbiter to point out cardiovascular and MetS aspects among the groups.Keywords: aspartate transaminase, cardiac, children, index, obesity
Procedia PDF Downloads 661587 Placencia Belize: An Alternative to the Development of “Your Private Paradise”
Authors: Ryan Tao
Abstract:
This paper analyzes the local context and effects of tourism on Placencia in Belize to identify key environmental and social impacts. Placencia was a small, sleepy coastal fishing village at risk of losing its local identity to tourism. In the last decade, tourism has driven an economic shift from fishing to tourism. The consequence of this shift has eroded local environmental resources and diluted local cultural heritage. A key example is Harvest Caye, an island converted from a natural manatee breeding ground to a stereotypical sandy beach and palm tree resort complex. The incoming cruise ship-geared development of Harvest Caye reflects the urban tourist vision of Placencia’s local landscape, which indicates a “neo-colonial” rule. Consequently, this vision causes environmental destruction, replacing local memories of abundant manatee-filled waters. The paper will explore environmental and cultural damage from uncontrolled development by focusing on how Placencia has been affected by unmanaged tourism. It will then propose solutions to create a medium between tourism and the local community. New developments in other Belizean cities, such as Belmopan and Belize City, are planned at the time of approval to be sensitive to their setting. While Placencia is fully built out, there are opportunities to plan in advance for the future while preserving local integrity. As a consequence of time, shepherding tourist development, defining tourist areas, and planning these areas with an eye towards natural disasters (such as hurricanes) can act as a tool to craft a future vision that helps preserve the local identity of Placencia. This research will consist of personal observations, case studies, and synthesis of other source materials. These sources provide guidance for creating a framework to understand the local environment and culture and plan around it to ultimately protect Placencia from becoming “Your Private Paradise” for the rich.Keywords: Placencia, coastal development, coastal protection, tourism, zoning, coastal zoning, Caribbean, Belize, small island developing states
Procedia PDF Downloads 161586 Optimizing the Insertion of Renewables in the Colombian Power Sector
Authors: Felipe Henao, Yeny Rodriguez, Juan P. Viteri, Isaac Dyner
Abstract:
Colombia is rich in natural resources and greatly focuses on the exploitation of water for hydroelectricity purposes. Alternative cleaner energy sources, such as solar and wind power, have been largely neglected despite: a) its abundance, b) the complementarities between hydro, solar and wind power, and c) the cost competitiveness of renewable technologies. The current limited mix of energy sources creates considerable weaknesses for the system, particularly when facing extreme dry weather conditions, such as El Niño event. In the past, El Niño have exposed the truly consequences of a system heavily dependent on hydropower, i.e. loss of power supply, high energy production costs, and loss of overall competitiveness for the country. Nonetheless, it is expected that the participation of hydroelectricity will increase in the near future. In this context, this paper proposes a stochastic lineal programming model to optimize the insertion of renewable energy systems (RES) into the Colombian electricity sector. The model considers cost-based generation competition between traditional energy technologies and alternative RES. This work evaluates the financial, environmental, and technical implications of different combinations of technologies. Various scenarios regarding the future evolution of costs of the technologies are considered to conduct sensitivity analysis of the solutions – to assess the extent of the participation of the RES in the Colombian power sector. Optimization results indicate that, even in the worst case scenario, where costs remain constant, the Colombian power sector should diversify its portfolio of technologies and invest strongly in solar and wind power technologies. The diversification through RES will contribute to make the system less vulnerable to extreme weather conditions, reduce the overall system costs, cut CO2 emissions, and decrease the chances of having national blackout events in the future. In contrast, the business as usual scenario indicates that the system will turn more costly and less reliable.Keywords: energy policy and planning, stochastic programming, sustainable development, water management
Procedia PDF Downloads 2981585 Two-Protein Modified Gold Nanoparticles for Serological Diagnosis of Borreliosis
Authors: Mohammed Alasel, Michael Keusgen
Abstract:
Gold is a noble metal; in its nano-scale level (e.g. spherical nanoparticles), the conduction electrons are triggered to collectively oscillate with a resonant frequency when certain wavelengths of electromagnetic radiation interact with its surface; this phenomenon is known as surface plasmon resonance (SPR). SPR is responsible for giving the gold nanoparticles its intense red color depending mainly on its size, shape and distance between nanoparticles. A decreased distance between gold nanoparticles results in aggregation of them causing a change in color from red to blue. This aggregation enables gold nanoparticles to serve as a sensitive biosensoric indicator. In the proposed work, gold nanoparticles were modified with two proteins: i) Borrelia antigen, variable lipoprotein surface-exposed protein (VlsE), and ii) protein A. VlsE antigen induces a strong antibody response against Lyme disease and can be detected from early to late phase during the disease in humans infected with Borrelia. In addition, it shows low cross-reaction with the other non-pathogenic Borrelia strains. The high specificity of VlsE antigen to anti-Borrelia antibodies, combined simultaneously with the high specificity of protein A to the Fc region of all IgG human antibodies, was utilized to develop a rapid test for serological point of care diagnosis of borreliosis in human serum. Only in the presence of anti-Borrelia antibodies in the serum probe, an aggregation of gold nanoparticles can be observed, which is visible by a concentration-dependent colour shift from red (low IgG) to blue (high IgG). Experiments showed it is clearly possible to distinguish between positive and negative sera samples using a simple suspension of the two-protein modified gold nanoparticles in a very short time (30 minutes). The proposed work showed the potential of using such modified gold nanoparticles generally for serological diagnosis. Improved specificity and reduced assay time can be archived in applying increased salt concentrations combined with decreased pH values (pH 5).Keywords: gold nanoparticles, gold aggregation, serological diagnosis, protein A, lyme borreliosis
Procedia PDF Downloads 401