Search results for: gas concentration detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7999

Search results for: gas concentration detection

709 Understanding Hydrodynamic in Lake Victoria Basin in a Catchment Scale: A Literature Review

Authors: Seema Paul, John Mango Magero, Prosun Bhattacharya, Zahra Kalantari, Steve W. Lyon

Abstract:

The purpose of this review paper is to develop an understanding of lake hydrodynamics and the potential climate impact on the Lake Victoria (LV) catchment scale. This paper briefly discusses the main problems of lake hydrodynamics and its’ solutions that are related to quality assessment and climate effect. An empirical methodology in modeling and mapping have considered for understanding lake hydrodynamic and visualizing the long-term observational daily, monthly, and yearly mean dataset results by using geographical information system (GIS) and Comsol techniques. Data were obtained for the whole lake and five different meteorological stations, and several geoprocessing tools with spatial analysis are considered to produce results. The linear regression analyses were developed to build climate scenarios and a linear trend on lake rainfall data for a long period. A potential evapotranspiration rate has been described by the MODIS and the Thornthwaite method. The rainfall effect on lake water level observed by Partial Differential Equations (PDE), and water quality has manifested by a few nutrients parameters. The study revealed monthly and yearly rainfall varies with monthly and yearly maximum and minimum temperatures, and the rainfall is high during cool years and the temperature is high associated with below and average rainfall patterns. Rising temperatures are likely to accelerate evapotranspiration rates and more evapotranspiration is likely to lead to more rainfall, drought is more correlated with temperature and cloud is more correlated with rainfall. There is a trend in lake rainfall and long-time rainfall on the lake water surface has affected the lake level. The onshore and offshore have been concentrated by initial literature nutrients data. The study recommended that further studies should consider fully lake bathymetry development with flow analysis and its’ water balance, hydro-meteorological processes, solute transport, wind hydrodynamics, pollution and eutrophication these are crucial for lake water quality, climate impact assessment, and water sustainability.

Keywords: climograph, climate scenarios, evapotranspiration, linear trend flow, rainfall event on LV, concentration

Procedia PDF Downloads 82
708 Photovoltaic Modules Fault Diagnosis Using Low-Cost Integrated Sensors

Authors: Marjila Burhanzoi, Kenta Onohara, Tomoaki Ikegami

Abstract:

Faults in photovoltaic (PV) modules should be detected to the greatest extent as early as possible. For that conventional fault detection methods such as electrical characterization, visual inspection, infrared (IR) imaging, ultraviolet fluorescence and electroluminescence (EL) imaging are used, but they either fail to detect the location or category of fault, or they require expensive equipment and are not convenient for onsite application. Hence, these methods are not convenient to use for monitoring small-scale PV systems. Therefore, low cost and efficient inspection techniques with the ability of onsite application are indispensable for PV modules. In this study in order to establish efficient inspection technique, correlation between faults and magnetic flux density on the surface is of crystalline PV modules are investigated. Magnetic flux on the surface of normal and faulted PV modules is measured under the short circuit and illuminated conditions using two different sensor devices. One device is made of small integrated sensors namely 9-axis motion tracking sensor with a 3-axis electronic compass embedded, an IR temperature sensor, an optical laser position sensor and a microcontroller. This device measures the X, Y and Z components of the magnetic flux density (Bx, By and Bz) few mm above the surface of a PV module and outputs the data as line graphs in LabVIEW program. The second device is made of a laser optical sensor and two magnetic line sensor modules consisting 16 pieces of magnetic sensors. This device scans the magnetic field on the surface of PV module and outputs the data as a 3D surface plot of the magnetic flux intensity in a LabVIEW program. A PC equipped with LabVIEW software is used for data acquisition and analysis for both devices. To show the effectiveness of this method, measured results are compared to those of a normal reference module and their EL images. Through the experiments it was confirmed that the magnetic field in the faulted areas have different profiles which can be clearly identified in the measured plots. Measurement results showed a perfect correlation with the EL images and using position sensors it identified the exact location of faults. This method was applied on different modules and various faults were detected using it. The proposed method owns the ability of on-site measurement and real-time diagnosis. Since simple sensors are used to make the device, it is low cost and convenient to be sued by small-scale or residential PV system owners.

Keywords: fault diagnosis, fault location, integrated sensors, PV modules

Procedia PDF Downloads 216
707 Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters

Authors: R. F. Vieira, D. Lopes, I. Baptista, S. A. Figueiredo, V. F. Domingues, R. Jorge, C. Delerue-matos, O. M. Freitas

Abstract:

Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored.

Keywords: ammonia removal, biofiltration, natural materials, odour control

Procedia PDF Downloads 360
706 Standardized Testing of Filter Systems regarding Their Separation Efficiency in Terms of Allergenic Particles and Airborne Germs

Authors: Johannes Mertl

Abstract:

Our surrounding air contains various particles. Besides typical representatives of inorganic dust, such as soot and ash, also particles originating from animals, microorganisms or plants are floating through the air, so-called bioaerosols. The group of bioaerosols consists of a broad spectrum of particles of different size, including fungi, bacteria, viruses, spores, or tree, flower and grass pollen that are of high relevance for allergy sufferers. In dependence of the environmental climate and the actual season, these allergenic particles can be found in enormous numbers in the air and are inhaled by humans via the respiration tract, with a potential for inflammatory diseases of the airways, such as asthma or allergic rhinitis. As a consequence air filter systems of ventilation and air conditioning devices are required to meet very high standards to prevent, or at least lower the number of allergens and airborne germs entering the indoor air. Still, filter systems are merely classified for their separation rates using well-defined mineral test dust, while no appropriate sufficiently standardized test methods for bioaerosols exist. However, determined separation rates for mineral test particles of a certain size cannot simply be transferred to bioaerosols, as separation efficiency of particularly fine and respirable particles (< 10 microns) is dependent not only on their shape and particle diameter, but also defined by their density and physicochemical properties. For this reason, the OFI developed a test method, which directly enables a testing of filters and filter media for their separation rates on bioaerosols, as well as a classification of filters. Besides allergens from an intact or fractured tree or grass pollen, allergenic proteins bound to particulates, as well as allergenic fungal spores (e.g. Cladosporium cladosporioides), or bacteria can be used to classify filters regarding their separation rates. Allergens passing through the filter can then be detected by highly sensitive immunological assays (ELISA) or in the case of fungal spores by microbiological methods, which allow for the detection of even one single spore passing the filter. The test procedure, which is carried out in laboratory scale, was furthermore validated regarding its sufficiency to cover real life situations by upscaling using air conditioning devices showing great conformity in terms of separation rates. Additionally, a clinical study with allergy sufferers was performed to verify analytical results. Several different air conditioning filters from the car industry have been tested, showing significant differences in their separation rates.

Keywords: airborne germs, allergens, classification of filters, fine dust

Procedia PDF Downloads 243
705 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations

Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey

Abstract:

Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.

Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES

Procedia PDF Downloads 43
704 In-situ and Laboratory Characterization of Fiji Lateritic Soils

Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal

Abstract:

Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.

Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.

Procedia PDF Downloads 178
703 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 192
702 Evaluating the Effectiveness of Plantar Sensory Insoles and Remote Patient Monitoring for Early Intervention in Diabetic Foot Ulcer Prevention in Patients with Peripheral Neuropathy

Authors: Brock Liden, Eric Janowitz

Abstract:

Introduction: Diabetic peripheral neuropathy (DPN) affects 70% of individuals with diabetes1. DPN causes a loss of protective sensation, which can lead to tissue damage and diabetic foot ulcer (DFU) formation2. These ulcers can result in infections and lower-extremity amputations of toes, the entire foot, and the lower leg. Even after a DFU is healed, recurrence is common, with 49% of DFU patients developing another ulcer within a year and 68% within 5 years3. This case series examines the use of sensory insoles and newly available plantar data (pressure, temperature, step count, adherence) and remote patient monitoring in patients at risk of DFU. Methods: Participants were provided with custom-made sensory insoles to monitor plantar pressure, temperature, step count, and daily use and were provided with real-time cues for pressure offloading as they went about their daily activities. The sensory insoles were used to track subject compliance, ulceration, and response to feedback from real-time alerts. Patients were remotely monitored by a qualified healthcare professional and were contacted when areas of concern were seen and provided coaching on reducing risk factors and overall support to improve foot health. Results: Of the 40 participants provided with the sensory insole system, 4 presented with a DFU. Based on flags generated from the available plantar data, patients were contacted by the remote monitor to address potential concerns. A standard clinical escalation protocol detailed when and how concerns should be escalated to the provider by the remote monitor. Upon escalation to the provider, patients were brought into the clinic as needed, allowing for any issues to be addressed before more serious complications might arise. Conclusion: This case series explores the use of innovative sensory technology to collect plantar data (pressure, temperature, step count, and adherence) for DFU detection and early intervention. The results from this case series suggest the importance of sensory technology and remote patient monitoring in providing proactive, preventative care for patients at risk of DFU. This robust plantar data, with the addition of remote patient monitoring, allow for patients to be seen in the clinic when concerns arise, giving providers the opportunity to intervene early and prevent more serious complications, such as wounds, from occurring.

Keywords: diabetic foot ulcer, DFU prevention, digital therapeutics, remote patient monitoring

Procedia PDF Downloads 67
701 Development and Nutritional Evaluation of Sorghum Flour-Based Crackers Enriched with Bioactive Tomato Processing Residue

Authors: Liana Claudia Salanță, Anca Corina Fărcaș

Abstract:

Valorization of agro-industrial by-products offers significant economic and environmental advantages. This study investigates the transformation of tomato processing residues into value-added products, contributing to waste reduction and promoting a circular, sustainable economy. Specifically, the development of sorghum flour-based crackers enriched with tomato waste powder targets the dietary requirements of individuals with celiac disease and diabetes, evaluating their nutritional and sensory properties. Tomato residues were obtained from Roma-Spania tomatoes and processed into powder through drying and grinding. The bioactive compounds, including carotenoids, lycopene, and polyphenols, were quantified using established analytical methods. Formulation of the crackers involved optimizing the incorporation of tomato powder into sorghum flour. Subsequently, their nutritional and sensory attributes were assessed. The tomato waste powder demonstrated considerable bioactive potential, with total carotenoid content measured at 66 mg/100g, lycopene at 52.61 mg/100g, and total polyphenols at 463.60 mg GAE/100g. Additionally, the crackers with a 30% powder addition exhibited the highest concentration of polyphenols. Consequently, this sample also demonstrated a high antioxidant activity of 15.04% inhibition of DPPH radicals. Nutritionally, the crackers showed a 30% increase in fiber content and a 25% increase in protein content compared to standard gluten-free products. Sensory evaluation indicated positive consumer acceptance, with an average score of 8 out of 10 for taste and 7.5 out of 10 for color, attributed to the natural pigments from tomato waste. This innovative approach highlights the potential of tomato by-products in creating nutritionally enhanced gluten-free foods. Future research should explore the long-term stability of these bioactive compounds in finished products and evaluate the scalability of this process for industrial applications. Integrating such sustainable practices can significantly contribute to waste reduction and the development of functional foods.

Keywords: tomato waste, circular economy, bioactive compounds, sustainability, health benefits

Procedia PDF Downloads 8
700 Hydrogeochemical Assessment, Evaluation and Characterization of Groundwater Quality in Ore, South-Western, Nigeria

Authors: Olumuyiwa Olusola Falowo

Abstract:

One of the objectives of the Millennium Development Goals is to have sustainable access to safe drinking water and basic sanitation. In line with this objective, an assessment of groundwater quality was carried out in Odigbo Local Government Area of Ondo State in November – February, 2019 to assess the drinking, domestic and irrigation uses of the water. Samples from 30 randomly selected ground water sources; 16 shallow wells and 14 from boreholes and analyzed using American Public Health Association method for the examination of water and wastewater. Water quality index calculation, and diagrams such as Piper diagram, Gibbs diagram and Wilcox diagram have been used to assess the groundwater in conjunction with irrigation indices such as % sodium, sodium absorption ratio, permeability index, magnesium ratio, Kelly ratio, and electrical conductivity. In addition statistical Principal component analysis were used to determine the homogeneity and source(s) influencing the chemistry of the groundwater. The results show that all the parameters are within the permissible limit of World Health Organization. The physico-chemical analysis of groundwater samples indicates that the dominant major cations are in decreasing order of Na+, Ca2+, Mg2+, K+ and the dominant anions are HCO-3, Cl-, SO-24, NO-3. The values of water quality index varies suggest a Good water (WQI of 50-75) accounts for 70% of the study area. The dominant groundwater facies revealed in this study are the non-carbonate alkali (primary salinity) exceeds 50% (zone 7); and transition zone with no one cation-anion pair exceeds 50% (zone 9), while evaporation; rock–water interaction, and precipitation; and silicate weathering process are the dominant processes in the hydrogeochemical evolution of the groundwater. The study indicates that waters were found within the permissible limits of irrigation indices adopted, and plot on excellent category on Wilcox plot. In conclusion, the water in the study area are good/suitable for drinking, domestic and irrigation purposes with low equivalent salinity concentrate and moderate electrical conductivity.

Keywords: equivalent salinity concentration, groundwater quality, hydrochemical facies, principal component analysis, water-rock interaction

Procedia PDF Downloads 136
699 Development, Characterization and Performance Evaluation of a Weak Cation Exchange Hydrogel Using Ultrasonic Technique

Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Eman S. Sayed, Amany A. El-Mansoup

Abstract:

Heavy metals (HMs) present an increasing threat to aquatic and soil environment. Thus, techniques should be developed for the removal and/or recovery of those HMs from point sources in the generating industries. This paper reports our endeavors concerning the development of in-house developed weak cation exchange polyacrylate hydrogel kaolin composites for heavy metals removal. This type of composite enables desirable characteristics and functions including mechanical strength, bed porosity and cost advantages. This paper emphasizes the effect of varying crosslinker (methylenebis(acrylamide)) concentration. The prepared cation exchanger has been subjected to intensive characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF) and Brunauer Emmett and Teller (BET) method. Moreover, the performance was investigated using synthetic and real wastewater for an industrial complex east of Cairo. Simulated and real wastewater compositions addressed; Cr, Co, Ni, and Pb are in the range of (92-115), (91-103), (86-88) and (99-125), respectively. Adsorption experiments have been conducted in both batch and column modes. In general, batch tests revealed enhanced cation exchange capacities of 70, 72, 78.2 and 99.9 mg/g from single synthetic wastes while, removal efficiencies of 82.2, 86.4, 44.4 and 96% were obtained for Cr, Co, Ni and Pb, respectively from mixed synthetic wastes. It is concluded that the mixed synthetic and real wastewaters have lower adsorption capacities than single solutions. It is worth mentioned that Pb attained higher adsorption capacities with comparable results in all tested concentrations of synthetic and real wastewaters. Pilot scale experiments were also conducted for mixed synthetic waste in a fluidized bed column for 48 hour cycle time which revealed 86.4%, 58.5%, 66.8% and 96.9% removal efficiency for Cr, Co, Ni, and Pb, respectively with maximum regeneration was also conducted using saline and acid regenerants. Maximum regeneration efficiencies for the column studies higher than the batch ones about by about 30% to 60%. Studies are currently under way to enhance the regeneration efficiency to enable successful scaling up of the adsorption column.

Keywords: polyacrylate hydrogel kaolin, ultrasonic irradiation, heavy metals, adsorption and regeneration

Procedia PDF Downloads 112
698 Biosensor for Determination of Immunoglobulin A, E, G and M

Authors: Umut Kokbas, Mustafa Nisari

Abstract:

Immunoglobulins, also known as antibodies, are glycoprotein molecules produced by activated B cells that transform into plasma cells and result in them. Antibodies are critical molecules of the immune response to fight, which help the immune system specifically recognize and destroy antigens such as bacteria, viruses, and toxins. Immunoglobulin classes differ in their biological properties, structures, targets, functions, and distributions. Five major classes of antibodies have been identified in mammals: IgA, IgD, IgE, IgG, and IgM. Evaluation of the immunoglobulin isotype can provide a useful insight into the complex humoral immune response. Evaluation and knowledge of immunoglobulin structure and classes are also important for the selection and preparation of antibodies for immunoassays and other detection applications. The immunoglobulin test measures the level of certain immunoglobulins in the blood. IgA, IgG, and IgM are usually measured together. In this way, they can provide doctors with important information, especially regarding immune deficiency diseases. Hypogammaglobulinemia (HGG) is one of the main groups of primary immunodeficiency disorders. HGG is caused by various defects in B cell lineage or function that result in low levels of immunoglobulins in the bloodstream. This affects the body's immune response, causing a wide range of clinical features, from asymptomatic diseases to severe and recurrent infections, chronic inflammation and autoimmunity Transient infant hypogammaglobulinemia (THGI), IgM deficiency (IgMD), Bruton agammaglobulinemia, IgA deficiency (SIgAD) HGG samples are a few. Most patients can continue their normal lives by taking prophylactic antibiotics. However, patients with severe infections require intravenous immune serum globulin (IVIG) therapy. The IgE level may rise to fight off parasitic infections, as well as a sign that the body is overreacting to allergens. Also, since the immune response can vary with different antigens, measuring specific antibody levels also aids in the interpretation of the immune response after immunization or vaccination. Immune deficiencies usually occur in childhood. In Immunology and Allergy clinics, apart from the classical methods, it will be more useful in terms of diagnosis and follow-up of diseases, if it is fast, reliable and especially in childhood hypogammaglobulinemia, sampling from children with a method that is more convenient and uncomplicated. The antibodies were attached to the electrode surface via the poly hydroxyethyl methacrylamide cysteine nanopolymer. It was used to evaluate the anodic peak results obtained in the electrochemical study. According to the data obtained, immunoglobulin determination can be made with a biosensor. However, in further studies, it will be useful to develop a medical diagnostic kit with biomedical engineering and to increase its sensitivity.

Keywords: biosensor, immunosensor, immunoglobulin, infection

Procedia PDF Downloads 81
697 Variability of the Arbuscular Mycorrhizal Fungi Communities Associated with Wild Agraz Plants (Vaccinium meridionale Swartz) in the Colombian Andes

Authors: Gabriel Roveda-Hoyos, Margarita Ramirez-Gomez, Adrian Perez, Diana Paola Serralde

Abstract:

The objective of this study was to determine the variability of arbuscular mycorrhizal fungi (HFMA) communities associated with wild agraz plants (Vaccinium meridionale Swartz) in the Colombian Andes. This species is one of the most promising fruits within the genus Vaccinium because of the high content of anthocyanins and antioxidants in its fruits, and like other species of the Ericaceae family, it depends on the association with HFM for its development in the natural environment. In this study, the presence of mycorrhizae in wild communities of V. meridionale was evaluated, and their relationship with the edaphic and climatic conditions of the study area was analyzed. Sampling was conducted in the rural area of the municipalities of Raquira, and Chiquinquira, Chia, and Tabio in the departments of Cundinamarca and Boyaca, Colombia. Seven sites were selected, and in each site, 5 plants were randomly selected, root and soil samples were taken from each plant in the rhizosphere zone for the quantification of colonization and the presence of spores. The samples were collected on different soils, taxonomic orders Entisols, Inceptisols, and Alfisols, located at altitudes between 2,600 and 3,000 above sea level in the Eastern Cordillera of Colombia. The physicochemical characteristics of the soil were compared with the density of spores and the percentage of presence of mycorrhizae in the roots and variables with the morphometric and physiological characteristics of the plants. Four types of mutual associations were found: arbuscular mycorrhizae, ectendomycorrhiza, ericoid mycorrhizae, and endophytic septate fungi. The main results obtained show a predominance of spores of the genera Glomus and Acaulsopora, in most of the soils analyzed. The spore density of Glomeromycete fungi in the soil varied considerably between the different sites; it was higher ( > 50 spores/g of dry soil) in soil samples with lower bulk density and higher content of organic matter; in these soils a higher cation exchange capacity was found, as well as of nitrogen, calcium, magnesium, manganese and zinc concentration. It can be concluded that Vaccinium meridionale is able to establish in a natural way, association with HFMA.

Keywords: Ericaceae, Arbuscular mycorrhizae, Andes, soils, Glomus sp.

Procedia PDF Downloads 164
696 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 419
695 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study

Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf

Abstract:

Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.

Keywords: bioeconomy, decarbonisation, energy footprint, microalgae

Procedia PDF Downloads 129
694 Call-Back Laterality and Bilaterality: Possible Screening Mammography Quality Metrics

Authors: Samson Munn, Virginia H. Kim, Huija Chen, Sean Maldonado, Michelle Kim, Paul Koscheski, Babak N. Kalantari, Gregory Eckel, Albert Lee

Abstract:

In terms of screening mammography quality, neither the portion of reports that advise call-back imaging that should be bilateral versus unilateral nor how much the unilateral call-backs may appropriately diverge from 50–50 (left versus right) is known. Many factors may affect detection laterality: display arrangement, reflections preferentially striking one display location, hanging protocols, seating positions with respect to others and displays, visual field cuts, health, etc. The call-back bilateral fraction may reflect radiologist experience (not in our data) or confidence level. Thus, laterality and bilaterality of call-backs advised in screening mammography reports could be worthy quality metrics. Here, laterality data did not reveal a concern until drilling down to individuals. Bilateral screening mammogram report recommendations by five breast imaging, attending radiologists at Harbor-UCLA Medical Center (Torrance, California) 9/1/15--8/31/16 and 9/1/16--8/31/17 were retrospectively reviewed. Recommended call-backs for bilateral versus unilateral, and for left versus right, findings were counted. Chi-square (χ²) statistic was applied. Year 1: of 2,665 bilateral screening mammograms, reports of 556 (20.9%) recommended call-back, of which 99 (17.8% of the 556) were for bilateral findings. Of the 457 unilateral recommendations, 222 (48.6%) regarded the left breast. Year 2: of 2,106 bilateral screening mammograms, reports of 439 (20.8%) recommended call-back, of which 65 (14.8% of the 439) were for bilateral findings. Of the 374 unilateral recommendations, 182 (48.7%) regarded the left breast. Individual ranges of call-backs that were bilateral were 13.2–23.3%, 10.2–22.5%, and 13.6–17.9%, by year(s) 1, 2, and 1+2, respectively; these ranges were unrelated to experience level; the two-year mean was 15.8% (SD=1.9%). The lowest χ² p value of the group's sidedness disparities years 1, 2, and 1+2 was > 0.4. Regarding four individual radiologists, the lowest p value was 0.42. However, the fifth radiologist disfavored the left, with p values of 0.21, 0.19, and 0.07, respectively; that radiologist had the greatest number of years of experience. There was a concerning, 93% likelihood that bias against left breast findings evidenced by one of our radiologists was not random. Notably, very soon after the period under review, he retired, presented with leukemia, and died. We call for research to be done, particularly by large departments with many radiologists, of two possible, new, quality metrics in screening mammography: laterality and bilaterality. (Images, patient outcomes, report validity, and radiologist psychological confidence levels were not assessed. No intervention nor subsequent data collection was conducted. This uncomplicated collection of data and simple appraisal were not designed, nor had there been any intention to develop or contribute, to generalizable knowledge (per U.S. DHHS 45 CFR, part 46)).

Keywords: mammography, screening mammography, quality, quality metrics, laterality

Procedia PDF Downloads 152
693 Mathematical Modeling for Continuous Reactive Extrusion of Poly Lactic Acid Formation by Ring Opening Polymerization Considering Metal/Organic Catalyst and Alternative Energies

Authors: Satya P. Dubey, Hrushikesh A Abhyankar, Veronica Marchante, James L. Brighton, Björn Bergmann

Abstract:

Aims: To develop a mathematical model that simulates the ROP of PLA taking into account the effect of alternative energy to be implemented in a continuous reactive extrusion production process of PLA. Introduction: The production of large amount of waste is one of the major challenges at the present time, and polymers represent 70% of global waste. PLA has emerged as a promising polymer as it is compostable, biodegradable thermoplastic polymer made from renewable sources. However, the main limitation for the application of PLA is the traces of toxic metal catalyst in the final product. Thus, a safe and efficient production process needs to be developed to avoid the potential hazards and toxicity. It has been found that alternative energy sources (LASER, ultrasounds, microwaves) could be a prominent option to facilitate the ROP of PLA via continuous reactive extrusion. This process may result in complete extraction of the metal catalysts and facilitate less active organic catalysts. Methodology: Initial investigation were performed using the data available in literature for the reaction mechanism of ROP of PLA based on conventional metal catalyst stannous octoate. A mathematical model has been developed by considering significant parameters such as different initial concentration ratio of catalyst, co-catalyst and impurity. Effects of temperature variation and alternative energies have been implemented in the model. Results: The validation of the mathematical model has been made by using data from literature as well as actual experiments. Validation of the model including alternative energies is in progress based on experimental data for partners of the InnoREX project consortium. Conclusion: The model developed reproduces accurately the polymerisation reaction when applying alternative energy. Alternative energies have a great positive effect to increase the conversion and molecular weight of the PLA. This model could be very useful tool to complement Ludovic® software to predict the large scale production process when using reactive extrusion.

Keywords: polymer, poly-lactic acid (PLA), ring opening polymerization (ROP), metal-catalyst, bio-degradable, renewable source, alternative energy (AE)

Procedia PDF Downloads 353
692 Saco Sweet Cherry from Fundão Region, Portugal: Chemical Profile and Health-Promoting Properties

Authors: Luís R. Silva, Ana C. Gonçalves, Catarina Bento, Fábio Jesus, Branca M. Silva

Abstract:

Prunus avium Linnaeus, more known as sweet cherry, is one of the most appreciated fruit worldwide. Most of these quantities are produced in Fundão region, being Saco the cultivar most produced. Saco is very rich in bioactive compounds, especially phenolics, and presents great antioxidant capacity. The purpose of the present study was to investigate the chemical profile and biological potential, concerning antioxidant, anti-diabetic activity and protective effects towards erythrocytes by Saco sweet cherry collected from Fundão region (Portugal). The hydroethanolic extracts were prepared and passed through a C18 solid-phase extraction column. The phenolic profile analyzed by LC-DAD method allowed to the identification of 22 phenolic compounds, being 16 non-phenolics and 6 anthocyanins. In respect to non-coloured phenolics, 3-O-caffeoylquinic and ρ-coumaroylquinic acids were the main ones. Concerning to anthocyanins, cyanidin-3-O-rutinoside was found in higher amounts. Relatively to biological potential, Saco showed great antioxidant potential, through DPPH and NO radical assays, with IC50 =16.24 ± 0.46 µg/mL and IC50 = 176.69 ± 3.35 µg/mL for DPPH and NO, respectively. These results were similar to those obtained for ascorbic acid control (IC50 = 16.92 ± 0.69 and IC50 = 162.66 ± 1.31 μg/mL for DPPH and NO, respectively). In respect to antidiabetic potential, Saco revealed capacity to inhibit α-glucosidase in a dose-dependent manner (IC50 = 10.79 ± 0.40 µg/mL), being much active than positive control acarbose (IC50 = 306.66 ± 0.84 μg/mL). Additionally, Saco extracts revealed protective effects against ROO•-mediated toxicity generated by AAPH in human blood erythrocytes, inhibiting hemoglobin oxidation (IC50 = 38.57 ± 0.96 μg/mL) and hemolysis (IC50 = 73.03 ± 1.48 μg/mL), in a concentration-dependent manner. However, Saco extracts were less effective than quercetin control (IC50 = 3.10 μg/mL and IC50 = 0.7 μg/mL for inhibition of hemoglobin oxidation and hemolysis, respectively). The results obtained showed that Saco is an excellent source of phenolic compounds. These ones are natural antioxidant substances, which easily capture reactive species. This work presents new insights regarding sweet cherry antioxidant properties which may be useful for the future development of new therapeutic strategies for preventing or attenuating oxidative-related disorders.

Keywords: antioxidant capacity, health benefits, phenolic compounds, saco

Procedia PDF Downloads 306
691 Antiangiogenic and Pro-Apoptotic Properties of Shemamruthaa: An Herbal Preparation in Experimental Mammary Carcinoma-Bearing Rats and Breast Cancer Cell Line In vitro

Authors: Nandhakumar Elumalai, Purushothaman Ayyakannu, Sachidanandam T. Panchanatham

Abstract:

Background: Understanding the basic mechanisms and factors underlying the tumor growth and invasion has gained attention in recent times. The processes of angiogenesis and apoptosis are known to play a vital role in various stages of cancer. The vascular endothelial growth factor (VEGF) is well established as one of the key regulators of tumor angiogenesis while MMPs are known for their exclusive ability to degrade ECM. Objective: The present study was designed to evaluate the pro apoptotic and anti angiogenic activity of the herbal formulation Shemamruthaa. The anticancer activity of Shemamruthaa was tested in breast cancer cell line (MCF-7). Results of MTT, trypan blue and flow cytometric analysis of apoptotis suggested that Shemamruthaa can induce cytotoxicity in cancer cells, in a concentration- and time dependent manner and induce apoptosis. With these results, we further evaluated the antiangiogenic and pro-apoptotic activities of Shemamruthaa in DMBA induced mammary carcinoma in Sprague Dawley rats. Flavono tumour was induced in 8-week-old Sprague-Dawley rats by gastric intubation of 25 mg DMBA in 1ml olive oil. After 90 days of induction period, the rats were orally administered with Shemamruthaa (400 mg/kg body wt) for 45 days. Treatment with the drug SM significantly modulated the expression of p53, MMP-2, MMP-3, MMP-9 and VEGF by means of its anti angiogenic and protease inhibiting activity. Conclusion: Based on these results, it might be concluded that the formulation, Shemamruthaa, constituted of dried flowers of Hibiscus rosa-sinensis, fruits of Emblica officinalis, and honey has been found to exhibit pronounced antiproliferative and apoptotic effects. This enhanced anticancer effect of Shemamruthaa might be attributed to the synergistic action of polyphenols such as flavonoids, tannins, alkaloids, glycosides, saponins, steroids, terpenoids, vitamin C, niacin, pyrogallol, hydroxymethylfurfural, trilinolein, and other compounds present in the formulation. Collectively, these results demonstrate that Shemamruthaa holds potential to be developed as a potent chemotherapeutic agent against mammary carcinoma.

Keywords: Shemamruthaa, flavonoids, MCF-7 cell line, mammary cancer

Procedia PDF Downloads 239
690 Screening Maize for Compatibility with F. Oxysporum to Enhance Striga asiatica (L.) Kuntze Resistance

Authors: Admire Isaac Tichafa Shayanowako, Mark Laing, Hussein Shimelis

Abstract:

Striga asiatica is among the leading abiotic constraints to maize production under small-holder farming communities in southern African. However, confirmed sources of resistance to the parasitic weed are still limited. Conventional breeding programmes have been progressing slowly due to the complex nature of the inheritance of Striga resistance, hence there is a need for more innovative approaches. This study aimed to achieve partial resistance as well as to breed for compatibility with Fusarium oxysporum fsp strigae, a soil fungus that is highly specific in its pathogenicity. The agar gel and paper roll assays in conjunction with a glass house pot trial were done to select genotypes based on their potential to stimulate germination of Striga and to test the efficacy of Fusarium oxysporum as a biocontrol agent. Results from agar gel assays showed a moderate to high potential in the release of Strigalactones among the 33 OPVs. Maximum Striga germination distances from the host root of 1.38 cm and up to 46% germination were observed in most of the populations. Considerable resistance was observed in a landrace ‘8lines’ which had the least Striga germination percentage (19%) with a maximum distance of 0.93 cm compared to the resistant check Z-DPLO-DTC1 that had 23% germination at a distance of 1.4cm. The number of fusarium colony forming units significantly deferred (P < 0.05) amongst the genotypes growing between germination papers. The number of crown roots, length of primary root and fresh weight of shoot and roots were highly correlated with concentration of fusarium macrospore counts. Pot trials showed significant differences between the fusarium coated and the uncoated treatments in terms of plant height, leaf counts, anthesis-silks intervals, Striga counts, Striga damage rating and Striga vigour. Striga emergence counts and Striga flowers were low in fusarium treated pots. Plants in fusarium treated pots had non-significant differences in height with the control treatment. This suggests that foxy 2 reduces the impact of Striga damage severity. Variability within fusarium treated genotypes with respect to traits under evaluation indicates the varying degree of compatibility with the biocontrol.

Keywords: maize, Striga asiaitca, resistance, compatibility, F. oxysporum

Procedia PDF Downloads 236
689 The Influence of Gender on Itraconazole Pharmacokinetic Parameters in Healthy Adults

Authors: Milijana N. Miljkovic, Viktorija M. Dragojevic-Simic, Nemanja K. Rancic, Vesna M. Jacevic, Snezana B. Djordjevic, Momir M. Mikov, Aleksandra M. Kovacevic

Abstract:

Itraconazole (ITZ) is a weak base and extremely lipophilic compound, with water solubility as a rate-limiting step in its absorption from the gastrointestinal tract. Its absolute bioavailability, about 55%, is maximal when its oral formulation, capsules, are taken immediately after a full meal. Peak plasma concentrations (Cmax) are reached within 2 to 5 hrs after their administration. ITZ undergoes extensive hepatic metabolism by human CYP3A4 isoenzyme and more than 30 different metabolites have been identified. One of the main ones is hydroxyitraconazole (HITZ), in which plasma concentrations are almost twice higher than those of ITZ. Gender differences in drug PK (Pharmacokinetics) have already been recognized, but variations in metabolism are believed to be their major cause. The aim of the study was to investigate the influence of gender on ITZ PK parameters after administration of oral capsule formulation, following 100 mg single dosing in healthy adult volunteers under fed conditions. The single-center, open-label PK study was performed. PK analyses included PK parameters obtained after a single 100 mg dose administration of itraconazole capsules to 48 females and 66 males. Blood samples were collected at pre-dose and up to 72.0 h after administration (1.0, 2.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 9.0, 12.0, 24.0, 36.0 and 72.0 hrs). The calculated pharmacokinetic parameters, based on the plasma concentrations of itraconazole and hydroxyitraconazole, were Cmax, AUClast, and AUCtot. Plasma concentrations of ITZ and HITZ were determined using a validated liquid chromatographic method with mass spectrometric detection, while pharmacokinetic parameters were estimated using non-compartmental methods. The pharmacokinetic analyses were performed using Kinetica software version 5.0. The mean value of ITZ Cmaxmen was 74.79 ng/ml, and Cmaxwomen was 51.291 ng/ml (independent samples test; p = 0.005). Hydroxyitraconazole had a mean value of Cmaxmen 106.37 ng/ml, and the mean value Cmaxwomen was 70.05 ng/ml. Women had, on average, lower AUClast and Cmax than men. AUClastmen for ITZ was 736.02 ng/mL*h and AUClastwomen was 566.62 ng/mL*h, while AUClastmen for HITZ was 1154.80 was ng/mL*h and AUClastwomen for HITZ was 708.12 ng/mL*h (independent samples test; p = 0.033). The mean values of ITZ AUCtotmen were 884.73 ng/mL*h and AUCtotwomen was 685.10 ng/mL*h. AUCtotmen for HITZ was 1290.41 ng/mL*h, while AUCtotwomen for HIZT was 788.60 ng/mL*h (p < 0.001). The results could point out to lower oral bioavailability of ITZ in women, since values of Cmax, AUClast, and AUCtot of both ITZ and HITZ were significantly lower in women than in men, respectively. The reason may be higher expression and activity of CYP3A4 in women than in men, but there also may be differences in other PK parameters. High variability of both ITZ and HITZ concentrations in both genders confirmed that ITZ is a highly variable drug. Further examinations of its PK are needed to justify strategies for therapeutic drug monitoring in patients treated by this antifungal agent.

Keywords: itraconazole, gender, hydroxyitraconazole, pharmacokinetics

Procedia PDF Downloads 127
688 Evaluating the Feasibility of Chemical Dermal Exposure Assessment Model

Authors: P. S. Hsi, Y. F. Wang, Y. F. Ho, P. C. Hung

Abstract:

The aim of the present study was to explore the dermal exposure assessment model of chemicals that have been developed abroad and to evaluate the feasibility of chemical dermal exposure assessment model for manufacturing industry in Taiwan. We conducted and analyzed six semi-quantitative risk management tools, including UK - Control of substances hazardous to health ( COSHH ) Europe – Risk assessment of occupational dermal exposure ( RISKOFDERM ), Netherlands - Dose related effect assessment model ( DREAM ), Netherlands – Stoffenmanager ( STOFFEN ), Nicaragua-Dermal exposure ranking method ( DERM ) and USA / Canada - Public Health Engineering Department ( PHED ). Five types of manufacturing industry were selected to evaluate. The Monte Carlo simulation was used to analyze the sensitivity of each factor, and the correlation between the assessment results of each semi-quantitative model and the exposure factors used in the model was analyzed to understand the important evaluation indicators of the dermal exposure assessment model. To assess the effectiveness of the semi-quantitative assessment models, this study also conduct quantitative dermal exposure results using prediction model and verify the correlation via Pearson's test. Results show that COSHH was unable to determine the strength of its decision factor because the results evaluated at all industries belong to the same risk level. In the DERM model, it can be found that the transmission process, the exposed area, and the clothing protection factor are all positively correlated. In the STOFFEN model, the fugitive, operation, near-field concentrations, the far-field concentration, and the operating time and frequency have a positive correlation. There is a positive correlation between skin exposure, work relative time, and working environment in the DREAM model. In the RISKOFDERM model, the actual exposure situation and exposure time have a positive correlation. We also found high correlation with the DERM and RISKOFDERM models, with coefficient coefficients of 0.92 and 0.93 (p<0.05), respectively. The STOFFEN and DREAM models have poor correlation, the coefficients are 0.24 and 0.29 (p>0.05), respectively. According to the results, both the DERM and RISKOFDERM models are suitable for performance in these selected manufacturing industries. However, considering the small sample size evaluated in this study, more categories of industries should be evaluated to reduce its uncertainty and enhance its applicability in the future.

Keywords: dermal exposure, risk management, quantitative estimation, feasibility evaluation

Procedia PDF Downloads 154
687 Lactate Biostimulation for Remediation of Aquifers Affected by Recalcitrant Sources of Chloromethanes

Authors: Diana Puigserver Cuerda, Jofre Herrero Ferran, José M. Carmona Perez

Abstract:

In the transition zone between aquifers and basal aquitards, DNAPL-pools of chlorinated solvents are more recalcitrant than at other depths in the aquifer. Although degradation of carbon tetrachloride (CT) and chloroform (CF) occurs in this zone, this is a slow process, which is why an adequate remediation strategy is necessary. The working hypothesis of this study is that the biostimulation of the transition zone of an aquifer contaminated by CT and CF can be an effective remediation strategy. This hypothesis has been tested in a site on an unconfined aquifer in which the major contaminants were CT and CF of industrial origin and where the hydrochemical background was rich in other compounds that can hinder natural attenuation of chloromethanes. Field studies and five laboratory microcosm experiments were carried out at the level of groundwater and sediments to identify: i) the degradation processes of CT and CF; ii) the structure of microbial communities; and iii) the microorganisms implicated on this degradation. For this, concentration of contaminants and co-contaminants (nitrate and sulfate), Compound Specific Isotope Analysis, molecular techniques (Denaturing Gradient Gel Electrophoresis) and clone library analysis were used. The main results were: i) degradation processes of CT and CF occurred in groundwater and in the lesser conductive sediments; ii) sulfate-reducing conditions in the transition zone were high and similar to those in the source of contamination; iii) two microorganisms (Azospira suillum and a bacterium of the Clostridiales order) were identified in the transition zone at the field and lab experiments that were compatible with the role of carrying out the reductive dechlorination of CT, CF and their degradation products (dichloromethane and chloromethane); iv) these two microorganisms were present at the high starting concentrations of the microcosm experiments (similar to those in the source of DNAPL) and continued being present until the last day of the lactate biostimulation; and v) the lactate biostimulation gave rise to the fastest and highest degradation rates and promoted the elimination of other electron acceptors (e.g. nitrate and sulfate). All these results are evidence that lactate biostimulation can be effective in remediating the source and plume, especially in the transition zone, and highlight the environmental relevance of the treatment of contaminated transition zones in industrial contexts similar to that studied.

Keywords: Azospira suillum, lactate biostimulation of carbon tetrachloride and chloroform, reductive dechlorination, transition zone between aquifer and aquitard

Procedia PDF Downloads 167
686 Ikat: Undaunted Journey of a Traditional Textile Practice, a Sublime Connect of Traditionality with Modernity and Calibration for Eco-Sustainable Options

Authors: Purva Khurana

Abstract:

Traditional textile crafts are universally found to have been significantly impeded by the uprise of innovative technologies, but sustained human endeavor, in sync with dynamic market nuances, holds key to these otherwise getting fast-extinct marvels. The metamorphosis of such art-forms into niche markets pre-supposes sharp concentration on adaptability. The author has concentrated on the ancient handicraft of Ikat in Andhra Pradesh (India), a manifestation of their cultural heritage and esoteric cottage industry, so very intrinsic to the development and support of local economy and identity. Like any other traditional practice, ikat weaving has been subjected to the challenges of modernization. However, owing to its unique character, personalize production and adaptability, both of material and process, ikat weaving has stood the test of time by way of judiciously embellishing innovation with contemporary taste. To survive as a living craft as also to justify its role as a universal language of aesthetic sensibility, it is imperative that ikat tradition should lend itself continuous process of experiments, change and growth. Besides, the instant paper aims to examine the contours of ikat production process from its pure form, to more fashion and market oriented production, with upgraded process, material and tools. Over the time, it has adapted well to new style-paradigms, duly matching up with the latest fashion trends, in tandem with the market-sensitivities. Apart, it is an effort to investigate how this craft could respond constructively to the pressure of contemporary technical developments in order to be at cutting edge, while preserving its integrity. In order to approach these issues, the methodology adopted is, conceptual analysis of the craft practices, its unique strength and how they could be used to advance the craft in relation to the emergence of technical developments. The paper summarizes the result of the study carried out by the author on the peculiar advantages of suitably- calibrated vat dyes over natural dyes, in terms of its recycling ability and eco-friendly properties, thus holding definite edge, both in terms of socio-economic as well as environmental concerns.

Keywords: craft, eco-friendly dyes, ikat, metamorphosis

Procedia PDF Downloads 164
685 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization

Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya

Abstract:

The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.

Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts

Procedia PDF Downloads 157
684 Ionometallurgy for Recycling Silver in Silicon Solar Panel

Authors: Emmanuel Billy

Abstract:

This work is in the CABRISS project (H2020 projects) which aims at developing innovative cost-effective methods for the extraction of materials from the different sources of PV waste: Si based panels, thin film panels or Si water diluted slurries. Aluminum, silicon, indium, and silver will especially be extracted from these wastes in order to constitute materials feedstock which can be used later in a closed-loop process. The extraction of metals from silicon solar cells is often an energy-intensive process. It requires either smelting or leaching at elevated temperature, or the use of large quantities of strong acids or bases that require energy to produce. The energy input equates to a significant cost and an associated CO2 footprint, both of which it would be desirable to reduce. Thus there is a need to develop more energy-efficient and environmentally-compatible processes. Thus, ‘ionometallurgy’ could offer a new set of environmentally-benign process for metallurgy. This work demonstrates that ionic liquids provide one such method since they can be used to dissolve and recover silver. The overall process associates leaching, recovery and the possibility to re-use the solution in closed-loop process. This study aims to evaluate and compare different ionic liquids to leach and recover silver. An electrochemical analysis is first implemented to define the best system for the Ag dissolution. Effects of temperature, concentration and oxidizing agent are evaluated by this approach. Further, a comparative study between conventional approach (nitric acid, thiourea) and the ionic liquids (Cu and Al) focused on the leaching efficiency is conducted. A specific attention has been paid to the selection of the Ionic Liquids. Electrolytes composed of chelating anions are used to facilitate the lixiviation (Cl, Br, I,), avoid problems dealing with solubility issues of metallic species and of classical additional ligands. This approach reduces the cost of the process and facilitates the re-use of the leaching medium. To define the most suitable ionic liquids, electrochemical experiments have been carried out to evaluate the oxidation potential of silver include in the crystalline solar cells. Then, chemical dissolution of metals for crystalline solar cells have been performed for the most promising ionic liquids. After the chemical dissolution, electrodeposition has been performed to recover silver under a metallic form.

Keywords: electrodeposition, ionometallurgy, leaching, recycling, silver

Procedia PDF Downloads 233
683 Identification of Viruses Infecting Garlic Plants in Colombia

Authors: Diana M. Torres, Anngie K. Hernandez, Andrea Villareal, Magda R. Gomez, Sadao Kobayashi

Abstract:

Colombian Garlic crops exhibited mild mosaic, yellow stripes, and deformation. This group of symptoms suggested a viral infection. Several viruses belonging to the genera Potyvirus, Carlavirus and Allexivirus are known to infect garlic and lower their yield worldwide, but in Colombia, there are no studies of viral infections in this crop, only leek yellow stripe virus (LYSV) has been reported to our best knowledge. In Colombia, there are no management strategies for viral diseases in garlic because of the lack of information about viral infections on this crop, which is reflected in (i) high prevalence of viral related symptoms in garlic fields and (ii) high dispersal rate. For these reasons, the purpose of the present study was to evaluate the viral status of garlic in Colombia, which can represent a major threat on garlic yield and quality for this country 55 symptomatic leaf samples were collected for virus detection by RT-PCR and mechanical inoculation. Total RNA isolated from infected samples were subjected to RT-PCR with primers 1-OYDV-G/2-OYDV-G for Onion yellow dwarf virus (OYDV) (expected size 774pb), 1LYSV/2LYSV for LYSV (expected size 1000pb), SLV 7044/SLV 8004 for Shallot latent virus (SLV) (expected size 960pb), GCL-N30/GCL-C40 for Garlic common latent virus (GCLV) (expected size 481pb) and EF1F/EF1R for internal control (expected size 358pb). GCLV, SLV, and LYSV were detected in infected samples; in 95.6% of the analyzed samples was detected at least one of the viruses. GCLV and SLV were detected in single infection with low prevalence (9.3% and 7.4%, respectively). Garlic generally becomes coinfected with several types of viruses. Four viral complexes were identified: three double infection (64% of analyzed samples) and one triple infection (15%). The most frequent viral complex was SLV + GCLV infecting 48.1% of the samples. The other double complexes identified had a prevalence of 7% (GCLV + LYSV and SLV + LYSV) and 5.6% of the samples were free from these viruses. Mechanical transmission experiments were set up using leaf tissues of collected samples from infected fields, different test plants were assessed to know the host range, but it was restricted to C. quinoa, confirming the presence of detected viruses which have limited host range and were detected in C. quinoa by RT-PCR. The results of molecular and biological tests confirm the presence of SLV, LYSV, and GCLV; this is the first report of SLV and LYSV in garlic plants in Colombia, which can represent a serious threat for this crop in this country.

Keywords: SLV, GCLV, LYSV, leek yellow stripe virus, Allium sativum

Procedia PDF Downloads 136
682 Health-Related Problems of International Migrant Groups in Eskisehir, Turkey

Authors: Temmuz Gönç Şavran

Abstract:

Migration is a multidimensional and health-related concept that has important consequences for both migrants and the host society. Due to past conflicts and poor living conditions that lead to migration, the dangerous and difficult journey, and the problems they face upon arrival in the destination country, migrants are at higher risk for poor health. Health is a human right, and all societies and communities, including migrant groups, must receive adequate health care. In addition, the health of migrants must be improved to protect the health of the host society and ensure social integration. The main determinants of health are employment, income, education, good housing, and adequate nutrition. It can be said that migrants are among the most vulnerable groups in society in these respects, and migrant health is negatively affected by this situation. Rigid immigration policies or financial constraints in destination countries, the complexity and bureaucracy of health systems, the low health literacy of migrant groups, and the inadequate provision of translation services in health facilities are among the other main factors affecting migrant health. Migrants are also at risk of stigma, exclusion, detection, and deportation when seeking medical care. Based on data from a qualitative study with a descriptive case study design, this paper aims to highlight and sociologically assess the health-related problems of international migrants in Eskisehir, Turkey. The sample consists of 30 international migrants living in Eskisehir, two-thirds of whom are from Syria, Iraq, Afghanistan, and Pakistan. Those who are citizens of the Republic of Turkey are excluded from the study; otherwise, the legal status of the participants is not considered in the selection of the sample. This makes it possible to distinguish the different needs and problems of subgroups and to consider migrant health as a comprehensive concept. The research is supported by Anadolu University in Eskisehir, and data will be collected through semi-structured interviews between November 2022 and February 2023. With holistic sociology of health approach, this study considers migrant health as a comprehensive sociological concept. It aims to reveal the health-related resources and needs of the international migrant groups living in the center of Eskisehir, the problems they encounter in meeting these needs, and the strategies they use to solve these problems. The results are expected to show that the health of migrants is not only influenced by legislation but is shaped by many processes, from housing conditions to cultural habits. It is expected that the results will also raise awareness of discrimination, exclusion, marginalization, and hate speech in migrants’ access to health services.

Keywords: migrant health, sociology of health, sociology of migration, Turkey, refugees

Procedia PDF Downloads 69
681 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 25
680 QSAR Study on Diverse Compounds for Effects on Thermal Stability of a Monoclonal Antibody

Authors: Olubukayo-Opeyemi Oyetayo, Oscar Mendez-Lucio, Andreas Bender, Hans Kiefer

Abstract:

The thermal melting curve of a protein provides information on its conformational stability and could provide cues on its aggregation behavior. Naturally-occurring osmolytes have been shown to improve the thermal stability of most proteins in a concentration-dependent manner. They are therefore commonly employed as additives in therapeutic protein purification and formulation. A number of intertwined and seemingly conflicting mechanisms have been put forward to explain the observed stabilizing effects, the most prominent being the preferential exclusion mechanism. We attempted to probe and summarize molecular mechanisms for thermal stabilization of a monoclonal antibody (mAb) by developing quantitative structure-activity relationships using a rationally-selected library of 120 osmolyte-like compounds in the polyhydric alcohols, amino acids and methylamines classes. Thermal stabilization potencies were experimentally determined by thermal shift assays based on differential scanning fluorimetry. The cross-validated QSAR model was developed by partial least squares regression using descriptors generated from Molecular Operating Environment software. Careful evaluation of the results with the use of variable importance in projection parameter (VIP) and regression coefficients guided the selection of the most relevant descriptors influencing mAb thermal stability. For the mAb studied and at pH 7, the thermal stabilization effects of tested compounds correlated positively with their fractional polar surface area and inversely with their fractional hydrophobic surface area. We cannot claim that the observed trends are universal for osmolyte-protein interactions because of protein-specific effects, however this approach should guide the quick selection of (de)stabilizing compounds for a protein from a chemical library. Further work with a large variety of proteins and at different pH values would help the derivation of a solid explanation as to the nature of favorable osmolyte-protein interactions for improved thermal stability. This approach may be beneficial in the design of novel protein stabilizers with optimal property values, especially when the influence of solution conditions like the pH and buffer species and the protein properties are factored in.

Keywords: thermal stability, monoclonal antibodies, quantitative structure-activity relationships, osmolytes

Procedia PDF Downloads 320