Search results for: thermal damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5839

Search results for: thermal damage

5149 Early-Age Mechanical and Thermal Performance of GGBS Concrete

Authors: Kangkang Tang

Abstract:

A large amount of blast furnace slag is generated in China. Most ground granulated blast furnace slag (GGBS) however ends up in low-grade applications. Blast furnace slag, ground to an appropriate fineness, can be used as a partial replacement of cementitious material in concrete. The potential for using GGBS in structural concrete, e.g. concrete beams and columns, is investigated at Xi’an Jiaotong-Liverpool University (XJTLU). With 50% of CEM I replaced with GGBS, peak hydration temperatures determined in a suspended concrete slab reduced by 20%. This beneficiary effect has not been further improved with 70% of CEM I replaced with GGBS. Partial replacement of CEM I with GGBS also has a retardation effect on the early-age strength of concrete. More GGBS concrete mixes will be conducted to identify an ‘optimum’ replacement level which will lead to a reduced thermal loading, without significantly compromising the early-age strength of concrete.

Keywords: thermal effect, GGBS, concrete strength and testing, sustainability

Procedia PDF Downloads 405
5148 Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete

Authors: Hasan Taherkhani

Abstract:

The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content.

Keywords: asphalt concrete, moisture damage, nylon fiber, tensile strength,

Procedia PDF Downloads 404
5147 Seismic Fragility Functions of RC Moment Frames Using Incremental Dynamic Analyses

Authors: Seung-Won Lee, JongSoo Lee, Won-Jik Yang, Hyung-Joon Kim

Abstract:

A capacity spectrum method (CSM), one of methodologies to evaluate seismic fragilities of building structures, has been long recognized as the most convenient method, even if it contains several limitations to predict the seismic response of structures of interest. This paper proposes the procedure to estimate seismic fragility curves using an incremental dynamic analysis (IDA) rather than the method adopting a CSM. To achieve the research purpose, this study compares the seismic fragility curves of a 5-story reinforced concrete (RC) moment frame obtained from both methods, an IDA method and a CSM. Both seismic fragility curves are similar in slight and moderate damage states whereas the fragility curve obtained from the IDA method presents less variation (or uncertainties) in extensive and complete damage states. This is due to the fact that the IDA method can properly capture the structural response beyond yielding rather than the CSM and can directly calculate higher mode effects. From these observations, the CSM could overestimate seismic vulnerabilities of the studied structure in extensive or complete damage states.

Keywords: seismic fragility curve, incremental dynamic analysis, capacity spectrum method, reinforced concrete moment frame

Procedia PDF Downloads 418
5146 SEC-MALLS Study of Hyaluronic Acid and BSA Thermal Degradation in Powder and in Solution

Authors: Vasile Simulescu, Jakub Mondek, Miloslav Pekař

Abstract:

Hyaluronic acid (HA) is an anionic glycosaminoglycan distributed throughout connective, epithelial and neural tissues. The importance of hyaluronic acid increased in the last decades. It has many applications in medicine and cosmetics. Hyaluronic acid has been used in attempts to treat osteoarthritis of the knee via injecting it into the joint. Bovine serum albumin (also known as BSA) is a protein derived from cows, which has many biochemical applications. The aim of our research work was to compare the thermal degradation of hyaluronic acid and BSA in powder and in solution, by determining changes in molar mass and conformation, by using SEC-MALLS (size exclusion chromatography -multi angle laser light scattering). The aim of our research work was to observe the degradation in powder and in solution of different molar mass hyaluronic acid samples, at different temperatures for certain periods. The degradation of the analyzed samples was mainly observed by modifications in molar mass.

Keywords: thermal degradation, hyaluronic acid, BSA, SEC-MALLS

Procedia PDF Downloads 499
5145 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 246
5144 Effects of Pharmaceutical Drugs on Fish (koi) Behaviour and Muscle Function

Authors: Gayathri Vijayakumar, Preethi Baskaran

Abstract:

The effluents that are let down by the industries mix with the water bodies and drastically affect the aquatic life, which leads to pollution and bio magnifications. Effluents mostly contain chemicals, heavy metals etc., and cause toxicity to the environment. The pharmaceutical industries too contribute. The by-products and other unwanted waste are discharged without any treatment; these causes DNA damage and affect behavior of aquatic life. The study was conducted on koi carp (Cyprinus carpio) the ornamental variety of common carp. A two week long study was conducted on them using common anti-depressant drug (Diazepam) in various concentrations. These drugs are known to cause behavioral damage and organ malfunctions (muscle twitch). The histopathological study conducted showed permanent muscle twitching and lesions in the fish samples studied. The sociability was also affected in the span of 14 days. Higher concentrations of this drug showed severe damage in the muscle structures. Thus, this drug can cause adverse effects on marine ecosystem and eventually cause bio magnification of drug by running through the food chain.

Keywords: pollution, toxicity, bio-magnifications, koi carp, muscle twitch, diazepam, histopathology

Procedia PDF Downloads 96
5143 Synthesis and Characterization of Capric-Stearic Acid/ Graphene Oxide-TiO₂ Microcapsules for Solar Energy Storage and Photocatalytic Efficiency

Authors: Ghada Ben Hamad, Zohir Younsi, Hassane Naji, Noureddine Lebaz, Naoual Belouaggadia

Abstract:

This study deals with a bifunctional micro-encapsulated phase change (MCP) material, capric-stearic acid/graphene oxide-TiO2, which has been successfully developed by in situ hydrolysis and polycondensation of tetrabutyl titanate and modification of graphene oxide (GO) on the TiO2 doped shell. The use of graphene and doped TiO2 is a promising approach to provide photocatalytic activity under visible light and improve the microcapsules physicochemical properties. The morphology and chemical structure of the resulting microcapsule samples were determined by using Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscope (SEM), and X-ray diffractometer (XRD) methods. The ultraviolet, visible spectrophotometer (UV–vis), the differential scanning calorimeter (DSC) and the thermogravimetric analyzer (TGA) were used to investigate the absorption of visible and ultraviolet (UV), the thermal properties, and thermal stabilities of the microcapsules. Note that, the visible light photocatalytic activity was assessed for the toluene and benzene gaseous removal in a suitable test room. The microcapsules exhibit an interesting spherical morphology and an average diameter of 15 to 25 μm. The addition of graphene can enhance the rigidity of the shell and improve the microcapsules thermal reliability. At the same time, the thermal analysis tests showed that the synthesized microcapsules had a high solar thermal energy-storage and better thermal stability. In addition, the capric-stearic acid microcapsules exhibited high solar photocatalytic activity with respect to atmospheric pollutants under natural sunlight. The fatty acid samples obtained with the GO/TiO2 shell showed great potential for applications of solar energy storage, solar photocatalytic degradation of air pollutants and buildings energy conservation.

Keywords: thermal energy storage, microencapsulation, titanium dioxide, photocatalysis, graphene oxide

Procedia PDF Downloads 126
5142 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 80
5141 Investigation of Stellram Indexable Milling Cutter XDLT09-D41 Tool Wear for Machining of Ti6Al4V

Authors: Saad Nawaz, Yu Gang, Miao Haibin

Abstract:

Titanium alloys are attractive materials for aerospace industry due to their exceptional strength to weight ratio that is maintained at elevated temperatures and their good corrosion resistance. Major applications of titanium alloys were military aerospace industry, but since last decade the trend has now shifted towards commercial industry. On the other hand, titanium alloys are notorious for being poor thermal conductor that leads to them being difficult materials for machining. In this experimental study, Stellram Indexable milling cutter XDLT09-D41 is used for rough down milling of Ti6Al4V for small depth of cut under different combinations of parameters and application of high-pressure coolant. The machining performance was evaluated in terms of tool wear, tool life, and thermal crack. The tool wear was mostly observed at the tool tip and at bottom part of tool thermal deformations were observed which propagated with respect to time. Flank wear due to scratching of the cutting chips and diffusion wear because of high thermal stresses were observed specially at the bottom of the cutting tool. It was found that maximum tool life was obtained at the speed of 40m/min, feed rate of 358mm/min and depth of cut of 0.8mm. In the end, it was concluded that machining of Ti6Al4V is a thermally dominant process which leads to high thermal stresses in machining zone that results in increasing tool wear rate and deformation propagation.

Keywords: tool wear, cutting speed, flank wear , tool life

Procedia PDF Downloads 314
5140 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 787
5139 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 398
5138 Effects of Different Climate Zones, Building Types, and Primary Fuel Sources for Energy Production on Environmental Damage from Four External Wall Technologies for Residential Buildings in Israel

Authors: Svetlana Pushkar, Oleg Verbitsky

Abstract:

The goal of the present study is to evaluate environmental damage from four wall technologies under the following conditions: four climate zones in Israel, two building (conventional vs. low-energy) types, and two types of fuel source [natural gas vs. photovoltaic (PV)]. The hierarchical ReCiPe method with a two-stage nested (hierarchical) ANOVA test is applied. It was revealed that in a hot climate in Israel in a conventional building fueled by natural gas, OE is dominant (90 %) over the P&C stage (10 %); in a mild climate in Israel in a low-energy building with PV, the P&C stage is dominant (85 %) over the OE stage (15 %). It is concluded that if PV is used in the building sector in Israel, (i) the P&C stage becomes a significant factor that influences the environment, (ii) autoclaved aerated block is the best external wall technology, and (iii) a two-stage nested mixed ANOVA can be used to evaluate environmental damage via ReCiPe when wall technologies are compared.

Keywords: life cycle assessment (LCA), photovoltaic, ReCiPe method, residential buildings

Procedia PDF Downloads 287
5137 The Use of Waste Fibers as Reinforcement in Biopolymer Green Composites

Authors: Dalila Hammiche, Lisa Klaai, Amar Boukerrou

Abstract:

Following this trend, natural fiber reinforcements have been gaining importance in the composites sector. The effectiveness of natural fiber–reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. In this study, we investigated the physicochemical, particle size and distribution, and thermal behavior of prickly pear seed flour (PPSF). Then, composites were manufactured with 20% in PPSF. Thermal, morphological, and mechanical properties have been studied, and water absorption tests as well. The characterization of this fiber has shown that cellulose is the majority constituent (30%), followed by hemicellulose (27%). To improve the fiber-matrix adhesion, the PPS was chemically treated with alkali treatment. The addition of PPSF decreases the thermal properties, and the study of the mechanical properties showed that the increase in the fiber content from 0 to 20% increased Young’s modulus. According to the results, the mechanical and thermal behaviors of composites are improved after fiber treatment. However, there is an increase in water absorption of composites compared to the PLA matrix. The moisture sensitivity of natural fiber composites limits their use in structural applications. Degradation of the fiber-matrix interface is likely to occur when the material is subjected to variable moisture conditions.

Keywords: biopolymer, composites, alcali treatment, mechanical properties

Procedia PDF Downloads 125
5136 Soft Ground Improved by Prefabricated Vertical Drains with Vacuum and Thermal Preloading

Authors: Gia Lam Le, Dennis T. Bergado, Thi Ngoc Truc Nguyen

Abstract:

This study focuses on behaviors of improved soft clay using prefabricated vertical drain (PVD) combined with vacuum and electro-osmotic preloading. Large-scale consolidations of reconstituted soft Bangkok clay were conducted for PVD improvement with vacuum (vacuum-PVD), and vacuum combined with heat (vacuum-thermo-PVD). The research revealed that vacuum-thermo-PVD gives high efficiency of the consolidation rate compared to the vacuum-PVD. In addition, the magnitude of settlement of the specimen improved by the vacuum-thermo-PVD is higher than the vacuum-PVD because the assistance of heat causes the collapse of the clay structure. Particularly, to reach 90% degree of consolidation, the thermal-vacuum-PVD reduced about 58% consolidation time compared to the vacuum-PVD. The increase in consolidation rate is resulted from the increase in horizontal coefficient of consolidation, Ch, the reduction of the smear effect expressed by the ratio of the horizontal hydraulic conductivity in the undisturbed zone, kh, and the horizontal hydraulic conductivity in the smeared zone, ks. Furthermore, the shear strength, Su, increased about 100% when compared using the vacuum-thermal-PVD to the vacuum PVD. In addition, numerical simulations gave reasonable results compared to the laboratory data.

Keywords: PVD improvement, vacuum preloading, prefabricated vertical drain, thermal PVD

Procedia PDF Downloads 459
5135 [Keynote Speech]: Bridge Damage Detection Using Frequency Response Function

Authors: Ahmed Noor Al-Qayyim

Abstract:

During the past decades, the bridge structures are considered very important portions of transportation networks, due to the fast urban sprawling. With the failure of bridges that under operating conditions lead to focus on updating the default bridge inspection methodology. The structures health monitoring (SHM) using the vibration response appeared as a promising method to evaluate the condition of structures. The rapid development in the sensors technology and the condition assessment techniques based on the vibration-based damage detection made the SHM an efficient and economical ways to assess the bridges. SHM is set to assess state and expects probable failures of designated bridges. In this paper, a presentation for Frequency Response function method that uses the captured vibration test information of structures to evaluate the structure condition. Furthermore, the main steps of the assessment of bridge using the vibration information are presented. The Frequency Response function method is applied to the experimental data of a full-scale bridge.

Keywords: bridge assessment, health monitoring, damage detection, frequency response function (FRF), signal processing, structure identification

Procedia PDF Downloads 342
5134 Failure Analysis of Windshield Glass of Automobiles

Authors: Bhupinder Kaur, O. P. Pandey

Abstract:

An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present.

Keywords: failure, windshield, thermal mismatch, carbon

Procedia PDF Downloads 245
5133 Sensitivity Analysis of the Thermal Properties in Early Age Modeling of Mass Concrete

Authors: Farzad Danaei, Yilmaz Akkaya

Abstract:

In many civil engineering applications, especially in the construction of large concrete structures, the early age behavior of concrete has shown to be a crucial problem. The uneven rise in temperature within the concrete in these constructions is the fundamental issue for quality control. Therefore, developing accurate and fast temperature prediction models is essential. The thermal properties of concrete fluctuate over time as it hardens, but taking into account all of these fluctuations makes numerical models more complex. Experimental measurement of the thermal properties at the laboratory conditions also can not accurately predict the variance of these properties at site conditions. Therefore, specific heat capacity and the heat conductivity coefficient are two variables that are considered constant values in many of the models previously recommended. The proposed equations demonstrate that these two quantities are linearly decreasing as cement hydrates, and their value are related to the degree of hydration. The effects of changing the thermal conductivity and specific heat capacity values on the maximum temperature and the time it takes for concrete to reach that temperature are examined in this study using numerical sensibility analysis, and the results are compared to models that take a fixed value for these two thermal properties. The current study is conducted in 7 different mix designs of concrete with varying amounts of supplementary cementitious materials (fly ash and ground granulated blast furnace slag). It is concluded that the maximum temperature will not change as a result of the constant conductivity coefficient, but variable specific heat capacity must be taken into account, also about duration when a concrete's central node reaches its max value again variable specific heat capacity can have a considerable effect on the final result. Also, the usage of GGBFS has more influence compared to fly ash.

Keywords: early-age concrete, mass concrete, specific heat capacity, thermal conductivity coefficient

Procedia PDF Downloads 72
5132 Investigation of Heat Transfer Mechanism Inside Shell and Tube Latent Heat Thermal Energy Storage Systems

Authors: Saeid Seddegh, Xiaolin Wang, Alan D. Henderson, Dong Chen, Oliver Oims

Abstract:

The main objective of this research is to study the heat transfer processes and phase change behaviour of a phase change material (PCM) in shell and tube latent heat thermal energy storage (LHTES) systems. The thermal behaviour in a vertical and horizontal shell-and-tube heat energy storage system using a pure thermal conduction model and a combined conduction-convection heat transfer model is compared in this paper. The model is first validated using published experimental data available in literature and then used to study the temperature variation, solid-liquid interface, phase distribution, total melting and solidification time during melting and solidification processes of PCMs. The simulated results show that the combined convection and conduction model can better describe the energy transfer in PCMs during melting process. In contrast, heat transfer by conduction is more significant during the solidification process since the two models show little difference. Also, it was concluded that during the charging process for the horizontal orientation, convective heat transfer has a strong effect on melting of the upper part of the solid PCM and is less significant during melting of the lower half of the solid PCM. However, in the vertical orientation, convective heat transfer is the same active during the entire charging process. In the solidification process, the thermal behavior does not show any difference between horizontal and vertical systems.

Keywords: latent heat thermal energy storage, phase change material, natural convection, melting, shell and tube heat exchanger, melting, solidification

Procedia PDF Downloads 551
5131 Elastoplastic and Ductile Damage Model Calibration of Steels for Bolt-Sphere Joints Used in China’s Space Structure Construction

Authors: Huijuan Liu, Fukun Li, Hao Yuan

Abstract:

The bolted spherical node is a common type of joint in space steel structures. The bolt-sphere joint portion almost always controls the bearing capacity of the bolted spherical node. The investigation of the bearing performance and progressive failure in service often requires high-fidelity numerical models. This paper focuses on the constitutive models of bolt steel and sphere steel used in China’s space structure construction. The elastoplastic model is determined by a standard tensile test and calibrated Voce saturated hardening rule. The ductile damage is found dominant based on the fractography analysis. Then Rice-Tracey ductile fracture rule is selected and the model parameters are calibrated based on tensile tests of notched specimens. These calibrated material models can benefit research or engineering work in similar fields.

Keywords: bolt-sphere joint, steel, constitutive model, ductile damage, model calibration

Procedia PDF Downloads 134
5130 Characterization of Thermal Images Due to Aging of H.V Glass Insulators Using Thermographic Scanning

Authors: Nasir A. Al-Geelani, Zulkurnain Abdul-Malek, M. Afendi M. Piah

Abstract:

This research paper investigation is carried out in the laboratory on single units of transmission line glass insulator characterized by different thermal images, which aimed to find out the age of the insulators. The tests were carried out on virgin and aged insulators using the thermography scan. Various samples having different periods of aging 20, 15, and 5 years from a 132 kV transmission line which have exhibited a different degree of corrosion. The second group of insulator samples was relatively mild aged insulators, while the third group was lightly aged; finally, the fourth group was the brand new insulators. The results revealed a strong correlation between the aging and the thermal images captured by the infrared camera. This technique can be used to monitor the aging of high voltage insulators as a precaution to avoid disaster.

Keywords: glass insulator, infrared camera, corona diacharge, transmission lines, thermograpy, surface discharge

Procedia PDF Downloads 156
5129 Theoretical Investigation of Thermal Properties of Nanofluids with Application to Solar Collector

Authors: Reema Jain

Abstract:

Nanofluids are emergent fluids that exhibit thermal properties superior than that of the conventional fluid. Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Solar collectors are commonly used in areas such as industries, heating, and cooling for domestic purpose, thermal power plants, solar cooker, automobiles, etc. Performance and efficiency of solar collectors depend upon various factors like collector & receiver material, solar radiation intensity, nature of working fluid, etc. The properties of working fluid which flow through the collectors greatly affects its performance. In this research work, a theoretical effort has been made to enhance the efficiency and improve the performance of solar collector by using Nano fluids instead of conventional fluid like water as working fluid.

Keywords: nanofluids, nanoparticles, heat transfer, solar collector

Procedia PDF Downloads 314
5128 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleight number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: linear stability analysis, heat source, porous medium, mass flow

Procedia PDF Downloads 718
5127 Graft Copolymerization of Cellulose Acetate with Nitro-N-Amino Phenyl Maleimides

Authors: Azza. A. Al-Ghamdi, Abir. A. Abdel-Naby

Abstract:

The construction of Nitro -N-amino phenyl maleimide branches onto Cellulose acetate (CA) substrate by free radical graft copolymerization using benzoyl peroxide as initiator led to formation of highly thermal stable copolymers as shown from the results of gravimetric analysis (TGA). CA-g-2,4-dinitro amino phenyl maleimide exhibited higher thermal stability than the CA-g-4-nitro amino phenyl maleimide as shown from the initial decomposition temperature (To). This is due to the ability of nitro group to form hydrogen bonding with hydroxyl group of the glucopyranose ring which increases the crystallinity of polymeric matrix. The crystalline shapes representing the graft part are clearly distinct in the Emission scanning electron microscope (ESEM) morphology of the copolymer. A suggested reaction mechanism for the grafting process was also discussed.

Keywords: Cellulose acetate, Crystallinity, Graft copolymerization, Thermal properties

Procedia PDF Downloads 159
5126 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures

Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski

Abstract:

Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.

Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems

Procedia PDF Downloads 342
5125 Thermomechanical Coupled Analysis of Fiber Reinforced Polymer Composite Square Tube: A Finite Element Study

Authors: M. Ali, K. Alam, E. Ohioma

Abstract:

This paper presents a numerical investigation on the behavior of fiber reinforced polymer composite tubes (FRP) under thermomechanical coupled loading using finite element software ABAQUS and a special add-on subroutine, CZone. Three cases were explored; pure mechanical loading, pure thermal loading, and coupled thermomechanical loading. The failure index (Tsai-Wu) under all three loading cases was assessed for all plies in the tube walls. The simulation results under pure mechanical loading showed that composite tube failed at a tensile load of 3.1 kN. However, with the superposition of thermal load on mechanical load on the composite tube, the failure index of the previously failed plies in tube walls reduced significantly causing the tube to fail at 6 kN. This showed 93% improvement in the load carrying capacity of the composite tube in present study. The increase in load carrying capacity was attributed to the stress effects of the coefficients of thermal expansion (CTE) on the laminate as well as the inter-lamina stresses induced due to the composite stack layup.

Keywords: thermal, mechanical, composites, square tubes

Procedia PDF Downloads 382
5124 Expression of Inflammatory and Cell Death Genes and DNA Damage Induced by Endotoxic Shock in Laying Hens

Authors: Mariam G. Eshak, Ahmed Abbas, M. I. El-Sabry, M. M. Mashaly

Abstract:

This investigation was conducted to determine the physiological response and evaluate the expression of inflammatory and cell death genes and DNA damage induced by endotoxic shock in laying hens. Endotoxic shock was induced by a single intravenous injection of 107 Escherichia coli (E. coli,) colony/hen. In the present study, 240 forty-week-old laying hens (H&N) were randomly assigned into 2 groups with 3 replicates of 40 birds each. Hens were reared in battery cages with wire floors in an open-sided housing system under natural conditions. Housing and general management practices were similar for all groups. At 42-wk of age, 45 hens from the first group (15 replicate) were infected with E. coli, while the same number of hens from the second group was injected with saline and served as a control. Heat shock protein-70 (HSP-70) expression, plasma corticosterone concentration, body temperature, and the gene expression of bax, caspase-3 activity, P38, Interlukin-1β (Il-1β), and tumor necrosis factor alpha (TNF-α) genes and DNA damage in the brain and liver were measured. Hens treated with E. coli showed significant (P≤0.05) increase of body temperature by 1.2 ᴼC and plasma corticosterone by 3 folds compared to the controls. Further, hens injected with E.Coli showed markedly over-expression of HSP-70 and increase DNA damage in brain and liver. These results were synchronized with activating cell death program since our data showed significant (P≤0.05) high expression of bax and caspase-3 activity genes in the brain and liver. These results were related to remarkable over-inflammation gene expression of P38, IL-1β, and TNF-α in brain and liver. In conclusion, our results indicate that endotoxic shock induces inflammatory physiological response and triggers cell death program by promoting P38, IL-1β, and TNF-α gene expression in the brain and liver.

Keywords: chicken, DNA damage, Escherichia coli, gene expression, inflammation

Procedia PDF Downloads 340
5123 Dynamic Analysis and Instability of a Rotating Composite Rotor

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, the dynamic response for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade is developed. The use of the composite material for the rotor, offers a good stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.

Keywords: rotor, composite, damage, finite element, numerical

Procedia PDF Downloads 527
5122 The Effect of Cinnamaldehyde on Escherichia coli Survival during Low Temperature Long Time Cooking

Authors: Fuji Astuti, Helen Onyeaka

Abstract:

The aim of the study was to investigate the combine effects of cinnamaldehyde (0.25 and 0.45% v/v) on thermal resistance of pathogenic Escherichia coli during low temperature long time (LT-LT) cooking below 60℃. Three different static temperatures (48, 53 and 50℃) were performed, and the number of viable cells was studied. The starting concentrations of cells were 10⁸ CFU/ml. In this experiment, heat treatment efficiency for safe reduction indicated by decimal logarithm reduction of viable recovered cells, which was monitored for heating over 6 hours. Thermal inactivation was measured by means of establishing the death curves between the mean log surviving cells (log₁₀ CFU/ml) and designated time points (minutes) for each temperature test. The findings depicted that addition of cinnamaldehyde exhibited to elevate the thermal sensitivity of E. coli. However, the injured cells found to be well-adapted to all temperature tests after certain time point of cooking, in which they grew to more than 10⁵ CFU/ml.

Keywords: cinnamaldehyde, decimal logarithm reduction, Escherichia coli, LT-LT cooking

Procedia PDF Downloads 355
5121 Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software

Authors: Aakash Kumar R. G., Anees K. Ahamed, Raj M. Mohan

Abstract:

Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software.

Keywords: fins, heat transfer, perforated fins, thermal analysis, thermal flux

Procedia PDF Downloads 369
5120 Problems of Using Mobile Photovoltaic Installations

Authors: Ksenia Siadkowska, Łukasz Grabowski, Michał Gęca

Abstract:

The dynamic development of photovoltaics in the 21st century has resulted in more possibilities for using photovoltaic systems. In order to reduce emissions, a retrofitting of vehicles with photovoltaic modules has recently become increasingly popular. Preparing such an installation, however, requires professional knowledge and compliance with safety rules. The paper discusses the advantages and disadvantages of some types of flexible photovoltaic modules that can be applied to mobile installations, types and causes of damage to photovoltaic modules as well as the most frequent types of misinstallation. Our attention has been drawn to the risk of fire caused by misintallation or defective insulation and the need to closely monitor mobile installations, for example by a non-destructive testing with a thermal imaging camera. The paper also presents certain selected results of the research conducted at the Lublin University of Technology. This work has been financed by the Polish National Centre for Research and Development, under Grant Agreement No. PBS2/A6/16/2013.

Keywords: flexible PV module, mobile PV module, photovoltaic module, photovoltaic

Procedia PDF Downloads 247