Search results for: nanostructured catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 910

Search results for: nanostructured catalyst

220 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 305
219 Influence of Servant Leadership on Faculty Retention in Higher Education Institutes: Mediating Role of Job Satisfaction

Authors: Aneela Sheikh

Abstract:

Private higher education institutes are challenged for their resilience and competitive edge in the globalized knowledge-based economy in the 21st century. Faculty retention plays an important role as a catalyst for addressing the current mega-developmental phenomenon in higher education institutes faced by developing countries. This study intends to explore the influence of servant leadership practice on faculty retention through the intervening role of job satisfaction towards minimizing the high faculty turnover in private higher education institutes, with the mediating role of job satisfaction. A sample of 341 faculty members from ten private higher education institutes in Lahore city of Pakistan, was selected through a stratified proportionate random sampling technique. A descriptive survey research approach was employed to collect data from 341 faculty members by administering a close-ended questionnaire based on a seven-point Likert scale as a self-administered research instrument. The study was conducted under the domain of the Leader-Member Exchange (LMX) theory. The mediating role of job satisfaction was measured by bootstrapping technique. The results revealed that servant leadership has a statistically significant influence on faculty retention, with a statistically significant mediating role of job satisfaction, in private higher education institutes in Pakistan. Further, up to the best of the authors’ knowledge, this is the first systematic and empirical study on faculty retention conducted against the backdrop of servant leadership in an Eastern context, particularly in Pakistan.

Keywords: servant leadership, faculty retention, job satisfaction, higher education institutes

Procedia PDF Downloads 54
218 A Recommender System for Job Seekers to Show up Companies Based on Their Psychometric Preferences and Company Sentiment Scores

Authors: A. Ashraff

Abstract:

The increasing importance of the web as a medium for electronic and business transactions has served as a catalyst or rather a driving force for the introduction and implementation of recommender systems. Recommender Systems play a major role in processing and analyzing thousands of data rows or reviews and help humans make a purchase decision of a product or service. It also has the ability to predict whether a particular user would rate a product or service based on the user’s profile behavioral pattern. At present, Recommender Systems are being used extensively in every domain known to us. They are said to be ubiquitous. However, in the field of recruitment, it’s not being utilized exclusively. Recent statistics show an increase in staff turnover, which has negatively impacted the organization as well as the employee. The reasons being company culture, working flexibility (work from home opportunity), no learning advancements, and pay scale. Further investigations revealed that there are lacking guidance or support, which helps a job seeker find the company that will suit him best, and though there’s information available about companies, job seekers can’t read all the reviews by themselves and get an analytical decision. In this paper, we propose an approach to study the available review data on IT companies (score their reviews based on user review sentiments) and gather information on job seekers, which includes their Psychometric evaluations. Then presents the job seeker with useful information or rather outputs on which company is most suitable for the job seeker. The theoretical approach, Algorithmic approach and the importance of such a system will be discussed in this paper.

Keywords: psychometric tests, recommender systems, sentiment analysis, hybrid recommender systems

Procedia PDF Downloads 86
217 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts

Authors: Lin Huang, Bo Wang, Armando Borgna

Abstract:

Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.

Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase

Procedia PDF Downloads 239
216 Catalytic Hydrodesulfurization of Dibenzothiophene Coupled with Ionic Liquids over Low Pd Incorporated Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ Catalysts at Mild Operating Conditions

Authors: Yaseen Muhammad, Zhenxia Zhao, Zhangfa Tong

Abstract:

A key problem with hydrodesulfurization (HDS) process of fuel oils is the application of severe operating conditions. In this study, we proposed the catalytic HDS of dibenzothiophene (DBT) integrated with ionic liquids (ILs) application at mild temperature and pressure over low loaded (0.5 wt.%) Pd promoted Co-Mo@Al₂O₃ and Ni-Mo@Al₂O₃ catalysts. Among the thirteen ILs tested, [BMIM]BF₄, [(CH₃)₄N]Cl, [EMIM]AlCl₄, and [(C₈H₁₇)(C₃H₇)₃P]Br enhanced the catalytic HDS efficiency while the latest ranked the top of activity list as confirmed by DFT studies as well. Experimental results revealed that Pd incorporation greatly enhanced the HDS activity of classical Co or Ni based catalysts. At mild optimized experimental conditions of 1 MPa H₂ pressure, 120 oC, IL:oil ratio of 1:3 and 4 h reaction time, the % DBT conversion (21 %) by Ni-Mo@Al₂O₃ was enhanced to 69 % (over Pd-Ni-Mo@ Al₂O₃) using [(C₈H₁₇) (C₃H₇)₃P]Br. The fresh and spent catalysts were characterized for textural properties using XPS, SEM, EDX, XRD and BET surface area techniques. An overall catalytic HDS activity followed the order of: Pd-Ni-Mo@Al₂O₃ > Pd-Co-Mo@Al₂O₃ > Ni-Mo@Al₂O₃ > Co-Mo@Al₂O₃. [(C₈H₁₇) (C₃H₇)₃P]Br.could be recycled four times with minimal decrease in HDS activity. Reaction products were analyzed by GC-MS which helped in proposing reaction mechanism for the IL coupled HDS process. The present approach attributed to its cost-effective nature, ease of operation with less mechanical requirements in terms of mild operating conditions, and high efficiency could be deemed as an alternative approach for the HDS of DBT on industrial level applications.

Keywords: DFT simulation, GC-MS and reaction mechanism, Ionic liquid coupled HDS of DBT, low Pd loaded catalyst, mild operating condition

Procedia PDF Downloads 121
215 Process Monitoring Based on Parameterless Self-Organizing Map

Authors: Young Jae Choung, Seoung Bum Kim

Abstract:

Statistical Process Control (SPC) is a popular technique for process monitoring. A widely used tool in SPC is a control chart, which is used to detect the abnormal status of a process and maintain the controlled status of the process. Traditional control charts, such as Hotelling’s T2 control chart, are effective techniques to detect abnormal observations and monitor processes. However, many complicated manufacturing systems exhibit nonlinearity because of the different demands of the market. In this case, the unregulated use of a traditional linear modeling approach may not be effective. In reality, many industrial processes contain the nonlinear and time-varying properties because of the fluctuation of process raw materials, slowing shift of the set points, aging of the main process components, seasoning effects, and catalyst deactivation. The use of traditional SPC techniques with time-varying data will degrade the performance of the monitoring scheme. To address these issues, in the present study, we propose a parameterless self-organizing map (PLSOM)-based control chart. The PLSOM-based control chart not only can manage a situation where the distribution or parameter of the target observations changes, but also address the nonlinearity of modern manufacturing systems. The control limits of the proposed PLSOM chart are established by estimating the empirical level of significance on the percentile using a bootstrap method. Experimental results with simulated data and actual process data from a thin-film transistor-liquid crystal display process demonstrated the effectiveness and usefulness of the proposed chart.

Keywords: control chart, parameter-less self-organizing map, self-organizing map, time-varying property

Procedia PDF Downloads 250
214 Unintended Health Inequity: Using the Relationship Between the Social Determinants of Health and Employer-Sponsored Health Insurance as a Catalyst for Organizational Development and Change

Authors: Dinamarie Fonzone

Abstract:

Employer-sponsored health insurance (ESI) strategic decision-making processes rely on financial analysis to guide leadership in choosing plans that will produce optimal organizational spending outcomes. These financial decision-making methods have not abated ESI costs. Previously unrecognized external social determinants, the impact on ESI plan spending, and other organizational strategies are emerging and are important considerations for organizational decision-makers and change management practitioners. The purpose of thisstudy is to examine the relationship between the social determinants of health (SDoH), employer-sponsored health insurance (ESI) plans, andthe unintended consequence of health inequity. A quantitative research design using selectemployee records from an existing employer human capital management database will be analyzed. Statistical regressionmethods will be used to study the relationships between certainSDoH (employee income, neighborhood geographic living area, and health care access) and health plan utilization, cost, and chronic disease prevalence. The discussion will include an application of the social gradient of health theory to the study findings, organizational transformation through changes in ESI decision-making mental models, and the connection of ESI health inequity to organizational development and changediversity, equity, and inclusion strategies.

Keywords: employer-sponsored health insurance, social determinants of health, health inequity, mental models, organizational development, organizational change, social gradient of health theory

Procedia PDF Downloads 81
213 Design, Construction And Validation Of A Simple, Low-cost Phi Meter

Authors: Gabrielle Peck, Ryan Hayes

Abstract:

The use of a phi meter allows for definition of equivalence ratio during a fire test. Previous phi meter designs have used expensive catalysts and had restricted portability due to the large furnace and requirement for pure oxygen. The new design of the phi meter did not require the use of a catalyst. The furnace design was based on the existing micro-scale combustion calorimetry (MCC) furnace and operating conditions based on the secondary oxidizer furnace used in the steady state tube furnace (SSTF). Preliminary tests were conducted to study the effects of varying furnace temperatures on combustion efficiency. The SSTF was chosen to validate the phi meter measurements as it can both pre-set and independently quantify the equivalence ratio during a test. The data were in agreement with the data obtained on the SSTF. It was also validated by a comparison of CO2 yields obtained from the SSTF oxidizer and those obtained by the phi meter. The phi meter designed and constructed in this work was proven to work effectively on a bench-scale. The phi meter was then used to measure the equivalence ratio on a series of large-scale ISO 9705 tests for numerous fire conditions. The materials used were a range of non-homogenous materials such as polyurethane. The measurements corresponded accurately to the data collected, showing the novel design can be used from bench to large-scale tests to measure equivalence ratio. This cheaper, more portable, safer and easier to use phi meter design will enable more widespread use and the ability to quantify fire conditions of tests, allowing for better understanding of flammability and smoke toxicity.

Keywords: phi meter, smoke toxicity, fire condition, ISO9705, novel equipment

Procedia PDF Downloads 82
212 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 185
211 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene

Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell

Abstract:

A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.

Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO

Procedia PDF Downloads 127
210 Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study

Authors: Chun-Wei Yeh, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang

Abstract:

Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature.

Keywords: DFT study, copper oxide cluster, MOFs, methane conversion

Procedia PDF Downloads 43
209 Hybrid Graphene Based Nanomaterial as Highly Efficient Catalyst for the Electrochemical Determination of Ciprofloxacin

Authors: Tien S. H. Pham, Peter J. Mahon, Aimin Yu

Abstract:

The detection of drug molecules by voltammetry has attracted great interest over the past years. However, many drug molecules exhibit poor electrochemical signals at common electrodes which result in low sensitivity in detection. An efficient way to overcome this problem is to modify electrodes with functional materials. Since discovered in 2004, graphene (or reduced graphene oxide) has emerged as one of the most studied two-dimensional carbon materials in condensed matter physics, electrochemistry, and so on due to its exceptional physicochemical properties. Additionally, the continuous development of technology has opened the new window for the successful fabrications of many novel graphene-based nanomaterials to serve in electrochemical analysis. This research aims to synthesize and characterize gold nanoparticle coated beta-cyclodextrin functionalized reduced graphene oxide (Au NP–β-CD–RGO) nanocomposites with highly conductive and strongly electro-catalytic properties as well as excellent supramolecular recognition abilities for the modification of electrodes. The electrochemical responses of ciprofloxacin at the as-prepared nanocomposite modified electrode was effectively amplified was much higher in comparison with that at the bare electrode. The linear concentration range was from 0.01 to 120 µM, with a detection limit of 2.7 nM using differential pulse voltammetry. Thus, Au NP–β-CD–RGO nanocomposite has great potential as an ideal material to construct sensitive sensors for the electrochemical determination of ciprofloxacin or similar antibacterial drugs in the future based on its excellent stability, selectivity, and reproducibility.

Keywords: Au nanoparticles, β-CD, ciprofloxacin, electrochemical determination, graphene based nanomaterials

Procedia PDF Downloads 171
208 Spatial Integration at the Room-Level of 'Sequina' Slum Area in Alexandria, Egypt

Authors: Ali Essam El Shazly

Abstract:

The slum survey of 'Sequina' area in Alexandria details the building rooms of twenty-building samples according to the integral measure of space syntax. The essence of room organization sets the most integrative 'visitor' domain between the 'inhabitant' wings of less integrated 'parent' than the 'children' structure with visual ring of 'balcony' space. Despite the collective real relative asymmetry of 'pheno-type' aggregation, the relative asymmetry of individual layouts reveals 'geno-type' structure of spatial diversity. The multifunction of rooms optimizes the integral structure of graph and visibility merge, which contrasts with the deep tailing structure of distinctive social domains. The most integrative layout inverts the geno-type into freed rooms of shallow 'inhabitant' domain against the off-centered 'visitor' space, while the most segregated layout further restricts the pheno-type through isolated 'visitor' from 'inhabitant' domains across the 'staircase' public domain. The catalyst 'kitchen & living' spaces demonstrate multi-structural dimensions among the various social domains. The former ranges from most exposed central integrity to the most hidden 'motherhood' territories. The latter, however, mostly integrates at centrality or at the further ringy 'childern' domain. The study concludes social structure of spatial integrity for redevelopment, which is determined through the micro-level survey of rooms with integral dimensions.

Keywords: Alexandria, Sequina slum, spatial integration, space syntax

Procedia PDF Downloads 409
207 An Analysis on Community Based Heritage Tourism: A Resource for a Small Community in Rural County Clare, Ireland

Authors: Marie Taylor, Catriona Murphy

Abstract:

The aim of this paper is to identify the factors of success in community based heritage tourism initiatives. Heritage and community are central to many tourism initiatives with heritage tourism having the potential to act as a catalyst for community development. This paper presents the findings of research that examined the relationship between heritage tourism and community development. The findings recognised that heritage tourism had economic, social and cultural benefits for a community as well as a role in strengthening concepts such as sense of identity, place, and authenticity. In addition, this paper proposes an assessment framework for sustainable community based heritage tourism to identify factors and contextual influences involved in their success or failure. In evaluating the sustainability of such initiatives, a number of issues are investigated including the continued role of stakeholders, the role of funding, the influence of collaboration and the changing role of rural development and its impact on community engagement. The research is descriptive, evaluative and explanatory research, exploring and analysing issues such as the development of community structures in community based heritage tourism. Thus, it will contribute to the development of potential tourism and community development policies and strategies at a local, national and international level. An interpretative and inductive approach is utilised, and a mixed method approach followed as it encapsulates the best of quantitative and qualitative research methods. The case studies focus on social enterprises in relation to tourism and community based tourism cooperatives as there are limited study and knowledge of these. Consequently, this research will contribute to the discourse on community based heritage tourism as an aspect of community development.

Keywords: collaboration, community-based heritage tourism, stakeholders, sustainable tourism

Procedia PDF Downloads 327
206 Superlyophobic Surfaces for Increased Heat Transfer during Condensation of CO₂

Authors: Ingrid Snustad, Asmund Ervik, Anders Austegard, Amy Brunsvold, Jianying He, Zhiliang Zhang

Abstract:

CO₂ capture, transport and storage (CCS) is essential to mitigate global anthropogenic CO₂ emissions. To make CCS a widely implemented technology in, e.g. the power sector, the reduction of costs is crucial. For a large cost reduction, every part of the CCS chain must contribute. By increasing the heat transfer efficiency during liquefaction of CO₂, which is a necessary step, e.g. ship transportation, the costs associated with the process are reduced. Heat transfer rates during dropwise condensation are up to one order of magnitude higher than during filmwise condensation. Dropwise condensation usually occurs on a non-wetting surface (Superlyophobic surface). The vapour condenses in discrete droplets, and the non-wetting nature of the surface reduces the adhesion forces and results in shedding of condensed droplets. This, again, results in fresh nucleation sites for further droplet condensation, effectively increasing the liquefaction efficiency. In addition, the droplets in themselves have a smaller heat transfer resistance than a liquid film, resulting in increased heat transfer rates from vapour to solid. Surface tension is a crucial parameter for dropwise condensation, due to its impact on the solid-liquid contact angle. A low surface tension usually results in a low contact angle, and again to spreading of the condensed liquid on the surface. CO₂ has very low surface tension compared to water. However, at relevant temperatures and pressures for CO₂ condensation, the surface tension is comparable to organic compounds such as pentane, a dropwise condensation of CO₂ is a completely new field of research. Therefore, knowledge of several important parameters such as contact angle and drop size distribution must be gained in order to understand the nature of the condensation. A new setup has been built to measure these relevant parameters. The main parts of the experimental setup is a pressure chamber in which the condensation occurs, and a high- speed camera. The process of CO₂ condensation is visually monitored, and one can determine the contact angle, contact angle hysteresis and hence, the surface adhesion of the liquid. CO₂ condensation on different surfaces can be analysed, e.g. copper, aluminium and stainless steel. The experimental setup is built for accurate measurements of the temperature difference between the surface and the condensing vapour and accurate pressure measurements in the vapour. The temperature will be measured directly underneath the condensing surface. The next step of the project will be to fabricate nanostructured surfaces for inducing superlyophobicity. Roughness is a key feature to achieve contact angles above 150° (limit for superlyophobicity) and controlled, and periodical roughness on the nanoscale is beneficial. Surfaces that are non- wetting towards organic non-polar liquids are candidates surface structures for dropwise condensation of CO₂.

Keywords: CCS, dropwise condensation, low surface tension liquid, superlyophobic surfaces

Procedia PDF Downloads 245
205 The Effects of Varying Nutrient Conditions on Hydrogen Production in PGR5 Deficient C. Reinhardtii Mutants

Authors: Samuel Mejorado

Abstract:

C. Reinahrdtii serves as one of the most promising organisms from which to obtain biological hydrogen. However, its production catalyst, [FeFe]-hydrogenase, is largely inhibited by the presence of oxygen. In recent years, researchers have identified a Proton Gradient Regulation 5 (PGR5) deficient mutant, which shows enhanced respiration and lower accumulations of oxygen within the system. In this research, we investigated the effects of varying nutrient conditions on PGR5 mutants' ability to produce hydrogen. After growing PGR5 mutants in varying nutrient conditions under 55W fluorescent lamps at 30℃ with constant stirring at 200 rpm, a common water displacement method was utilized to obtain a definitive volumetric reading of hydrogen produced by these mutants over a period of 12 days. After the trials, statistical t-tests and ANOVAs were performed to better determine the effect which nutrient conditions have on PGR5 mutants' ability to produce hydrogen. In this, we report that conditions of sulfur deprivation most optimally enhanced hydrogen production within these mutants, with groups grown under these conditions demonstrating the highest production capacity over the entire 12-day period. Similarly, it was found that when grown under conditions of nitrogen deprivation, a favorable shift towards carbon fixation and overall lipid/starch metabolism was observed. Overall, these results demonstrate that PGR5-deficient mutants stand as a promising source of biohydrogen when grown under conditions of sulfur deprivation. To date, photochemical characteristics of [FeFe]-hydrogenase in these mutants have yet to be investigated under conditions of sulfur deprivation.

Keywords: biofuel, biohydrogen, [FeFe]-hydrogenase, algal biofuel

Procedia PDF Downloads 115
204 Monitoring Synthesis of Biodiesel through Online Density Measurements

Authors: Arnaldo G. de Oliveira, Jr, Matthieu Tubino

Abstract:

The transesterification process of triglycerides with alcohols that occurs during the biodiesel synthesis causes continuous changes in several physical properties of the reaction mixture, such as refractive index, viscosity and density. Amongst them, density can be an useful parameter to monitor the reaction, in order to predict the composition of the reacting mixture and to verify the conversion of the oil into biodiesel. In this context, a system was constructed in order to continuously determine changes in the density of the reacting mixture containing soybean oil, methanol and sodium methoxide (30 % w/w solution in methanol), stirred at 620 rpm at room temperature (about 27 °C). A polyethylene pipe network connected to a peristaltic pump was used in order to collect the mixture and pump it through a coil fixed on the plate of an analytical balance. The collected mass values were used to trace a curve correlating the mass of the system to the reaction time. The density variation profile versus the time clearly shows three different steps: 1) the dispersion of methanol in oil causes a decrease in the system mass due to the lower alcohol density followed by stabilization; 2) the addition of the catalyst (sodium methoxide) causes a larger decrease in mass compared to the first step (dispersion of methanol in oil) because of the oil conversion into biodiesel; 3) the final stabilization, denoting the end of the reaction. This density variation profile provides information that was used to predict the composition of the mixture over the time and the reaction rate. The precise knowledge of the duration of the synthesis means saving time and resources on a scale production system. This kind of monitoring provides several interesting features such as continuous measurements without collecting aliquots.

Keywords: biodiesel, density measurements, online continuous monitoring, synthesis

Procedia PDF Downloads 554
203 Sports as a Powerful Tool in Building Peace among Countries of the World

Authors: Mohammed Usman Sani

Abstract:

Worldwide it is observed that sport plays an important role in our communities and is capable of bringing about the need for peaceful coexistence within and among nations which include tolerating one another, building team spirit, showing loyalty and fair play. In addition, sport builds character and the development of skills, which are necessary in fulfilling a desirable and happy life among nations. Sport builds discipline, endurance, courage and self-motivation among nations. Sports for Peace was set up to answer the question of whether sport can foster common ideals. In sports as a powerful tool in building peace, athletes all over the world come together to promote the core values of sport, such as fair play, tolerance, the Olympic ideal of freedom and intercultural understanding. Sport as a powerful tool is used to address varieties of social issues that is widely accepted in countries mostly affected by poverty, violence and conflict. In building peace through sports among nations, a wide range of individuals and nonprofit organizations which includes the United Nations (UN) and international development agencies have accepted sport as an important social catalyst. This paper therefore seeks to define sports, sports and its fundamental rights, sports as a powerful tool, and ways in which sport may bring about peace building among countries and finally the status of Sport Development and Peace initiatives in Nigeria. It concluded that the international community has acknowledged the importance of sport in peace building efforts among nations. It further recommended that countries should engage in the design and delivery of sports, adhering to generally accepted principles of openness and sustainability through sports collaboration, sports partnerships and coordinated effort.

Keywords: building, peace, powerful tool, sports

Procedia PDF Downloads 254
202 Numerical Study on Response of Polymer Electrolyte Fuel Cell (PEFCs) with Defects under Different Load Conditions

Authors: Muhammad Faizan Chinannai, Jaeseung Lee, Mohamed Hassan Gundu, Hyunchul Ju

Abstract:

Fuel cell is known to be an effective renewable energy resource which is commercializing in the present era. It is really important to know about the improvement in performance even when the system faces some defects. This study was carried out to analyze the performance of the Polymer electrolyte fuel cell (PEFCs) under different operating conditions such as current density, relative humidity and Pt loadings considering defects with load changes. The purpose of this study is to analyze the response of the fuel cell system with defects in Balance of Plants (BOPs) and catalyst layer (CL) degradation by maintaining the coolant flow rate as such to preserve the cell temperature at the required level. Multi-Scale Simulation of 3D two-phase PEFC model with coolant was carried out under different load conditions. For detailed analysis and performance comparison, extensive contours of temperature, current density, water content, and relative humidity are provided. The simulation results of the different cases are compared with the reference data. Hence the response of the fuel cell stack with defects in BOP and CL degradations can be analyzed by the temperature difference between the coolant outlet and membrane electrode assembly. The results showed that the Failure of the humidifier increases High-Frequency Resistance (HFR), air flow defects and CL degradation results in the non-uniformity of current density distribution and high cathode activation overpotential, respectively.

Keywords: PEM fuel cell, fuel cell modeling, performance analysis, BOP components, current density distribution, degradation

Procedia PDF Downloads 184
201 The Solid-Phase Sensor Systems for Fluorescent and SERS-Recognition of Neurotransmitters for Their Visualization and Determination in Biomaterials

Authors: Irina Veselova, Maria Makedonskaya, Olga Eremina, Alexandr Sidorov, Eugene Goodilin, Tatyana Shekhovtsova

Abstract:

Such catecholamines as dopamine, norepinephrine, and epinephrine are the principal neurotransmitters in the sympathetic nervous system. Catecholamines and their metabolites are considered to be important markers of socially significant diseases such as atherosclerosis, diabetes, coronary heart disease, carcinogenesis, Alzheimer's and Parkinson's diseases. Currently, neurotransmitters can be studied via electrochemical and chromatographic techniques that allow their characterizing and quantification, although these techniques can only provide crude spatial information. Besides, the difficulty of catecholamine determination in biological materials is associated with their low normal concentrations (~ 1 nM) in biomaterials, which may become even one more order lower because of some disorders. In addition, in blood they are rapidly oxidized by monoaminooxidases from thrombocytes and, for this reason, the determination of neurotransmitter metabolism indicators in an organism should be very rapid (15—30 min), especially in critical states. Unfortunately, modern instrumental analysis does not offer a complex solution of this problem: despite its high sensitivity and selectivity, HPLC-MS cannot provide sufficiently rapid analysis, while enzymatic biosensors and immunoassays for the determination of the considered analytes lack sufficient sensitivity and reproducibility. Fluorescent and SERS-sensors remain a compelling technology for approaching the general problem of selective neurotransmitter detection. In recent years, a number of catecholamine sensors have been reported including RNA aptamers, fluorescent ribonucleopeptide (RNP) complexes, and boronic acid based synthetic receptors and the sensor operated in a turn-off mode. In this work we present the fluorescent and SERS turn-on sensor systems based on the bio- or chemorecognizing nanostructured films {chitosan/collagen-Tb/Eu/Cu-nanoparticles-indicator reagents} that provide the selective recognition, visualization, and sensing of the above mentioned catecholamines on the level of nanomolar concentrations in biomaterials (cell cultures, tissue etc.). We have (1) developed optically transparent porous films and gels of chitosan/collagen; (2) ensured functionalization of the surface by molecules-'recognizers' (by impregnation and immobilization of components of the indicator systems: biorecognizing and auxiliary reagents); (3) performed computer simulation for theoretical prediction and interpretation of some properties of the developed materials and obtained analytical signals in biomaterials. We are grateful for the financial support of this research from Russian Foundation for Basic Research (grants no. 15-03-05064 a, and 15-29-01330 ofi_m).

Keywords: biomaterials, fluorescent and SERS-recognition, neurotransmitters, solid-phase turn-on sensor system

Procedia PDF Downloads 378
200 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 71
199 Study of Mechanical Properties of Glutarylated Jute Fiber Reinforced Epoxy Composites

Authors: V. Manush Nandan, K. Lokdeep, R. Vimal, K. Hari Hara Subramanyan, C. Aswin, V. Logeswaran

Abstract:

Natural fibers have attained the potential market in the composite industry because of the huge environmental impact caused by synthetic fibers. Among the natural fibers, jute fibers are the most abundant plant fibers which are manufactured mainly in countries like India. Even though there is a good motive to utilize the natural supplement, the strength of the natural fiber composites is still a topic of discussion. In recent days, many researchers are showing interest in the chemical modification of the natural fibers to increase various mechanical and thermal properties. In the present study, jute fibers have been modified chemically using glutaric anhydride at different concentrations of 5%, 10%, 20%, and 30%. The glutaric anhydride solution is prepared by dissolving the different quantity of glutaric anhydride in benzene and dimethyl-sulfoxide using sodium formate catalyst. The jute fiber mats have been treated by the method of retting at various time intervals of 3, 6, 12, 24, and 36 hours. The modification structure of the treated fibers has been confirmed with infrared spectroscopy. The degree of modification increases with an increase in retention time, but higher retention time has damaged the fiber structure. The unmodified fibers and glutarylated fibers at different retention times are reinforced with epoxy matrix under room temperature. The tensile strength and flexural strength of the composites are analyzed in detail. Among these, the composite made with glutarylated fiber has shown good mechanical properties when compared to those made of unmodified fiber.

Keywords: flexural properties, glutarylation, glutaric anhydride, tensile properties

Procedia PDF Downloads 164
198 A Literature Review on the Barriers in Incorporating Universal Design in Public Transportation Projects: Southeast Asian Countries

Authors: Oscar Conrad Pili De Jesus

Abstract:

In consonance with the UN Convention on Rights for People with Disabilities, countries are mandated to provide a barrier-free environment through adherence to universal design and full participation of persons with disabilities (PWDs) in planning and implementation, but there is little action in incorporating universal design in the public environment. Travelling freely and independently is paramount to the needs of the PWDs to participate in daily activities ahead of them, and it contributes to the advancement of their inclusion in society, in which universal design is a catalyst to provide seamless access and mobility. This study aims to determine the barriers to incorporating the concept of universal design in transportation projects in Southeast Asian countries. Based on a literature review and using the accessible journey chain as a framework, barriers are identified and categorized in the components of public transport within the context of utilization of the transport mode, the built environment within the transport infrastructure, and the first and last miles of travel. Some findings in the study which constitute solutions to creating a barrier-free environment were identified as information to guide the future research agenda in efficiently incorporating universal design in transportation projects in Southeast Asian countries. The study reflected that the focus of most literature is on the built environment, noting that there is a need for future studies to investigate universal design in the context of the public transport component in the active journey chain.

Keywords: public transportation, barriers, universal design, persons with disabilities, accessible journey chain

Procedia PDF Downloads 106
197 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 51
196 Electrohydrodynamic Patterning for Surface Enhanced Raman Scattering for Point-of-Care Diagnostics

Authors: J. J. Rickard, A. Belli, P. Goldberg Oppenheimer

Abstract:

Medical diagnostics, environmental monitoring, homeland security and forensics increasingly demand specific and field-deployable analytical technologies for quick point-of-care diagnostics. Although technological advancements have made optical methods well-suited for miniaturization, a highly-sensitive detection technique for minute sample volumes is required. Raman spectroscopy is a well-known analytical tool, but has very weak signals and hence is unsuitable for trace level analysis. Enhancement via localized optical fields (surface plasmons resonances) on nanoscale metallic materials generates huge signals in surface-enhanced Raman scattering (SERS), enabling single molecule detection. This enhancement can be tuned by manipulation of the surface roughness and architecture at the sub-micron level. Nevertheless, the development and application of SERS has been inhibited by the irreproducibility and complexity of fabrication routes. The ability to generate straightforward, cost-effective, multiplex-able and addressable SERS substrates with high enhancements is of profound interest for SERS-based sensing devices. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing. The superior detection properties and the ability to fabricate SERS substrates on the miniaturized scale, will facilitate the development of advanced and novel opto-fluidic devices, such as portable detection systems, and will offer numerous applications in biomedical diagnostics, forensics, ecological warfare and homeland security.

Keywords: hierarchical electrohydrodynamic patterning, medical diagnostics, point-of care devices, SERS

Procedia PDF Downloads 319
195 Planning Politics of Dhaka City: Recent Urbanization and Gentrification

Authors: N. M. Esa Abrar Khan

Abstract:

This paper will describe how a city planning can be abusive and promote gentrification in Dhaka city area in an extreme remorseless way. To our knowledge, Dhaka is enormously overpopulated, and its somewhat unrest political situation and corruption is promoting not only bruised urban growth but also this growth leering people socially and mentally. Due to globalization, whole world is in a rat race of development fiesta and Bangladesh is no longer falling back in this race. Recent political agenda is to develop the country anyhow, whether it is a good development or not. In the name of development, Dhaka city is becoming overwhelmed with flyovers, needless shopping malls and commercial complexes. This drastic urbanization is promoting gentrification. Gentrification is the process of societal change which intimidate the existing group of people from a certain place and encouraging affluent group of people on that place and eventually they take the control of that place. Process of gentrification is more capitalistic rather socially democratic. Architects are indirectly or directly related with this social change and politics is the catalyst of these social alteration. The methodology of this paper was mainly dependent on mass interviews including political leaders and activist’s interviews. Also, photographic analysis, empirical research etc. helped to create this paper. Secondary data were collected from different published and unpublished documents, relevant research articles, and books. From the study, it is clearly can be said that architects and urban designers are promoting social imbalance. The paper tried to suggest how architects and other designers can help to resist gentrification and can remain the social heterogeneity.

Keywords: gentrification, migration, Bangladesh, urban, globalization, hybrid

Procedia PDF Downloads 143
194 Molecular Simulation of NO, NH3 Adsorption in MFI and H-ZSM5

Authors: Z. Jamalzadeh, A. Niaei, H. Erfannia, S. G. Hosseini, A. S. Razmgir

Abstract:

Due to developing the industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is urgent environmentally. Selective Catalytic Reduction of NOx is one of the most common techniques for NOx removal in which Zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, molecular simulations is applied for studying the adsorption phenomena in nanocatalysts applied for SCR of NOx process. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC). Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the Energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 Zeolite compared to the isosteric heat of NH3 which was low in value.

Keywords: Monte Carlo simulation, adsorption, NOx, ZSM5

Procedia PDF Downloads 344
193 Evaluation of Synthesis and Structure Elucidation of Some Benzimidazoles as Antimicrobial Agents

Authors: Ozlem Temiz Arpaci, Meryem Tasci, Hakan Goker

Abstract:

Benzimidazole, a structural isostere of indol and purine nuclei that can interact with biopolymers, can be identified as master key. So that benzimidazole compounds are important fragments in medicinal chemistry because of their wide range of biological activities including antimicrobial activity. We planned to synthesize some benzimidazole compounds for developing new antimicrobial drug candidates. In this study, we put some heterocyclic rings on second position and an amidine group on the fifth position of benzimidazole ring and synthesized them using a multiple step procedure. For the synthesis of the compounds, as the first step, 4-chloro-3-nitrobenzonitrile was reacted with cyclohexylamine in dimethyl formamide. Imidate esters (compound 2) were then prepared with absolute ethanol saturated with dry HCl gas. These imidate esters which were not too stable were converted to compound 3 by passing ammonia gas through ethanol. At the Pd / C catalyst, the nitro group is reduced to the amine group (compound 4). Finally, various aldehyde derivatives were reacted with sodium metabisulfite addition products to give compound 5-20. Melting points were determined on a Buchi B-540 melting point apparatus in open capillary tubes and are uncorrected. Elemental analyses were done a Leco CHNS 932 elemental analyzer. 1H-NMR and 13C-NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer using DMSO-d6. Mass spectra were acquired on a Waters Micromass ZQ using the ESI(+) method. The structures of them were supported by spectral data. The 1H-NMR, 13C NMR and mass spectra and elemental analysis results agree with those of the proposed structures. Antimicrobial activity studies of the synthesized compounds are under the investigation.

Keywords: benzimidazoles, synthesis, structure elucidation, antimicrobial

Procedia PDF Downloads 134
192 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 99
191 Synthesis and Properties of Nanosized Mixed Oxide Systems for Environmental Protection

Authors: I. Yordanova, H. Kolev, S. Todorova, Z. Cherkezova-Zheleva

Abstract:

Catalysis plays a key role in solving many environmental problems by establishing efficient catalytic systems for environmental protection and reducing emissions of greenhouse gases from industry. Volatile organic compounds are major air pollutants. There are several ways to dispose of emissions like - adsorption, condensation, absorption, bio-filtration, thermal, catalytic, plasma and ultraviolet oxidation. The catalytic oxidation has more advantages over other methods. For example - lower energy consumption; the concentration of the organic contaminant may be low or may vary within wide limits. Catalysts for complete oxidation of VOCs can be classified into three categories: noble metal, metal oxides or supported metal oxides and mixture of noble metals and metal oxides. Most of the catalysts for the complete catalytic oxidation are based on Pt, Pd, Rh or a combination thereof. The oxides of the transition metal are one of the alternatives to noble metal catalysts for these reactions. They are less active at low temperatures, but at higher - their activity is similar. The properties of the catalyst depend on the distribution of the active phase, the medium type of the pre-treatment, the interaction between the active phase and the support and the interaction between the active phase and the reaction medium. Supported mono-component Mn and bi-component Mn-Co systems are examined in present study. The samples are prepared using co-precipitation method. SiO2 (Aerosil) is used as a support. The studied samples were precipitated by NH4OH. The synthesized samples were characterized by XRD, XPS, TPR and tested in the catalytic reaction of complete oxidation of n-hexane, propane, methanol, ethanol and propanol.

Keywords: catalytic oxidation, Co-Mn oxide, oxidation of hydrocarbons and alcohols, environmental protection

Procedia PDF Downloads 367