Search results for: dynamic compression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4756

Search results for: dynamic compression

4066 Simulation of Uniaxial Ratcheting Behaviors of SA508-3 Steel at Elevated Temperature

Authors: Jun Tian, Yu Yang, Liping Zhang, Qianhua Kan

Abstract:

Experimental results show that SA 508-3 steel exhibits temperature dependent cyclic softening characteristic and obvious ratcheting behaviors, and dynamic strain age was observed at temperature range of 200 ºC to 350 ºC. Based on these observations, a temperature dependent cyclic plastic constitutive model was proposed by introducing the nonlinear cyclic softening and kinematic hardening rules, and the dynamic strain age was also considered into the constitutive model. Comparisons between experiments and simulations were carried out to validate the proposed model at elevated temperature.

Keywords: constitutive model, elevated temperature, ratcheting, SA 508-3

Procedia PDF Downloads 302
4065 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials

Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang

Abstract:

Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.

Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay

Procedia PDF Downloads 457
4064 An Architectural Approach for the Dynamic Adaptation of Services-Based Software

Authors: Mohhamed Yassine Baroudi, Abdelkrim Benammar, Fethi Tarik Bendimerad

Abstract:

This paper proposes software architecture for dynamical service adaptation. The services are constituted by reusable software components. The adaptation’s goal is to optimize the service function of their execution context. For a first step, the context will take into account just the user needs but other elements will be added. A particular feature in our proposition is the profiles that are used not only to describe the context’s elements but also the components itself. An adapter analyzes the compatibility between all these profiles and detects the points where the profiles are not compatibles. The same Adapter search and apply the possible adaptation solutions: component customization, insertion, extraction or replacement.

Keywords: adaptative service, software component, service, dynamic adaptation

Procedia PDF Downloads 298
4063 Design, Development and Evaluation of a Portable Recording System to Capture Dynamic Presentations using the Teacher´s Tablet PC

Authors: Enrique Barra, Abel Carril, Aldo Gordillo, Joaquin Salvachua, Juan Quemada

Abstract:

Computers and multimedia equipment have improved a lot in the last years. They have reduced costs and size while at the same time has increased their capabilities. These improvements allowed us to design and implement a portable recording system that also integrates the teacher´s tablet PC to capture what he/she writes on the slides and all that happens in it. This paper explains this system in detail and the validation of the recordings that we did after using it to record all the lectures of a course in our university called “Communications Software”. The results show that pupils used the recordings for different purposes and consider them useful for a variety of things, especially after missing a lecture.

Keywords: recording system, capture dynamic presentations, lecture recording

Procedia PDF Downloads 366
4062 Environmental Benefits of Corn Cob Ash in Lateritic Soil Cement Stabilization for Road Works in a Sub-Tropical Region

Authors: Ahmed O. Apampa, Yinusa A. Jimoh

Abstract:

The potential economic viability and environmental benefits of using a biomass waste, such as corn cob ash (CCA) as pozzolan in stabilizing soils for road pavement construction in a sub-tropical region was investigated. Corn cob was obtained from Maya in South West Nigeria and processed to ash of characteristics similar to Class C Fly Ash pozzolan as specified in ASTM C618-12. This was then blended with ordinary Portland cement in the CCA:OPC ratios of 1:1, 1:2 and 2:1. Each of these blends was then mixed with lateritic soil of ASHTO classification A-2-6(3) in varying percentages from 0 – 7.5% at 1.5% intervals. The soil-CCA-Cement mixtures were thereafter tested for geotechnical index properties including the BS Proctor Compaction, California Bearing Ratio (CBR) and the Unconfined Compression Strength Test. The tests were repeated for soil-cement mix without any CCA blending. The cost of the binder inputs and optimal blends of CCA:OPC in the stabilized soil were thereafter analyzed by developing algorithms that relate the experimental data on strength parameters (Unconfined Compression Strength, UCS and California Bearing Ratio, CBR) with the bivariate independent variables CCA and OPC content, using Matlab R2011b. An optimization problem was then set up minimizing the cost of chemical stabilization of laterite with CCA and OPC, subject to the constraints of minimum strength specifications. The Evolutionary Engine as well as the Generalized Reduced Gradient option of the Solver of MS Excel 2010 were used separately on the cells to obtain the optimal blend of CCA:OPC. The optimal blend attaining the required strength of 1800 kN/m2 was determined for the 1:2 CCA:OPC as 5.4% mix (OPC content 3.6%) compared with 4.2% for the OPC only option; and as 6.2% mix for the 1:1 blend (OPC content 3%). The 2:1 blend did not attain the required strength, though over a 100% gain in UCS value was obtained over the control sample with 0% binder. Upon the fact that 0.97 tonne of CO2 is released for every tonne of cement used (OEE, 2001), the reduced OPC requirement to attain the same result indicates the possibility of reducing the net CO2 contribution of the construction industry to the environment ranging from 14 – 28.5% if CCA:OPC blends are widely used in soil stabilization, going by the results of this study. The paper concludes by recommending that Nigeria and other developing countries in the sub-tropics with abundant stock of biomass waste should look in the direction of intensifying the use of biomass waste as fuel and the derived ash for the production of pozzolans for road-works, thereby reducing overall green house gas emissions and in compliance with the objectives of the United Nations Framework on Climate Change.

Keywords: corn cob ash, biomass waste, lateritic soil, unconfined compression strength, CO2 emission

Procedia PDF Downloads 373
4061 Using Cooperation without Communication in a Multi-Agent Unpredictable Dynamic Real-Time Environment

Authors: Abbas Khosravi

Abstract:

This paper discusses the use of cooperation without communication in a multi-agent, unpredictable, dynamic real-time environment. The architecture of the Persian Gulf agent consists of three layers: fixed rule, low level, and high level layers, allowing for cooperation without direct communication. A scenario is presented to each agent in the form of a file, specifying each player's role and actions in the game. The scenario helps in cases of miscommunication, improving team performance. Cooperation without communication enhances reliability and coordination among agents, leading to better results in challenging situations.

Keywords: multi-agent systems, communication, Robocop, software engineering

Procedia PDF Downloads 34
4060 Earthquake Resistant Sustainable Steel Green Building

Authors: Arup Saha Chaudhuri

Abstract:

Structural steel is a very ductile material with high strength carrying capacity, thus it is very useful to make earthquake resistant buildings. It is a homogeneous material also. The member section and the structural system can be made very efficient for economical design. As the steel is recyclable and reused, it is a green material. The embodied energy for the efficiently designed steel structure is less than the RC structure. For sustainable green building steel is the best material nowadays. Moreover, pre-engineered and pre-fabricated faster construction methodologies help the development work to complete within the stipulated time. In this paper, the usefulness of Eccentric Bracing Frame (EBF) in steel structure over Moment Resisting Frame (MRF) and Concentric Bracing Frame (CBF) is shown. Stability of the steel structures against horizontal forces especially in seismic condition is efficiently possible by Eccentric bracing systems with economic connection details. The EBF is pin–ended, but the beam-column joints are designed for pin ended or for full connectivity. The EBF has several desirable features for seismic resistance. In comparison with CBF system, EBF system can be designed for appropriate stiffness and drift control. The link beam is supposed to yield in shear or flexure before initiation of yielding or buckling of the bracing member in tension or compression. The behavior of a 2-D steel frame is observed under seismic loading condition in the present paper. Ductility and brittleness of the frames are compared with respect to time period of vibration and dynamic base shear. It is observed that the EBF system is better than MRF system comparing the time period of vibration and base shear participation.

Keywords: steel building, green and sustainable, earthquake resistant, EBF system

Procedia PDF Downloads 349
4059 Dynamic Analysis and Vibration Response of Thermoplastic Rolling Elements in a Rotor Bearing System

Authors: Nesrine Gaaliche

Abstract:

This study provides a finite element dynamic model for analyzing rolling bearing system vibration response. The vibration responses of polypropylene bearings with and without defects are studied using FE analysis and compared to experimental data. The viscoelastic behavior of thermoplastic is investigated in this work to evaluate the influence of material flexibility and damping viscosity. The vibrations are detected using 3D dynamic analysis. Peak vibrations are more noticeable in an inner ring defect than in an outer ring defect, according to test data. The performance of thermoplastic bearings is compared to that of metal parts using vibration signals. Both the test and numerical results show that Polypropylene bearings exhibit less vibration than steel counterparts. Unlike bearings made from metal, polypropylene bearings absorb vibrations and handle shaft misalignments. Following validation of the overall vibration spectrum data, Von Mises stresses inside the rings are assessed under high loads. Stress is significantly high under the balls, according to the simulation findings. For the test cases, the computational findings correspond closely to the experimental results.

Keywords: viscoelastic, FE analysis, polypropylene, bearings

Procedia PDF Downloads 104
4058 Multi-Scale Damage and Mechanical Behavior of Sheet Molding Compound Composites Subjected to Fatigue, Dynamic, and Post-Fatigue Dynamic Loadings

Authors: M. Shirinbayan, J. Fitoussi, N. Abbasnezhad, A. Lucas, A. Tcharkhtchi

Abstract:

Sheet Molding Compounds (SMCs) with special microstructures are very attractive to use in automobile structures especially when they are accidentally subjected to collision type accidents because of their high energy absorption capacity. These are materials designated as standard SMC, Advanced Sheet Molding Compounds (A-SMC), Low-Density SMC (LD-SMC) and etc. In this study, testing methods have been performed to compare the mechanical responses and damage phenomena of SMC, LD-SMC, and A-SMC under quasi-static and high strain rate tensile tests. The paper also aims at investigating the effect of an initial pre-damage induced by fatigue on the tensile dynamic behavior of A-SMC. In the case of SMCs and A-SMCs, whatever the fibers orientation and applied strain rate are, the first observed phenomenon of damage corresponds to decohesion of the fiber-matrix interface which is followed by coalescence and multiplication of these micro-cracks and their propagations. For LD-SMCs, damage mechanisms depend on the presence of Hollow Glass Microspheres (HGM) and fibers orientation.

Keywords: SMC, Sheet Molding Compound, LD-SMC, Low-Density SMC, A-SMC, Advanced Sheet Molding Compounds, HGM, Hollow Glass Microspheres, damage

Procedia PDF Downloads 211
4057 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing

Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi

Abstract:

This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.

Keywords: data compression, ultrasonic communication, guided waves, FEM analysis

Procedia PDF Downloads 124
4056 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake

Procedia PDF Downloads 284
4055 A Low-Power Comparator Structure with Arbitrary Pre-Amplification Delay

Authors: Ata Khorami, Mohammad Sharifkhani

Abstract:

In the dynamic comparators, the pre-amplifier amplifies the input differential voltage and when the output Vcm of the pre-amplifier becomes larger than Vth of the latch input transistors, the latch is activated and finalizes the comparison. As a result, the pre-amplification delay is fixed to a value and cannot be set at the minimum required delay, thus, significant power and delay are imposed. In this paper, a novel structure is proposed through which the pre-amplification delay can be set at any low value saving power and time. Simulations show that using the proposed structure, by setting the pre-amplification delay at the minimum required value the power and comparison delay can be reduced by 55% and 100ps respectively.

Keywords: dynamic comparator, low power comparator, analog to digital converter, pre-amplification delay

Procedia PDF Downloads 204
4054 Simulating the Effect of Chlorine on Dynamic of Main Aquatic Species in Urban Lake with a Mini System Dynamic Model

Authors: Zhiqiang Yan, Chen Fan, Beicheng Xia

Abstract:

Urban lakes play an invaluable role in urban water systems such as flood control, landscape, entertainment, and energy utilization, and have suffered from severe eutrophication over the past few years. To investigate the ecological response of main aquatic species and system stability to chlorine interference in shallow urban lakes, a mini system dynamic model, based on the competition and predation of main aquatic species and TP circulation, was developed. The main species of submerged macrophyte, phytoplankton, zooplankton, benthos and TP in water and sediment were simulated as variables in the model with the interference of chlorine which effect function was attenuation equation. The model was validated by the data which was investigated in the Lotus Lake in Guangzhou from October 1, 2015 to January 31, 2016. Furthermore, the eco-exergy was used to analyze the change in complexity of the shallow urban lake. The results showed the correlation coefficient between observed and simulated values of all components presented significant. Chlorine showed a significant inhibitory effect on Microcystis aeruginosa,Rachionus plicatilis, Diaphanosoma brachyurum Liévin and Mesocyclops leuckarti (Claus).The outbreak of Spiroggra spp. inhibited the growth of Vallisneria natans (Lour.) Hara, caused a gradual decrease of eco-exergy, reflecting the breakdown of ecosystem internal equilibria. It was concluded that the study gives important insight into using chlorine to achieve eutrophication control and understand mechanism process.

Keywords: system dynamic model, urban lake, chlorine, eco-exergy

Procedia PDF Downloads 209
4053 Hybrid SVM/DBN Model for Arabic Isolated Words Recognition

Authors: Elyes Zarrouk, Yassine Benayed, Faiez Gargouri

Abstract:

This paper presents a new hybrid model for isolated Arabic words recognition. To do this, we apply Support Vectors Machine (SVM) as an estimator of posterior probabilities within the Dynamic Bayesian networks (DBN). This paper deals a comparative study between DBN and SVM/DBN systems for multi-dialect isolated Arabic words. Performance using SVM/DBN is found to exceed that of DBNs trained on an identical task, giving higher recognition accuracy for four different Arabic dialects. In fact, the average of recognition rates for the four dialects with SVM/DBN was 87.67% while 83.01% with DBN.

Keywords: dynamic Bayesian networks, hybrid models, supports vectors machine, Arabic isolated words

Procedia PDF Downloads 560
4052 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling

Procedia PDF Downloads 408
4051 Dynamic Externalities and Regional Productivity Growth: Evidence from Manufacturing Industries of India and China

Authors: Veerpal Kaur

Abstract:

The present paper aims at investigating the role of dynamic externalities of agglomeration in the regional productivity growth of manufacturing sector in India and China. Taking 2-digit level manufacturing sector data of states and provinces of India and China respectively for the period of 1998-99 to 2011-12, this paper examines the effect of dynamic externalities namely – Marshall-Arrow-Romer (MAR) specialization externalities, Jacobs’s diversity externalities, and Porter’s competition externalities on regional total factor productivity growth (TFPG) of manufacturing sector in both economies. Regressions have been carried on pooled data for all 2-digit manufacturing industries for India and China separately. The estimation of Panel has been based on a fixed effect by sector model. The results of econometric exercise show that labour-intensive industries in Indian regional manufacturing benefit from diversity externalities and capital intensive industries gain more from specialization in terms of TFPG. In China, diversity externalities and competition externalities hold better prospectus for regional TFPG in both labour intensive and capital intensive industries. But if we look at results for coastal and non-coastal region separately, specialization tends to assert a positive effect on TFPG in coastal regions whereas it has a negative effect on TFPG of coastal regions. Competition externalities put a negative effect on TFPG of non-coastal regions whereas it has a positive effect on TFPG of coastal regions. Diversity externalities made a positive contribution to TFPG in both coastal and non-coastal regions. So the results of the study postulate that the importance of dynamic externalities should not be examined by pooling all industries and all regions together. This could hold differential implications for region specific and industry-specific policy formulation. Other important variables explaining regional level TFPG in both India and China have been the availability of infrastructure, level of competitiveness, foreign direct investment, exports and geographical location of the region (especially in China).

Keywords: China, dynamic externalities, India, manufacturing, productivity

Procedia PDF Downloads 123
4050 Structural Health Monitoring and Damage Structural Identification Using Dynamic Response

Authors: Reza Behboodian

Abstract:

Monitoring the structural health and diagnosing their damage in the early stages has always been one of the topics of concern. Nowadays, research on structural damage detection methods based on vibration analysis is very extensive. Moreover, these methods can be used as methods of permanent and timely inspection of structures and prevent further damage to structures. Non-destructive methods are the low-cost and economical methods for determining the damage of structures. In this research, a non-destructive method for detecting and identifying the failure location in structures based on dynamic responses resulting from time history analysis is proposed. When the structure is damaged due to the reduction of stiffness, and due to the applied loads, the displacements in different parts of the structure were increased. In the proposed method, the damage position is determined based on the calculation of the strain energy difference in each member of the damaged structure and the healthy structure at any time. Defective members of the structure are indicated by the amount of strain energy relative to the healthy state. The results indicated that the proper accuracy and performance of the proposed method for identifying failure in structures.

Keywords: failure, time history analysis, dynamic response, strain energy

Procedia PDF Downloads 133
4049 Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario

Authors: Ali Y Al-Attraqchi, P. Rajeev, M. Javad Hashemi, Riadh Al-Mahaidi

Abstract:

This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness.

Keywords: fire, nonlinear incremental dynamic analysis, progressive collapse, structural engineering

Procedia PDF Downloads 266
4048 Soft Robotic System for Mechanical Stimulation of Scaffolds During Dynamic Cell Culture

Authors: Johanna Perdomo, Riki Lamont, Edmund Pickering, Naomi C. Paxton, Maria A. Woodruff

Abstract:

Background: Tissue Engineering (TE) has combined advanced materials, such as biomaterials, to create affordable scaffolds and dynamic systems to generate stimulation of seeded cells on these scaffolds, improving and maintaining the cellular growth process in a cell culture. However, Few TE skin products have been clinically translated, and more research is required to produce highly biomimetic skin substitutes that mimic the native elasticity of skin in a controlled manner. Therefore, this work will be focused on the fabrication of a novel mechanical system to enhance the TE treatment approaches for the reparation of damaged tissue skin. Aims: To archive this, a soft robotic device will be created to emulate different deformation of skin stress. The design of this soft robot will allow the attachment of scaffolds, which will then be mechanically actuated. This will provide a novel and highly adaptable platform for dynamic cell culture. Methods: Novel, low-cost soft robot is fabricated via 3D printed moulds and silicone. A low cost, electro-mechanical device was constructed to actuate the soft robot through the controlled combination of positive and negative air pressure to control the different state of movements. Mechanical tests were conducted to assess the performance and calibration of each electronic component. Similarly, pressure-displacement test was performed on scaffolds, which were attached to the soft robot, applying various mechanical loading regimes. Lastly, digital image correlation test was performed to obtain strain distributions over the soft robot’s surface. Results: The control system can control and stabilise positive pressure changes for long hours. Similarly, pressure-displacement test demonstrated that scaffolds with 5µm of diameter and wavy geometry can displace at 100%, applying a maximum pressure of 1.5 PSI. Lastly, during the inflation state, the displacement of silicone was measured using DIC method, and this showed a parameter of 4.78 mm and strain of 0.0652. Discussion And Conclusion: The developed soft robot system provides a novel and low-cost platform for the dynamic actuation of tissue scaffolds with a target towards dynamic cell culture.

Keywords: soft robot, tissue engineering, mechanical stimulation, dynamic cell culture, bioreactor

Procedia PDF Downloads 96
4047 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 188
4046 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: debonding, dynamic response, finite element modelling, novel FRP beams

Procedia PDF Downloads 117
4045 Advanced Energy Absorbers Used in Blast Resistant Systems

Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký

Abstract:

The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physico-mechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.

Keywords: blast energy absorber, SHPB, expanded glass, expanded ceramics

Procedia PDF Downloads 458
4044 Detecting Manipulated Media Using Deep Capsule Network

Authors: Joseph Uzuazomaro Oju

Abstract:

The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.

Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media

Procedia PDF Downloads 132
4043 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials

Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han

Abstract:

Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.

Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR

Procedia PDF Downloads 160
4042 Dynamic Analysis of Nanosize FG Rectangular Plates Based on Simple Nonlocal Quasi 3D HSDT

Authors: Sabrina Boutaleb, Fouad Bourad, Kouider Halim Benrahou, Abdelouahed Tounsi

Abstract:

In the present work, the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosized FG plate. In HSDT, a cubic function is employed in terms of thickness coordinates to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton’s principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature, and a good agreement is observed. Finally, the influence of the various parameters, such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness-to-length ratio, on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Keywords: nonlocal elasticity theory, FG nanoplate, free vibration, refined theory, elastic foundation

Procedia PDF Downloads 120
4041 Research on the Application of Flexible and Programmable Systems in Electronic Systems

Authors: Yang Xiaodong

Abstract:

This article explores the application and structural characteristics of flexible and programmable systems in electronic systems, with a focus on analyzing their advantages and architectural differences in dealing with complex environments. By introducing mathematical models and simulation experiments, the performance of dynamic module combination in flexible systems and fixed path selection in programmable systems in resource utilization and performance optimization was demonstrated. This article also discusses the mutual transformation between the two in practical applications and proposes a solution to improve system flexibility and performance through dynamic reconfiguration technology. This study provides theoretical reference for the design and optimization of flexible and programmable systems.

Keywords: flexibility, programmable, electronic systems, system architecture

Procedia PDF Downloads 8
4040 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems

Authors: Yoftahe Nigussie Worku

Abstract:

This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.

Keywords: VCRS, VARS, efficiency, sustainability

Procedia PDF Downloads 74
4039 Using Dynamic Glazing to Eliminate Mechanical Cooling in Multi-family Highrise Buildings

Authors: Ranojoy Dutta, Adam Barker

Abstract:

Multifamily residential buildings are increasingly being built with large glazed areas to provide tenants with greater daylight and outdoor views. However, traditional double-glazed window assemblies can lead to significant thermal discomfort from high radiant temperatures as well as increased cooling energy use to address solar gains. Dynamic glazing provides an effective solution by actively controlling solar transmission to maintain indoor thermal comfort, without compromising the visual connection to outdoors. This study uses thermal simulations across three Canadian cities (Toronto, Vancouver and Montreal) to verify if dynamic glazing along with operable windows and ceiling fans can maintain the indoor operative temperature of a prototype southwest facing high-rise apartment unit within the ASHRAE 55 adaptive comfort range for a majority of the year, without any mechanical cooling. Since this study proposes the use of natural ventilation for cooling and the typical building life cycle is 30-40 years, the typical weather files have been modified based on accepted global warming projections for increased air temperatures by 2050. Results for the prototype apartment confirm that thermal discomfort with dynamic glazing occurs only for less than 0.7% of the year. However, in the baseline scenario with low-E glass there are up to 7% annual hours of discomfort despite natural ventilation with operable windows and improved air movement with ceiling fans.

Keywords: electrochromic glazing, multi-family housing, passive cooling, thermal comfort, natural ventilation

Procedia PDF Downloads 105
4038 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 214
4037 Buffer Allocation and Traffic Shaping Policies Implemented in Routers Based on a New Adaptive Intelligent Multi Agent Approach

Authors: M. Taheri Tehrani, H. Ajorloo

Abstract:

In this paper, an intelligent multi-agent framework is developed for each router in which agents have two vital functionalities, traffic shaping and buffer allocation and are positioned in the ports of the routers. With traffic shaping functionality agents shape the traffic forward by dynamic and real time allocation of the rate of generation of tokens in a Token Bucket algorithm and with buffer allocation functionality agents share their buffer capacity between each other based on their need and the conditions of the network. This dynamic and intelligent framework gives this opportunity to some ports to work better under burst and more busy conditions. These agents work intelligently based on Reinforcement Learning (RL) algorithm and will consider effective parameters in their decision process. As RL have limitation considering much parameter in its decision process due to the volume of calculations, we utilize our novel method which invokes Principle Component Analysis (PCA) on the RL and gives a high dimensional ability to this algorithm to consider as much as needed parameters in its decision process. This implementation when is compared to our previous work where traffic shaping was done without any sharing and dynamic allocation of buffer size for each port, the lower packet drop in the whole network specifically in the source routers can be seen. These methods are implemented in our previous proposed intelligent simulation environment to be able to compare better the performance metrics. The results obtained from this simulation environment show an efficient and dynamic utilization of resources in terms of bandwidth and buffer capacities pre allocated to each port.

Keywords: principal component analysis, reinforcement learning, buffer allocation, multi- agent systems

Procedia PDF Downloads 518