Search results for: English learning barriers
2357 Keyframe Extraction Using Face Quality Assessment and Convolution Neural Network
Authors: Rahma Abed, Sahbi Bahroun, Ezzeddine Zagrouba
Abstract:
Due to the huge amount of data in videos, extracting the relevant frames became a necessity and an essential step prior to performing face recognition. In this context, we propose a method for extracting keyframes from videos based on face quality and deep learning for a face recognition task. This method has two steps. We start by generating face quality scores for each face image based on the use of three face feature extractors, including Gabor, LBP, and HOG. The second step consists in training a Deep Convolutional Neural Network in a supervised manner in order to select the frames that have the best face quality. The obtained results show the effectiveness of the proposed method compared to the methods of the state of the art.Keywords: keyframe extraction, face quality assessment, face in video recognition, convolution neural network
Procedia PDF Downloads 2342356 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: boundary element method, Laplace’s equation, vector calculus, simulation, education
Procedia PDF Downloads 1632355 The Challenge of Teaching French as a Foreign Language in a Multilingual Community
Authors: Carol C. Opara, Olukemi E. Adetuyi-Olu-Francis
Abstract:
The teaching of French language, like every other language, has its numerous challenges. A multilingual community, however, is a linguistic environment housing diverse languages, each with its peculiarity, both pros, and cones. A foreign language will have to strive hard for survival in an environment where various indigenous languages, as well as an established official language, exist. This study examined the challenges and prospects of the teaching of French as a foreign language in a multilingual community. A 22-item questionnaire was used to elicit information from 40 Nigerian Secondary school teachers of French. One of the findings of this study showed that the teachers of the French language are not motivated. Also, the linguistic environment is not favourable for the teaching and learning of French language in Nigeria. One of the recommendations was that training and re-training of teachers of French should be of utmost importance to the Nigerian Federal Ministry of Education.Keywords: challenges, french as foreign language, multilingual community, teaching
Procedia PDF Downloads 2192354 ChatGPT Performs at the Level of a Third-Year Orthopaedic Surgery Resident on the Orthopaedic In-training Examination
Authors: Diane Ghanem, Oscar Covarrubias, Michael Raad, Dawn LaPorte, Babar Shafiq
Abstract:
Introduction: Standardized exams have long been considered a cornerstone in measuring cognitive competency and academic achievement. Their fixed nature and predetermined scoring methods offer a consistent yardstick for gauging intellectual acumen across diverse demographics. Consequently, the performance of artificial intelligence (AI) in this context presents a rich, yet unexplored terrain for quantifying AI's understanding of complex cognitive tasks and simulating human-like problem-solving skills. Publicly available AI language models such as ChatGPT have demonstrated utility in text generation and even problem-solving when provided with clear instructions. Amidst this transformative shift, the aim of this study is to assess ChatGPT’s performance on the orthopaedic surgery in-training examination (OITE). Methods: All 213 OITE 2021 web-based questions were retrieved from the AAOS-ResStudy website. Two independent reviewers copied and pasted the questions and response options into ChatGPT Plus (version 4.0) and recorded the generated answers. All media-containing questions were flagged and carefully examined. Twelve OITE media-containing questions that relied purely on images (clinical pictures, radiographs, MRIs, CT scans) and could not be rationalized from the clinical presentation were excluded. Cohen’s Kappa coefficient was used to examine the agreement of ChatGPT-generated responses between reviewers. Descriptive statistics were used to summarize the performance (% correct) of ChatGPT Plus. The 2021 norm table was used to compare ChatGPT Plus’ performance on the OITE to national orthopaedic surgery residents in that same year. Results: A total of 201 were evaluated by ChatGPT Plus. Excellent agreement was observed between raters for the 201 ChatGPT-generated responses, with a Cohen’s Kappa coefficient of 0.947. 45.8% (92/201) were media-containing questions. ChatGPT had an average overall score of 61.2% (123/201). Its score was 64.2% (70/109) on non-media questions. When compared to the performance of all national orthopaedic surgery residents in 2021, ChatGPT Plus performed at the level of an average PGY3. Discussion: ChatGPT Plus is able to pass the OITE with a satisfactory overall score of 61.2%, ranking at the level of third-year orthopaedic surgery residents. More importantly, it provided logical reasoning and justifications that may help residents grasp evidence-based information and improve their understanding of OITE cases and general orthopaedic principles. With further improvements, AI language models, such as ChatGPT, may become valuable interactive learning tools in resident education, although further studies are still needed to examine their efficacy and impact on long-term learning and OITE/ABOS performance.Keywords: artificial intelligence, ChatGPT, orthopaedic in-training examination, OITE, orthopedic surgery, standardized testing
Procedia PDF Downloads 902353 In the Valley of the Shadow of Death: Gossip, God, and Scapegoating in Susannah, an American Opera by Carlisle Floyd
Authors: Shirl H. Terrell
Abstract:
In the telling of mythologies, stories of cultural and religious histories, the creative arts provide an archetypal lens through which the personal and collective unconscious are viewed, thus revealing mysteries of the unknown psyche. To that end, the author of this paper, using the hermeneutic approach, proves that Carlisle Floyd’s (1955) English language opera Susannah illuminates humanity’s instinctual nature and behaviors through music, libretto, and drama. While impressive musical works such as Wagner’s Ring Cycle and Webber’s Phantom of the Opera have received extensive Jungian analyses, critics and scholars often ignore lesser esteemed works, such as Susannah, notwithstanding the fact that they have been consistently performed on the theater circuit. Such pieces, when given notice, allow viewers to grasp the soul-making depth and timeless quality of productions which may otherwise go unrecognized as culturally or psychologically significant. Although Susannah has sometimes been described as unsophisticated and simple in scope, the author demonstrates why Floyd’s 'little' opera, set in New Hope Valley, Appalachia, a cultural region in the Eastern United States known for its prevailing myths and distortions of isolation, temperament, and the judgmentally conservative behavior of its inhabitants, belongs to opera’s hallmark works. Its approach to powerful underlying archetypal themes, which give rise to the poignant and haunting depictions of the darker and destructive side of the human soul, the Shadow, provides crucial significance to the work. The Shadow’s manifestation in the form of the scapegoating complex is central to the plot of Susannah; the church’s meting out of rules, judgment, and reparation for sins point to the foreboding aspects of human behavior that evoke their intrinsic nature. The scapegoating complex is highlighted in an eight-step process gleaned from the works of Kenneth Burke and Rene Girard. In summary, through depth psychological terms and mythological motifs, the author provides an insightful approach to perceiving instinctual behaviors as they play out in an American opera that has been staged over eight-hundred times, yet, unfortunately, remains in the shadows. Susannah’s timelessness is now.Keywords: archetypes, mythology, opera, scapegoating, Shadow, Susannah
Procedia PDF Downloads 1502352 Psychometric Examination of the QUEST-25: An Online Assessment of Intellectual Curiosity and Scientific Epistemology
Authors: Matthew J. Zagumny
Abstract:
The current study reports an examination of the QUEST-25 (Q-Assessment of Undergraduate Epistemology and Scientific Thinking) online version for assessing the dispositional attitudes toward scientific thinking and intellectual curiosity among undergraduate students. The QUEST-25 consists of scientific thinking (SIQ-25) and intellectual curiosity (ICIQ-25), which were correlated in hypothesized directions with the Religious Commitment Inventory, Curiosity and Exploration Inventory, Belief in Science scale, and measures of academic self-efficacy. Additionally, concurrent validity was established by the resulting significant differences between those identifying the centrality of religious belief in their lives and those who do not self-identify as being guided daily by religious beliefs. This study demonstrates the utility of the QUEST-25 for research, evaluation, and theory development.Keywords: guided-inquiry learning, intellectual curiosity, psychometric assessment, scientific thinking
Procedia PDF Downloads 2622351 Comprehensive Studio Tables: Improving Performance and Quality of Student's Work in Architecture Studio
Authors: Maryam Kalkatechi
Abstract:
Architecture students spent most of their qualitative time in studios during their years of study. The studio table’s importance as furniture in the studio is that it elevates the quality of the projects and positively influences the student’s productivity. This paper first describes the aspects considered in designing comprehensive studio table and later details on each aspect. Comprehensive studio tables are meant to transform the studio space to an efficient yet immense place of learning, collaboration, and participation. One aspect of these tables is that the surface transforms to a place of accommodation for design conversations, the other aspect of these tables is the efficient interactive platform of the tools. The discussion factors of the comprehensive studio include; the comprehensive studio setting of workspaces, the arrangement of the comprehensive studio tables, the collaboration aspects in the studio, the studio display and lightings shaped by the tables and lighting of the studio.Keywords: studio tables, student performance, productivity, hologram, 3D printer
Procedia PDF Downloads 1882350 Evolution of Classroom Languaging over the Years: Prospects for Teaching Mathematics Differently
Authors: Jabulani Sibanda, Clemence Chikiwa
Abstract:
This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire
Procedia PDF Downloads 732349 The Role of Islamic Finance and Socioeconomic Factors in Financial Inclusion: A Cross Country Comparison
Authors: Allya Koesoema, Arni Ariani
Abstract:
While religion is only a very minor factor contributing to financial exclusion in most countries, the World Bank 2014 Global Financial Development Report highlighted it as a significant barrier for having a financial account in some Muslim majority countries. This is in part due to the perceived incompatibility between traditional financial institutions practices and Islamic finance principles. In these cases, the development of financial institutions and products that are compatible with the principles of Islamic finance may act as an important lever to increasing formal account ownership. However, there is significant diversity in the relationship between a country’s proportion of Muslim population and its level of financial inclusion. This paper combines data taken from the Global Findex Database, World Development Indicators, and the Pew Research Center to quantitatively explore the relationship between individual and country level religious and socioeconomic factor to financial inclusion. Results from regression analyses show a complex relationship between financial inclusion and religion-related factors in the population both on the individual and country level. Consistent with prior literature, on average the percentage of Islamic population positively correlates with the proportion of unbanked populations who cites religious reasons as a barrier to getting an account. However, its impact varies across several variables. First, a deeper look into countries’ religious composition reveals that the average negative impact of a large Muslim population is not as strong in more religiously diverse countries and less religious countries. Second, on the individual level, among the unbanked, the poorest quintile, least educated, older and the female populations are comparatively more likely to not have an account because of religious reason. Results also show indications that in this case, informal mechanisms partially substitute formal financial inclusion, as indicated by the propensity to borrow from family and friends. The individual level findings are important because the demographic groups that are more likely to cite religious reasons as barriers to formal financial inclusion are also generally perceived to be more vulnerable socially and economically and may need targeted attention. Finally, the number of Islamic financial institutions in a particular country is negatively correlated to the propensity of religious reasons as a barrier to financial inclusion. Importantly, the number of financial institutions in a country also mitigates the negative impact of the proportion of Muslim population, low education and individual age to formal financial inclusion. These results point to the potential importance of Islamic Finance Institutions in increasing global financial inclusion, and highlight the potential importance of looking beyond the proportion of Muslim population to other underlying institutional and socioeconomic factor in maximizing its impact.Keywords: cross country comparison, financial inclusion, Islamic banking and finance, quantitative methods, socioeconomic factors
Procedia PDF Downloads 1922348 Continuous Professional Development of Teachers: Implementation Mechanisms in the Republic of Kazakhstan Based on the Professional Standard 'Teacher'
Authors: Yelena Agranovich, Larissa Ageyeva, Aigul Syzdykbayeva, Violetta Tyan
Abstract:
The modernization of the education system in the Republic of Kazakhstan is aimed at improving the quality of teacher training and enhancing key competencies among teachers. The current professional standard ‘Teacher’ defines the general characteristics of teachers’ activities, key competencies, and criteria according to relevant qualification categories structured on the principle of progression, thereby enabling Continuous Professional Development (CPD). The essence of CPD lies in the constant integration of new knowledge and skills that help teachers adapt to changes in the education system, in technologies, and teaching methods. This developmental process enables teachers to stay updated on recent scientific achievements, innovations, and modern pedagogical practices. Continuous learning helps teachers remain flexible and open to new developments, creating conditions for improving educational quality and fostering students' personal growth. This study aims to address the following objectives: analysis of international CPD practices, identification of conceptual foundations, and investigation of CPD implementation mechanisms in Kazakhstan. The core principles of CPD are identified as longitudinality, systematicity, and fragmentation. CPD implementation is based on various theoretical approaches: axiological, systemic, competency-based, activity-based, and learner-centered. The study analyzes leading models of teacher CPD, with a target sample that includes countries such as Australia, Japan, South Korea, England, Singapore, Sweden, Finland, and Kazakhstan. The research methods include analysis (comparative, historical, content analysis, systematic), case studies of CPD models, and synthesis and systematization of scientific data. As research results, the mechanisms for CPD implementation in Kazakhstan will be identified, along with further perspectives on transforming resources within the teacher professional development system. In comparing CPD models from various countries, it is noted that teacher CPD in the Republic of Kazakhstan: (1) is implemented through educational programs, professional development courses, teacher certification, professional networks, in-school professional development, self-education, and self-assessment; (2) includes the development of pedagogical values and competencies (tolerance, inclusivity, communication, critical thinking, creativity, reflection, etc.); (3) is carried out based on traditional forms (professional development courses, retraining) and informal forms (self-learning, self-development, experience sharing and exchange). Further research will focus on creating a digital ecosystem for teacher CPD, based on an educational platform that facilitates individualized professional development pathways for teachers (competency diagnostics, course selection, and a methodological system of course and post-course support for teachers).Keywords: continuous professional development, CPD models, professional development, professional upgrading, teacher, teacher training
Procedia PDF Downloads 142347 Correlates of Pedagogic Malpractices
Authors: Chinaza Uleanya, Martin Duma, Bongani Gamede
Abstract:
The research investigated pedagogic malpractices by lecturers in sub-Sahara African universities. The population of the study consisted of undergraduates and lecturers in selected universities in Nigeria and South Africa. Mixed method approach was adopted for data collection. The sample population of the study was 480 undergraduate students and 16 lecturers. Questionnaires with 4 point Likert-scale were administered to 480 respondents while interviews were conducted with 6 lecturers. In addition, the teaching strategies of 10 lecturers were observed. Data analyses indicated that poor work environment demotivates lecturers and makes them involved in pedagogic malpractice which is one of the causes of learning challenges faced by undergraduates. The finding of the study also shows that pedagogic malpractice contributes to the high rate of dropout in sub-Sahara African universities. Based on the results, it was recommended that qualified lecturers be employed and given conducive environments to work.Keywords: malpractice, pedagogy, pedagogic malpractice, correlates
Procedia PDF Downloads 3032346 Models Development of Graphical Human Interface Using Fuzzy Logic
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory.Keywords: software development models, software quality, supervision software, fuzzy logic
Procedia PDF Downloads 3732345 eTransformation Framework for the Cognitive Systems
Authors: Ana Hol
Abstract:
Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.Keywords: system implementations, AI supported systems, cognitive systems, eTransformation
Procedia PDF Downloads 2382344 Effects of Teaching Strategies on Students Academic Achievement in Secondary Physics Education for Quality Assurance
Authors: Collins Molua
Abstract:
This paper investigated the effect of Teaching Strategies on Academic Achievement in Secondary Physics Education as a quality assurance process for the teaching and learning of the subject. Teaching strategies investigated were the interactive, independent and dependent strategies. Three null hypotheses were tested at p< 0.05 using one instrument, physics achievement test(PAT).The data were analyzed using analysis of covariance (ANCOVA).Results showed that teaching strategies have significant effect on students achievement; the joint effect of the teaching strategies was also significant on students achievement in Physics. The interactive teaching strategies was recommended for teaching the subject and the students should be exposed to practical, computer literacy to stimulate interest and curiosity to enhance quality.Keywords: quality, assurance, secondary education, strategies, physics
Procedia PDF Downloads 3292343 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine
Procedia PDF Downloads 2002342 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks
Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof
Abstract:
An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature
Procedia PDF Downloads 1752341 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching
Authors: Gianna Zou
Abstract:
Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.Keywords: BART, Bayesian, matching, regression
Procedia PDF Downloads 1472340 Prospective Service Evaluation of Physical Healthcare In Adult Community Mental Health Services in a UK-Based Mental Health Trust
Authors: Gracie Tredget, Raymond McGrath, Karen Ang, Julie Williams, Nick Sevdalis, Fiona Gaughran, Jorge Aria de la Torre, Ioannis Bakolis, Andy Healey, Zarnie Khadjesari, Euan Sadler, Natalia Stepan
Abstract:
Background: Preventable physical health problems have been found to increase morbidity rates amongst adults living with serious mental illness (SMI). Community mental health clinicians have a role in identifying, and preventing physical health problems worsening, and supporting primary care services to administer routine physical health checks for their patients. However, little is known about how mental health staff perceive and approach their role when providing physical healthcare amongst patients with SMI, or the impact these attitudes have on routine practice. Methods: The present study involves a prospective service evaluation specific to Adult Community Mental Health Services at South London and Maudsley NHS Foundation Trust (SLaM). A qualitative methodology will use semi-structured interviews, focus groups and observations to explore attitudes, perceptions and experiences of staff, patients, and carers (n=64) towards physical healthcare, and barriers or facilitators that impact upon it. 1South London and Maudsley NHS Foundation Trust, London, SE5 8AZ, UK 2 Centre for Implementation Science, King’s College London, London, SE5 8AF, UK 3 Psychosis Studies, King's College London, London, SE5 8AF, UK 4 Department of Biostatistics and Health Informatics, King’s College London, London, SE5 8AF, UK 5 Kings Health Economics, King's College London, London, SE5 8AF, UK 6 Behavioural and Implementation Science (BIS) research group, University of East Anglia, Norwich, UK 7 Department of Nursing, Midwifery and Health, University of Southampton, Southampton, UK 8 Mind and Body Programme, King’s Health Partners, Guy’s Hospital, London, SE1 9RT *[email protected] Analysis: Data from across qualitative tasks will be synthesised using Framework Analysis methodologies. Staff, patients, and carers will be invited to participate in co-development of recommendations that can improve routine physical healthcare within Adult Community Mental Health Teams at SLaM. Results: Data collection is underway at present. At the time of the conference, early findings will be available to discuss. Conclusions: An integrated approach to mind and body care is needed to reduce preventable deaths amongst people with SMI. This evaluation will seek to provide a framework that better equips staff to approach physical healthcare within a mental health setting.Keywords: severe mental illness, physical healthcare, adult community mental health, nursing
Procedia PDF Downloads 952339 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text
Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman
Abstract:
The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks
Procedia PDF Downloads 2622338 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa
Authors: Maria E. Eggink
Abstract:
Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.Keywords: education institutions, human capital, innovation systems, Mpumalanga Province
Procedia PDF Downloads 3802337 A Conceptual Framework for Integrating Musical Instrument Digital Interface Composition in the Music Classroom
Authors: Aditi Kashi
Abstract:
While educational technologies have taken great strides, especially in Musical Instrument Digital Interface (MIDI) composition, teachers across the world are still adjusting to incorporate such technology into their curricula. While using MIDI in the classroom has become more common, limited class time and a strong focus on performance have made composition a lesser priority. The balance between music theory, performance time, and composition learning is delicate and difficult to maintain for many music educators. This makes including MIDI in the classroom. To address this issue, this paper aims to outline a general conceptual framework centered around a key element of music theory to integrate MIDI composition into the music classroom to not only introduce students to digital composition but also enhance their understanding of music theory and its applicability.Keywords: educational framework, education technology, MIDI, music education
Procedia PDF Downloads 862336 Towards a Model of Support in the Areas of Services of Educational Assistance and Mentoring in Middle Education in Mexico
Authors: Margarita Zavala, Gabriel Chavira, José González, Jorge Orozco, Julio Rolón, Roberto Pichardo
Abstract:
Adolescence is a neuralgic stage in the formation of every human being, generally this stage is when the middle school level is studied. In 2006, Mexico incorporated 'mentoring' space to assist students in their integration and participation in life. In public middle schools, it is sometimes difficult to be aware of situations that affect students because of the number of them and traditional records management. With this, they lose the opportunity to provide timely support as a preventive way. In order to provide this support, it is required to know the students by detecting the relevant information that has greater impact on their learning process. This research is looking to check if it is possible to identify student’s relevant information to detect when it is at risk, and then to propose a model to manage in a proper way such information.Keywords: adolescence, mentoring, middle school students, mentoring system support
Procedia PDF Downloads 4802335 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety
Authors: Hengameh Hosseini
Abstract:
Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety
Procedia PDF Downloads 1162334 The Interconnection between Curriculum Development and ICT
Authors: Hanane Sarnou, Sabri Koç
Abstract:
In this paper, the interconnection between curriculum development for basic education and the use of information and communication technologies (ICTs) in the classroom referring to the Licence, Master's and Doctorate (LMD) benefits under such link will be presented and analysed. This study seeks to achieve to what extent LMD, competency-based approach (CBA) and ICTs use are interrelated. Likewise, the data collected from the responses of our teachers and learners who are concerned with LMD impact on their learning and teaching through interviews will be discussed, analysed, and classified. This paper is divided into two sections. The first section is about the curriculum development for basic education and its relation with higher education under the LMD and its link with ICTs in the university while the second section is about the classification of learners’ and teachers’ positive/negative responses concerning their positive or negative attitudes towards the ICT integration. The focus will be on the positive aspects of students’ expectations, opinions and assumptions regarding the integration of ICTs into the classroom under LMD and CBA.Keywords: LMD system, CBA approach, curriculum development, ICT
Procedia PDF Downloads 4182333 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 242332 Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies
Authors: Ali Nouri
Abstract:
Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain the nature of human learning to provide valid interpretations and implications useful for educational practice in relation to philosophical aspects or values. Whereas it should be originated from the philosophical foundations of the field and explain its normative significance, it needs to be testable in terms of rigorous evidence to fundamentally advance contemporary educational policy and practice. There is thus pragmatically a need to include a course on neuroeducational theory into the curriculum of the field. In addition, there is a need to articulate and disseminate considerable discussion over the subject within professional journals and academic societies.Keywords: neuroeducation studies, neuroeducational theory, theory building, neuroeducation research
Procedia PDF Downloads 4482331 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 1422330 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator
Authors: Jaeyoung Lee
Abstract:
Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network
Procedia PDF Downloads 1292329 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 2082328 Tips for Effective Intercultural Collaboration on the Evaluation of an International Program
Authors: Athanase Gahungu, Karen Freeman
Abstract:
Different groups of stakeholders expect the evaluation of an international, grant-funded program to inform them of the worth of the program - the funder, the agency operating the program and its community, and the citizens of the country where the program is implemented. This paper summarizes the challenges that intercultural teams of researchers faced as they crisscrossed a host country while evaluating a teaching and learning materials program, and offers useful tips for effective collaboration. Firstly, was recommended that the teams be representative of the cultures involved, and have the required research and program evaluation skills. Secondly, cultures involved must consistently establish and maintain a shared performance system. Thirdly, successful team members must be self-aware, inter-culturally knowledgeable, not just in communication, but in conceptualizing the political and social context of international grant-funded projects.Keywords: program evaluation, international collaboration, intercultural, shared performance
Procedia PDF Downloads 538