Search results for: energy demand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10565

Search results for: energy demand

3605 Regional Flood Frequency Analysis in Narmada Basin: A Case Study

Authors: Ankit Shah, R. K. Shrivastava

Abstract:

Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.

Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency

Procedia PDF Downloads 401
3604 The Design, Control and Dynamic Performance of an Interior Permanent Magnet Synchronous Generator for Wind Power System

Authors: Olusegun Solomon

Abstract:

This paper describes the concept for the design and maximum power point tracking control for an interior permanent magnet synchronous generator wind turbine system. Two design concepts are compared to outline the effect of magnet design on the performance of the interior permanent magnet synchronous generator. An approximate model that includes the effect of core losses has been developed for the machine to simulate the dynamic performance of the wind energy system. An algorithm for Maximum Power Point Tracking control is included to describe the process for maximum power extraction.

Keywords: permanent magnet synchronous generator, wind power system, wind turbine

Procedia PDF Downloads 205
3603 Price Gouging in Time of Covid-19 Pandemic: When National Competition Agencies are Weak Institutions that Exacerbate the Effects of Exploitative Economic Behaviour

Authors: Cesar Leines

Abstract:

The social effects of the pandemic are significant and diverse, most of those effects have widened the gap of economic inequality. Without a doubt, each country faces difficulties associated with the strengths and weaknesses of its own institutions that can address these causes and consequences. Around the world, pricing practices that have no connection to production costs have been used extensively in numerous markets beyond those relating to the supply of essential goods and services, and although it is not unlawful to adjust pricing considering the increased demand of certain products, shortages and disruption of supply chains, illegitimate pricing practices may arise and these tend to transfer wealth from consumers to producers that affect the purchasing power of the former, making people worse off. High prices with no objective justification indicate a poor state of the competitive process in any market and the impact of those underlying competition issues leading to inefficiency is increased when national competition agencies are weak and ineffective in enforcing competition in law and policy. It has been observed that in those countries where competition authorities are perceived as weak or ineffective, price increases of a wide range of products and services were more significant during the pandemic than those price increases observed in countries where the perception of the effectiveness of the competition agency is high. When a perception is created of a highly effective competition authority, one which enforces competition law and its non-enforcement activities result in the fulfillment of its substantive functions of protecting competition as the means to create efficient markets, the price rise observed in markets under its jurisdiction is low. A case study focused on the effectiveness of the national competition agency in Mexico (COFECE) points to institutional weakness as one of the causes leading to excessive pricing. There are many factors that contribute to its low effectiveness and which, in turn, have led to a very significant price hike, potentiated by the pandemic. This paper contributes to the discussion of these factors and proposes different steps that overall help COFECE or any other competition agency to increase the perception of effectiveness for the benefit of the consumers.

Keywords: agency effectiveness, competition, institutional weakness, price gouging

Procedia PDF Downloads 164
3602 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 220
3601 Electrocoagulation of Ni(OH)2/NiOOH for the Removal of Boron Using Nickel Foam as Sacrificial Anode

Authors: Yu-Jen Shih, Yao-Hui Hunag

Abstract:

Electrocoagulation (EC) using metallic nickel foam as anode and cathode for the removal of boron from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was not affected by current density. In respect of energy consumption, 1.25 mA/cm2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency too much. Cyclic voltammetry indicated that the oxide film, Ni(OH)2 and NiOOH, at specific overpotentials would result in less weight loss of anode than that predicted by the Faraday’s law. The optimal conditions under which 99.2% of boron was removed and less than 1 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 1.25 mA/cm2 in 120 min as treating wastewaters containing 10 ppm-B. XRD and SEM characterization suggested that the granular crystallites of hydroxide precipitates was composed of theophrastite.

Keywords: borohydrides, hydrogen generation, NiOOH, electrocoagulation, cyclic voltammetry, boron removal

Procedia PDF Downloads 243
3600 Harnessing Environmental DNA to Assess the Environmental Sustainability of Commercial Shellfish Aquaculture in the Pacific Northwest United States

Authors: James Kralj

Abstract:

Commercial shellfish aquaculture makes significant contributions to the economy and culture of the Pacific Northwest United States. The industry faces intense pressure to minimize environmental impacts as a result of Federal policies like the Magnuson-Stevens Fisheries Conservation and Management Act and the Endangered Species Act. These policies demand the protection of essential fish habitat and declare several salmon species as endangered. Consequently, numerous projects related to the protection and rehabilitation of eelgrass beds, a crucial ecosystem for countless fish species, have been proposed at both state and federal levels. Both eelgrass beds and commercial shellfish farms occupy the same physical space, and therefore understanding the effects of shellfish aquaculture on eelgrass ecosystems has become a top ecological and economic priority of both government and industry. This study evaluates the organismal communities that eelgrass and oyster aquaculture habitats support. Water samples were collected from Willapa Bay, Washington; Tillamook Bay, Oregon; Humboldt Bay, California; and Sammish Bay, Washington to compare species diversity in eelgrass beds, oyster aquaculture plots, and boundary edges between these two habitats. Diversity was assessed using a novel technique: environmental DNA (eDNA). All organisms constantly shed small pieces of DNA into their surrounding environment through the loss of skin, hair, tissues, and waste. In the marine environment, this DNA becomes suspended in the water column allowing it to be easily collected. Once extracted and sequenced, this eDNA can be used to paint a picture of all the organisms that live in a particular habitat making it a powerful technology for environmental monitoring. Industry professionals and government officials should consider these findings to better inform future policies regulating eelgrass beds and oyster aquaculture. Furthermore, the information collected in this study may be used to improve the environmental sustainability of commercial shellfish aquaculture while simultaneously enhancing its growth and profitability in the face of ever-changing political and ecological landscapes.

Keywords: aquaculture, environmental DNA, shellfish, sustainability

Procedia PDF Downloads 235
3599 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells

Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee

Abstract:

Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region

Keywords: anti-inflammation, myristic acid, ROS, ultraviolet light

Procedia PDF Downloads 184
3598 Improved Active Constellation Extension for the PAPR Reduction of FBMC-OQAM Signals

Authors: Mounira Laabidi, Rafik Zayani, Ridha Bouallegue, Daniel Roviras

Abstract:

The Filter Bank multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) has been introduced to overcome the poor spectral characteristics and the waste in both bandwidth and energy caused by the use of the cyclic prefix. However, the FBMC-OQAM signals suffer from the high Peak to Average Power Ratio (PAPR) problem. Due to the overlapping structure of the FBMC-OQAM signals, directly applying the PAPR reduction schemes conceived for the OFDM one turns out to be ineffective. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems by suggesting a new scheme based on an improved version of Active Constellation Extension scheme (ACE) of OFDM. The proposed scheme, named Rolling Window ACE, takes into consideration the overlapping naturally emanating from the FBMC-OQAM signals.

Keywords: ACE, FBMC, OQAM, OFDM, PAPR, rolling-window

Procedia PDF Downloads 533
3597 Sustainability: Effect of Earthquake in Micro Hydro Sector, a Case Study of Micro Hydro Projects in Northern Part of Kavre District, Nepal

Authors: Ram Bikram Thapa, Ganesh Lama

Abstract:

The Micro Hydro is one of the successful technology in Rural Nepal. Kavre is one of the pioneer district of sustainability of Micro Hydro Projects. A total of 30 Micro Hydro projects have been constructed with producing 700 KW of energy in northern side of the Kavre district. This study shows that 67% of projects have been affected by devastating earthquake in April and May, 2015. Out of them 23% are completely damaged. Most of the structures are failure like Penstock 71%, forebay 21%, powerhouse 7% have been completely damaged and 91% Canal & 44% Intake structures have been partially damaged by the earthquake. This paper empathizes that the engineering design is the vital component for sustainability of Micro Hydro Projects. This paper recommended that technicians should be considered the safety factor of earthquake and provision of disaster recovery fund during design of Micro Hydro Projects.

Keywords: micro hydro, earthquake, structural failure, sustainability

Procedia PDF Downloads 335
3596 An Analysis of the Role of Watchdog Civil Society Organisations in the Public Governance in Southern Africa: A study of South Africa and Zimbabwe

Authors: Julieth Gudo

Abstract:

The prevalence of corruption in African countries and persisting unsatisfactory distribution by governments of state resources among the citizens are clear indicators of a festering problem. Civil society organisations (CSOs) in Southern African countries, as citizen representatives, have been involved in challenging the ongoing corruption and poor governance in the public sector that have caused tensions between citizens and their governments. In doing so, civil society organisations demand accountability, transparency, and citizen participation in public governance. The problem is that CSOs’ role in challenging governments is not clearly defined in both law and literature. This uncertainty has resulted in an unsatisfying operating and legal environment for CSOs and a strained relationship between themselves and the governments. This paper examines civil society organisations' role in advancing good public governance in South Africa and Zimbabwe. The study will be conducted by means of a literature review and case studies. The state of public governance in Southern Africa will be discussed. The historical role of CSOs in the region of Southern Africa will be explored, followed by their role in public governance in contemporary South Africa and Zimbabwe. The relationship between state and civil society organisations will be examined. Furthermore, the legal frameworks that regulate and authoriseCSOs in their part in challenging poor governance in the public sector will be identified and discussed. Loopholes in such provisions will be identified, and measures that CSOs use to hold those responsible for poor governance accountable for their actions will be discussed, consequently closing the existing gap on the undefined role of CSOs in public governance in Southern Africa. The research demonstrates the need for an enabling operating environment through better cooperation, communication, and the relationship between governments and CSOs, the speedy and effective amendment of existing laws, and the introduction of legal provisions that give express authority to CSOs to challenge poor governance on the part of Southern African governments. Also critical is the enforcement of laws so that those responsible for poor governance and corruption in government are held accountable.

Keywords: civil society organisations, public governance, southern Africa, South Africa, zimbabwe

Procedia PDF Downloads 101
3595 Synthesis of Highly Valuable Fuel Fractions from Waste Date Seeds Oil

Authors: Farrukh Jamil, Ala'A H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai

Abstract:

Environmental problems and the security of energy supply have motivated the attention in the expansion of alternatives for fossil based fuels. Biomass has been recognized as a capable resource because it is plentifully available and in principle carbon dioxide neutral. Present study focuses on utilization date seeds oil for synthesizing high value fuels formulations such as green diesel and jet fuel. The hydrodeoxygenation of date seeds oil occurred to be highly efficient at following operating conditions temperature 300°C pressure 10bar with continuous stirring at 500 rpm. Products characterization revealed the efficiency of hydrodeoxygenation by formation of linear hydrocarbons (paraffin) in larger fraction. Based on the type of components in product oil it was calculated that maximum fraction lies within the range of green diesel 72.78 % then jet fuel 28.25 % by using Pt/C catalyst. It can be concluded that waste date seeds oil has potential to be used for obtaining high value products.

Keywords: date seeds, hydrodeoxygenation, paraffin, deoxygenation

Procedia PDF Downloads 249
3594 The Identification of Instructional Approach for Enhancing Competency of Autism, Attention Deficit Hyperactivity Disorder and Learning Disability Groups

Authors: P. Srisuruk, P. Narot

Abstract:

The purpose of this research were 1) to develop the curriculum and instructional approach that are suitable for children with autism, attention deficit hyperactivity disorder and learning disability as well as to arrange the instructional approach that can be integrated into inclusive classroom 2) to increase the competency of the children in these group. The research processes were to a) study related documents, b) arrange workshops to clarify fundamental issues in developing core curriculum among the researchers and experts in curriculum development, c) arrange workshops to develop the curriculum, submit it to the experts for criticism and editing, d) implement the instructional approach to examine its effectiveness, e) select the schools to participate in the project and arrange training programs for teachers in the selected school, f) implement the instruction approach in the selected schools in different regions. The research results were 1) the core curriculum to enhance the competency of children with autism, attention deficit hyperactivity disorder and learning disability , and to be used as a guideline for teachers, and these group of children in order to arrange classrooms for students with special needs to study with normal students, 2) teaching and learning methods arranged for students with autism, attention deficit, hyperactivity disorder and learning disability to study with normal students can be used as a framework for writing plans to help students with parallel problems by developing teaching materials as part of the instructional approach. However, the details of how to help the students in each skill or content differ according to the demand of development as well as the problems of individual students or group of students. Furthermore; it was found that most of target teacher could implement the instructional approach based on the guideline model developed by the research team. School in each region does not have much difference in their implementation. The good point of the developed instructional model is that teacher can construct a parallel lesson plan. So teacher did not fell that they have to do extra work it was also shown that students in regular classroom enjoyed studying with the developed instructional model as well.

Keywords: instructional approach, autism, attention deficit hyperactivity disorder, learning disability

Procedia PDF Downloads 319
3593 Sustainability Assessment of Municipal Wastewater Treatment

Authors: Yousra Zakaria Ahmed, Ahmed El Gendy, Salah El Haggar

Abstract:

In this paper, our methodology to assess sustainability of wastewater treatment technologies in Egypt is presented. The preliminary list of factors to be considered, as well as their ranking listed. The factors include, but are not limited to pollutants removal efficiency and energy consumption under the environmental dimension, construction cost, operation and maintenance costs and required land area cost under the economic dimension and public acceptance, noise and generating job opportunities for local residents. This methodology is intended to be a user-friendly screening tool to support the decision making process when investigating different wastewater treatment technologies in Egypt. Based on the research work results presented in this paper, it can be generally concluded that the categorization of some of the social and environmental aspects of sustainability is subjective and highly dependent on the local conditions and researchers’ background.

Keywords: sustainability, wastewater treatment, sustainability assessment, Egypt

Procedia PDF Downloads 488
3592 Analyzing the Place of Technology in Communication: Case Study of Kenya during COVID-19

Authors: Josephine K. Mule, Levi Obonyo

Abstract:

Technology has changed human life over time. The COVID-19 pandemic has altered the work set-up, the school system, the shopping experience, church attendance, and even the way athletes train in Kenya. Although the use of technology to communicate and maintain interactions has been on the rise in the last 30 years, the uptake during the COVID-19 pandemic has been unprecedented. Traditionally, ‘paid’ work has been considered to take place outside the “home house” but COVID-19 has resulted in what is now being referred to as “the world’s largest work-from-home experiment” with up to 43 percent of employees working at least some of the time remotely. This study was conducted on 90 respondents from across remote work set-ups, school systems, merchants and customers of online shopping, church leaders and congregants and athletes, and their coaches. Data were collected by questionnaires and interviews that were conducted online. The data is based on the first three months since the first case of coronavirus was reported in Kenya. This study found that the use of technology is in the center of working remotely with work interactions being propelled on various online platforms including, Zoom, Microsoft Teams, and Google Meet, among others. The school system has also integrated the use of technology, including students defending their thesis/dissertations online and university graduations being conducted virtually. Kenya is known for its long-distance runners, due to the directives to reduce interactions; coaches have taken to providing their athletes with guidance on training on social media using applications such as WhatsApp. More local stores are now offering the shopping online option to their customers. Churches have also felt the brunt of the situation, especially because of the restrictions on crowds resulting in online services becoming more popular in 2020 than ever before. Artists, innovatively have started online musical concerts. The findings indicate that one of the outcomes in the Kenyan society that is evident as a result of the COVID-19 period is a population that is using technology more to communicate and get work done. Vices that have thrived in this season where the use of technology has increased, include the spreading of rumors on social media and cyberbullying. The place of technology seems to have been cemented by demand during this period.

Keywords: communication, coronavirus, COVID-19, Kenya, technology

Procedia PDF Downloads 126
3591 An Investigative Study into Good Governance in the Non-Profit Sector in South Africa: A Systems Approach Perspective

Authors: Frederick M. Dumisani Xaba, Nokuthula G. Khanyile

Abstract:

There is a growing demand for greater accountability, transparency and ethical conduct based on sound governance principles in the developing world. Funders, donors and sponsors are increasingly demanding more transparency, better value for money and adherence to good governance standards. The drive towards improved governance measures is largely influenced by the need to ‘plug the leaks’, deal with malfeasance, engender greater levels of accountability and good governance and to ultimately attract further funding or investment. This is the case with the Non-Profit Organizations (NPOs) in South Africa in general, and in the province of KwaZulu-Natal in particular. The paper draws from the good governance theory, stakeholder theory and systems thinking to critically examine the requirements for good governance for the NPO sector from a theoretical and legislative point and to systematically looks at the contours of governance currently among the NPOs. The paper did this through the rigorous examination of the vignettes of cases of governance among selected NPOs based in KwaZulu-Natal. The study used qualitative and quantitative research methodologies through document analysis, literature review, semi-structured interviews, focus groups and statistical analysis from the various primary and secondary sources. It found some good cases of good governance but also found frightening levels of poor governance. There was an exponential growth of NPOs registered during the period under review, equally so there was an increase in cases of non-compliance to good governance practices. NPOs operate in an increasingly complex environment. There is contestation for influence and access to resources. Stakeholder management is poorly conceptualized and executed. Recognizing that the NPO sector operates in an environment characterized by complexity, constant changes, unpredictability, contestation, diversity and divergent views of different stakeholders, there is a need to apply legislative and systems thinking approaches to strengthen governance to withstand this turbulence through a capacity development model that recognizes these contextual and environmental challenges.

Keywords: good governance, non-profit organizations, stakeholder theory, systems theory

Procedia PDF Downloads 112
3590 Isolation, Identification and Screening of Marine Fungi for Potential Tyrosinase Inhibitor, Antibacterial and Antioxidant for Future Cosmeceuticals

Authors: Shivankar Agrawal, Sunil Kumar Deshmukh, Colin Barrow, Alok Adholeya

Abstract:

A variety of genetic and environmental factors cause various cosmetics and dermatological problems. There are already claimed drugs available in market for treating these problems. However, the challenge remains in finding more potent, environmental friendly, causing minimal side effects and economical cosmeceuticals. This leads to an increased demand for natural cosmeceutical products in the last few decades. Plant derived ingredients are limited because plants either contain toxic metabolites, grow too slow or seasonal harvesting is a problem. To identify new bioactive cosmetics ingredients of marine microbial bioresource, we screened 35 marine fungi isolated from marine samples collected from Andaman Island and west coast of India. Fungal crude extracts were investigated for their antityrosinase, antioxidant and antibacterial activities for the purpose of identifying anti-aging, skin-whitening and anti-acne biomolecule with the potential in cosmetics. In the tyrosinase inhibition and 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assays, two fungal extracts, including “P2”, Talaromyces stipitatus and “D4”, Aspergillus terreus showed high inhibitory activity at 1mg/mL for tyrosinase inhibition and 0.5mg/mL for DPPH scavenging. The in vitro antimicrobial activity was investigated by the agar well diffusion method. In the tyrosinase inhibition assay, 8 extracts showed significant antibacterial activity against bacteria causing skin and wound infection in humans. In the course of systematic screening program for bioactive marine fungi, strain “D5” was found to be most potent strain with MIC value of 1mg/mL, which was morphologically identified as Simplicillium lamellicola. The effects of the most active crude extracts against their susceptible test microorganisms were also investigated by SEM analysis. Further investigations will focus on purification and characterization major active components responsible for these activities.

Keywords: antioxidant, antimicrobial activity, tyrosinase, cosmeceuticals, marine fungi

Procedia PDF Downloads 269
3589 Effect an Axial Magnetic Field in Co-rotating Flow Heated from Below

Authors: B. Mahfoud, A. Bendjagloli

Abstract:

The effect of an axial magnetic field on the flow produced by co-rotation of the top and bottom disks in a vertical cylindrical heated from below is numerically analyzed. The governing Navier-Stokes, energy, and potential equations are solved by using the finite-volume method. It was observed that the Reynolds number is increased, the axisymmetric basic state loses stability to circular patterns of axisymmetric vortices and spiral waves. In mixed convection case the axisymmetric mode disappears giving an asymmetric mode m=1. It was also found that the primary thresholds Recr corresponding to the modes m=1and 2, increase with increasing of the Hartmann number (Ha). Finally, stability diagrams have been established according to the numerical results of this investigation. These diagrams giving the evolution of the primary thresholds as a function of the Hartmann number for various values of the Richardson number.

Keywords: bifurcation, co-rotating end disks, magnetic field, stability diagrams, vortices

Procedia PDF Downloads 334
3588 Design Parameters Optimization of a Gas Turbine with Exhaust Gas Recirculation: An Energy and Exergy Approach

Authors: Joe Hachem, Marianne Cuif-Sjostrand, Thierry Schuhler, Dominique Orhon, Assaad Zoughaib

Abstract:

The exhaust gas recirculation, EGR, implementation on gas turbines is increasingly gaining the attention of many researchers. This emerging technology presents many advantages, such as lowering the NOx emissions and facilitating post-combustion carbon capture as the carbon dioxide concentration in the cycle increases. As interesting as this technology may seem, the gas turbine, or its thermodynamic equivalent, the Brayton cycle, shows an intrinsic efficiency decrease with increasing EGR rate. In this paper, a thermodynamic model is presented to show the cycle efficiency decrease with EGR, alternative values of design parameters of both the pressure ratio (PR) and the turbine inlet temperature (TIT) are then proposed to optimize the cycle efficiency with different EGR rates. Results show that depending on the given EGR rate, both the design PR & TIT should be increased to compensate for the deficit in efficiency.

Keywords: gas turbines, exhaust gas recirculation, design parameters optimization, thermodynamic approach

Procedia PDF Downloads 134
3587 Preparation of 3D Graphene with Microwave-Hydrothermal Assistance for Ultrahigh Performance of Capacitive Deionization

Authors: Wahid Dianbudiyanto, Shou Heng Liu

Abstract:

Capacitive deionization (CDI) is a prospective desalination technology, which can be operated at low voltage, low temperature and potentially consume low energy for brackish water desalination. To obtain the optimal electrosorption, an electrode should possess high electrical conductivity, large surface area, good wettability, highly mesoporous structure which provide efficient pathways for ion distribution. In this work, a 3D structure graphene was fabricated using hydrothermal method which is assisted with microwave treatments to form 3D rGO (3DG-Mw-Hyd). The prepared samples have excellent specific capacitance (189.2 F / g) and ultrahigh electrosorption capacity (30 mg/g) for the desalination of 500 mg / l NaCl. These results are superior to the electrode which is fabricated only using the hydrothermal method without microwave assistance (3DG-Hyd) and traditional reflux method. Physical characterizations such as SEM, TEM, and XRD have been used to study the property difference of the materials. The preliminary results show that 3DG-Mw-Hyd is one of the promising electrodes for CDI in the practical applications.

Keywords: capacitive deionization, graphene, microwave, hydrothermal, electrosorption

Procedia PDF Downloads 275
3586 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 70
3585 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis

Authors: Milind Anurag

Abstract:

This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.

Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency

Procedia PDF Downloads 27
3584 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes

Authors: Zubair Ahmed, Andrea Barbieri

Abstract:

The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.

Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence

Procedia PDF Downloads 102
3583 Assessing the Ways of Improving the Power Saving Modes in the Ore-Grinding Technological Process

Authors: Baghdasaryan Marinka

Abstract:

Monitoring the distribution of electric power consumption in the technological process of ore grinding is conducted. As a result, the impacts of the mill filling rate, the productivity of the ore supply, the volumetric density of the grinding balls, the specific density of the ground ore, and the relative speed of the mill rotation on the specific consumption of electric power have been studied. The power and technological factors affecting the reactive power generated by the synchronous motors, operating within the technological scheme are studied. A block diagram for evaluating the power consumption modes of the technological process is presented, which includes the analysis of the technological scheme, the determination of the place and volumetric density of the ore-grinding mill, the evaluation of the technological and power factors affecting the energy saving process, as well as the assessment of the electric power standards.

Keywords: electric power standard, factor, ore grinding, power consumption, reactive power, technological

Procedia PDF Downloads 540
3582 Investigation of Interaction between Interferons and Polyethylene Glycol Using Molecular Dynamics Simulation

Authors: M. Dehestani, F. Kamali, M. Klantari Pour, L. Zeidabadi-Nejad

Abstract:

Chemical bonding between polyethylene glycol (PEG) with pharmaceutical proteins called pegylation is one of the most effective methods of improving the pharmacological properties. The covalent attachment of polyethylene glycol (PEG) to proteins will increase their pharmacologic properties. For the formation of a combination of pegylated protein should first be activated PEG and connected to the protein. Interferons(IFNs) are a family of cytokines which show antiviral effects in front of the biological and are responsible for setting safety system. In this study, the nature and properties of the interaction between active positions of IFNs and polyethylene glycol have been investigated using molecular dynamics simulation. The main aspect of this theoretical work focuses on the achievement of valuable data on the reaction pathways of PEG-IFNs and the transition state energy. Our results provide a new perspective on the interactions, chemical properties and reaction pathways between IFNs and PEG.

Keywords: interaction, interferons, molecular dynamics simulation, polyethylene glycol

Procedia PDF Downloads 229
3581 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 344
3580 A Theoretical Overview of Thermoluminescence

Authors: Sadhana Agrawal, Tarkeshwari Verma, Shmbhavi Katyayan

Abstract:

The magnificently accentuating phenomenon of luminescence has gathered a lot of attentions from last few decades. Probably defined as the one involving emission of light from certain kinds of substances on absorbing various energies in the form of external stimulus, the phenomenon claims a versatile pertinence. First observed and reported in an extract of Ligrium Nephriticum by Monards, the phenomenon involves turning of crystal clear water into colorful fluid when comes in contact with the special wood. In words of Sir G.G. Stokes, the phenomenon actually involves three different techniques – absorption, excitation and emission. With variance in external stimulus, the corresponding luminescence phenomenon is obtained. Here, this paper gives a concise discussion of thermoluminescence which is one of the types of luminescence obtained when the external stimulus is given in form of heat energy. A deep insight of thermoluminescence put forward a qualitative analysis of various parameters such as glow curves peaks, trap depth, frequency factors and order of kinetics.

Keywords: frequency factor, glow curve peaks, thermoluminescence, trap depth

Procedia PDF Downloads 378
3579 POSS as Modifiers and Additives for Elastomer Composites

Authors: Anna Strąkowska, Marian Zaborski

Abstract:

The studies were focused on POSS application with methylvinylsilicone rubber (MVQ). The obtained results indicate that they can be successfully incorporated into silica-filled rubbers as modifying agents since they enhance cross-link density and improve most properties of the resulting network. It is also worth noting that the incorporation of POSS molecules resulted in stabilizing effect against adverse changes induced by the climatic, ozone or UV ageing of the rubbers. Furthermore, we obtained interesting results of rubbers surface modification using POSS functionalised with halogen groups (Cl, F, and Br). As the results, surface energy of the elastomeric composites and their hydrophobicity increased, barrier properties improved and thermal stability increased as well. Additionally, the studies with silicone rubber and POSS containing acidic and alkaline groups revealed composites with self-healing properties. The observed effects strictly depend on a kind and quantity of functional groups present in angles of POSS cages.

Keywords: elastomeric composites, POSS, properties modyfication, silicone rubber

Procedia PDF Downloads 341
3578 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 117
3577 A Comparative Density Functional Theory Study of Hydrocarbon Combustion on Metal Surfaces

Authors: Abas Mohsenzadeh, Mina Arya, Kim Bolton

Abstract:

Catalytic combustion of hydrocarbons is an important technology developed to produce energy with minimum pollutant formation. The catalyst plays a key role in this process which operates at lower temperatures compared to conventional flame combustion. The energetics of the direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces including Ag, Au, Al, Cu, Rh, Pt, Pd, Ni, Fe and Co were investigated using density functional theory (DFT). Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) correlations were proposed based on DFT calculations on the Ag, Au, Al, Cu, Rh, Pt and Pd surfaces. These correlations were then used to estimate the energetics on Fe, Ni and Co surfaces. Results showed that the estimated reaction and activation energies by BEP and TSS correlations on Fe, Ni and Co surfaces are in an excellent agreement with those obtained by DFT calculations. Therefore these correlations can be efficiently used to predict energetics of similar reactions on these surfaces without doing computationally costly transition state calculations. It was found that the activation barrier for CH dissociation follows the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe. Also, BEP (with R2 value of 0.96) and TSS correlations (with R2 value of 0.99) support the results.

Keywords: BEP, DFT, hydrocarbon combustion, metal surfaces, TSS

Procedia PDF Downloads 240
3576 Finite Element Analysis of Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel

Authors: Bijit Kalita, R. Jayaganthan

Abstract:

Additive manufacturing (AM) is a novel manufacturing method which provides more freedom in design, manufacturing near-net-shaped parts as per demand, lower cost of production, and expedition in delivery time to market. Among various metals, AM techniques, Laser Powder Bed Fusion (L-PBF) is the most prominent one that provides higher accuracy and powder proficiency in comparison to other methods. Particularly, 17-4 PH alloy is martensitic precipitation hardened (PH) stainless steel characterized by resistance to corrosion up to 300°C and tailorable strengthening by copper precipitates. Additively manufactured 17-4 PH stainless steel exhibited a dendritic/cellular solidification microstructure in the as-built condition. It is widely used as a structural material in marine environments, power plants, aerospace, and chemical industries. The excellent weldability of 17-4 PH stainless steel and its ability to be heat treated to improve mechanical properties make it a good material choice for L-PBF. In this study, the microstructures of martensitic stainless steels in the as-built state, as well as the effects of process parameters, building atmosphere, and heat treatments on the microstructures, are reviewed. Mechanical properties of fabricated parts are studied through micro-hardness and tensile tests. Tensile tests are carried out under different strain rates at room temperature. In addition, the effect of process parameters and heat treatment conditions on mechanical properties is critically reviewed. These studies revealed the performance of L-PBF fabricated 17–4 PH stainless-steel parts under cyclic loading, and the results indicated that fatigue properties were more sensitive to the defects generated by L-PBF (e.g., porosity, microcracks), leading to the low fracture strains and stresses under cyclic loading. Rapid melting, solidification, and re-melting of powders during the process and different combinations of processing parameters result in a complex thermal history and heterogeneous microstructure and are necessary to better control the microstructures and properties of L-PBF PH stainless steels through high-efficiency and low-cost heat treatments.

Keywords: 17–4 PH stainless steel, laser powder bed fusion, selective laser melting, microstructure, additive manufacturing

Procedia PDF Downloads 105