Search results for: volatile oils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 871

Search results for: volatile oils

211 Toxicity Identification and Evaluation for the Effluent from Seawater Desalination Facility in Korea Using D. magna and V. fischeri

Authors: Sung Jong Lee, Hong Joo Ha, Chun Sang Hong

Abstract:

In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a Seawater desalination facility in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (24,215 ~ 29,562 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach, and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Acknowledgement: This research was supported by a grant (16IFIP-B089911-03) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: TIE, D. magna, V. fischeri, seawater desalination facility

Procedia PDF Downloads 234
210 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel

Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar

Abstract:

Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.

Keywords: microalgae, organic media, optimization, transesterification, characterization

Procedia PDF Downloads 210
209 Comparison Study of Capital Protection Risk Management Strategies: Constant Proportion Portfolio Insurance versus Volatility Target Based Investment Strategy with a Guarantee

Authors: Olga Biedova, Victoria Steblovskaya, Kai Wallbaum

Abstract:

In the current capital market environment, investors constantly face the challenge of finding a successful and stable investment mechanism. Highly volatile equity markets and extremely low bond returns bring about the demand for sophisticated yet reliable risk management strategies. Investors are looking for risk management solutions to efficiently protect their investments. This study compares a classic Constant Proportion Portfolio Insurance (CPPI) strategy to a Volatility Target portfolio insurance (VTPI). VTPI is an extension of the well-known Option Based Portfolio Insurance (OBPI) to the case where an embedded option is linked not to a pure risky asset such as e.g., S&P 500, but to a Volatility Target (VolTarget) portfolio. VolTarget strategy is a recently emerged rule-based dynamic asset allocation mechanism where the portfolio’s volatility is kept under control. As a result, a typical VTPI strategy allows higher participation rates in the market due to reduced embedded option prices. In addition, controlled volatility levels eliminate the volatility spread in option pricing, one of the frequently cited reasons for OBPI strategy fall behind CPPI. The strategies are compared within the framework of the stochastic dominance theory based on numerical simulations, rather than on the restrictive assumption of the Black-Scholes type dynamics of the underlying asset. An extended comparative quantitative analysis of performances of the above investment strategies in various market scenarios and within a range of input parameter values is presented.

Keywords: CPPI, portfolio insurance, stochastic dominance, volatility target

Procedia PDF Downloads 144
208 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications

Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder

Abstract:

Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (

Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric

Procedia PDF Downloads 104
207 Radiation Skin Decontamination Formulation

Authors: Navneet Sharma, Himanshu Ojha, Dharam Pal Pathak, Rakesh Kumar Sharma

Abstract:

Radio-nuclides decontamination is an important task because any extra second of deposition leads to deleterious health effects. We had developed and characterise nanoemulsion of p-tertbutylcalix[4]arens using phase inversion temperature (PIT) method and evaluate its decontamination efficacy (DE). The solubility of the drug was determined in various oils and surfactants. Nanoemulsion developed with an HLB value of 11 and different ratios of the surfactants 10% (7:3, w/w), oil (20%, w/w), and double distilled water (70%) were selected. Formulation was characterised by multi-photon spectroscopy and parameters like viscosity, droplet size distribution, zeta potential and stability were optimised. In vitro and Ex vivo decontamination efficacy (DE) was evaluated against Technetium-99m, Iodine-131, and Thallium-201 as radio-contaminants applied over skin of Sprague-Dawley rat and human tissue equivalent model. Contaminants were removed using formulation soaked in cotton swabs at different time intervals and whole body imaging and static counts were recorded using SPECT gamma camera before and after decontamination attempt. Data were analysed using one-way analysis of variance (ANOVA) and was found to be significant (p <0.05). DE of the nanoemulsion loaded with p-tertbutylcalix[4]arens was compared with placebo and recorded to be 88±5%, 90±3% and 89±3% for 99mTc, 131I and 201Tl respectively. Ex-vivo complexation study of p-tertbutylcalix[4]arene nanoemulsion with surrogate nuclides of radioactive thallium and Iodine, were performed on rat skin mounted on Franz diffusion cell using high-resolution sector field inductively coupled plasma mass spectroscopy (HR-SF-ICPMS). More than 90% complexation of the formulation with these nuclides was observed. Results demonstrate that the prepared nanoemulsion formulation was found efficacious for the decontamination of radionuclides from a large contaminated population.

Keywords: p-tertbutylcalix[4]arens, skin decontamination, radiological emergencies, nanoemulsion, iodine-131, thallium-201

Procedia PDF Downloads 374
206 Application of Customized Bioaugmentation Inocula to Alleviate Ammonia Toxicity in CSTR Anaerobic Digesters

Authors: Yixin Yan, Miao Yan, Irini Angelidaki, Ioannis Fotidis

Abstract:

Ammonia, which derives from the degradation of urea and protein-substrates, is the major toxicant of the commercial anaerobic digestion reactors causing loses of up to 1/3 of their practical biogas production, which reflects directly on the overall revenue of the plants. The current experimental work is aiming to alleviate the ammonia inhibition in anaerobic digestion (AD) process by developing an innovative bioaugmentation method of ammonia tolerant methanogenic consortia. The ammonia tolerant consortia were cultured in batch reactors and immobilized together with biochar in agar (customized inocula). Three continuous stirred-tank reactors (CSTR), fed with the organic fraction of municipal solid waste at a hydraulic retention time of 15 days and operated at thermophilic (55°C) conditions were assessed. After an ammonia shock of 4 g NH4+-N L-1, the customized inocula were bioaugmented into the CSTR reactors to alleviate ammonia toxicity effect on AD process. Recovery rate of methane production and methanogenic activity will be assessed to evaluate the bioaugmentation performance, while 16s rRNA gene sequence will be used to reveal the difference of microbial community changes through bioaugmentation. At the microbial level, the microbial community structures of the four reactors will be analysed to find the mechanism of bioaugmentation. Changes in hydrogen formation potential will be used to predict direct interspecies electron transfer (DIET) between ammonia tolerant methanogens and syntrophic bacteria. This experimental work is expected to create bioaugmentation inocula that will be easy to obtain, transport, handled and bioaugment in AD reactors to efficiently alleviate the ammonia toxicity, without alternating any of the other operational parameters including the ammonia-rich feedstocks.

Keywords: artisanal fishing waste, acidogenesis, volatile fatty acids, pH, inoculum/substrate ratio

Procedia PDF Downloads 99
205 A Feasibility Study of Waste (d) Potential: Synergistic Effect Evaluation by Co-digesting Organic Wastes and Kinetics of Biogas Production

Authors: Kunwar Paritosh, Sanjay Mathur, Monika Yadav, Paras Gandhi, Subodh Kumar, Nidhi Pareek, Vivekanand Vivekanand

Abstract:

A significant fraction of energy is wasted every year managing the biodegradable organic waste inadequately as development and sustainability are the inherent enemies. The management of these waste is indispensable to boost its optimum utilization by converting it to renewable energy resource (here biogas) through anaerobic digestion and to mitigate greenhouse gas emission. Food and yard wastes may prove to be appropriate and potential feedstocks for anaerobic co-digestion for biogas production. The present study has been performed to explore the synergistic effect of co-digesting food waste and yard trimmings from MNIT campus for enhanced biogas production in different ratios in batch tests (37±10C, 90 rpm, 45 days). The results were overwhelming and showed that blending two different organic waste in proper ratio improved the biogas generation considerably, with the highest biogas yield (2044±24 mLg-1VS) that was achieved at 75:25 of food waste to yard waste ratio on volatile solids (VS) basis. The yield was 1.7 and 2.2 folds higher than the mono-digestion of food or yard waste (1172±34, 1016±36mLg-1VS) respectively. The increase in biogas production may be credited to optimum C/N ratio resulting in higher yield. Also Adding TiO2 nanoparticles showed virtually no effect on biogas production as sometimes nanoparticles enhance biogas production. ICP-MS, FTIR analysis was carried out to gain an insight of feedstocks. Modified Gompertz and logistics models were applied for the kinetic study of biogas production where modified Gompertz model showed goodness-of-fit (R2=0.9978) with the experimental results.

Keywords: anaerobic co-digestion, biogas, kinetics, nanoparticle, organic waste

Procedia PDF Downloads 362
204 Small Scale Waste to Energy Systems: Optimization of Feedstock Composition for Improved Control of Ash Sintering and Quality of Generated Syngas

Authors: Mateusz Szul, Tomasz Iluk, Aleksander Sobolewski

Abstract:

Small-scale, distributed energy systems enabling cogeneration of heat and power based on gasification of sewage sludge, are considered as the most efficient and environmentally friendly ways of their treatment. However, economic aspects of such an investment are very demanding; therefore, for such a small scale sewage sludge gasification installation to be profitable, it needs to be efficient and simple at the same time. The article presents results of research on air gasification of sewage sludge in fixed bed GazEla reactor. Two of the most important aspects of the research considered the influence of the composition of sewage sludge blends with other feedstocks on properties of generated syngas and ash sintering problems occurring at the fixed bed. Different means of the fuel pretreatment and blending were proposed as a way of dealing with the above mentioned undesired characteristics. Influence of RDF (Refuse Derived Fuel) and biomasses in the fuel blends were evaluated. Ash properties were assessed based on proximate, ultimate, and ash composition analysis of the feedstock. The blends were specified based on complementary characteristics of such criteria as C content, moisture, volatile matter, Si, Al, Mg, and content of basic metals in the ash were analyzed, Obtained results were assessed with use of experimental gasification tests and laboratory ISO-procedure for analysis of ash characteristic melting temperatures. Optimal gasification process conditions were determined by energetic parameters of the generated syngas, its content of tars and lack of ash sinters within the reactor bed. Optimal results were obtained for co-gasification of herbaceous biomasses with sewage sludge where LHV (Lower Heating Value) of the obtained syngas reached a stable value of 4.0 MJ/Nm3 for air/steam gasification.

Keywords: ash fusibility, gasification, piston engine, sewage sludge

Procedia PDF Downloads 168
203 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects

Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes

Abstract:

Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.

Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction

Procedia PDF Downloads 119
202 The Chemical Composition and Larvicidal Activity of Essential Oils Derived from Piper Longepetiolatum and Piper Brachypetiolatum (Piperaceae) Against Aedes Aegypti Larvae (Culicidae) Were Investigated

Authors: Suelen C. Lima, André C. de Oliveira, Rosemary A. Roque

Abstract:

Dengue is fatal arboviruses transmitted by the A. aegypti mosquito to more than 100 countries, for which the WHO estimates that 2.5 million people will be infected by these disease. The widespread of these diseases is due, among other factors, to the resistance that A. aegypti has to several commercial insecticides. On the other hand, natural products based on plants of the genus Piper (Piperaceae) are characterized by their insecticidal activities against mosquitoes. Piper longepetiolatum and Piper brachypetiolatum are species with wide distribution in the State of Amazonas. However, there is no investigation of phytochemical or biological of these plants against mosquitoes such as A. aegypti. The main of this study was to identify the chemical composition of the essential oil (EOs) from P. longepetiolatum and P. brachypetiolatum and to evaluate the biological activity against A. aegypti. The EOs were extracted by hydrodistillation from leaves (200 g) of P. longepetiolatum and P. brachypetiolatum and analyzed by GC-MS and GC-FID. The main compounds β-caryophyllene (99.9% of purity) and E-nerolidol (99.4% of purity) were purchased from Sigma-Aldrich® Brazil. The larvicidal activity of EOs (20 to 100 ppm), β-caryophyllene and E-nerolidol (10 to 50 ppm) was performed according to WHO protocol against A. aegypti larvae. The GC-MS and GC-FID analysis of EOs from P. longepetiolatum and P. brachypetiolatum indicated the majority presence of β-caryophyllene (35.42%) and E-nerolidol (49.79%), respectively. The results showed that all natural products presented larvicidal activity against A. aegypti. In this aspect, the OE from P. brachypetiolatum (LC50 of 15.51 ppm and LC90 of 22.79 ppm) was more active than the OE from P. longepetiolatum (LC50 of 47.17 ppm and LC90 of 69.60 ppm) (p < 0.05). Regarding of main compounds, E-nerolidol (LC50 of 9.50 ppm and LC90 of 23.89 ppm) showed higher larvicidal activity than the β-caryophyllene compound (LC50 of 79.00 ppm and LC90 of 230.91 ppm) (p < 0.05). The larvae treated with these natural products showed tremors and lethargic movements, suggesting that these natural products have neurotoxic action. These observations support studies to investigate the mechanism of action. This is the first record of the chemical composition and larvicidal activity of the EO from P. longepetiolatum and P. brachypetiolatum rich in β-caryophyllene and E-nerolidol against A. aegypti larvae.

Keywords: piperaceae, aedes, sesquiterpenes, biological control

Procedia PDF Downloads 48
201 Biodiesel Production from Yellow Oleander Seed Oil

Authors: S. Rashmi, Devashish Das, N. Spoorthi, H. V. Manasa

Abstract:

Energy is essential and plays an important role for overall development of a nation. The global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment, renewable and carbon neutral biodiesel are necessary for environment and economic sustainability. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. Fossil fuels remain the dominant source of primary energy, accounting for 84% of the overall increase in demand. Today biodiesel has come to mean a very specific chemical modification of natural oils. Objectives: To produce biodiesel from yellow oleander seed oil, to test the yield of biodiesel using different types of catalyst (KOH & NaOH). Methodology: Oil is extracted from dried yellow oleander seeds using Soxhlet extractor and oil expeller (bulk). The FFA content of the oil is checked and depending on the FFA value either two steps or single step process is followed to produce biodiesel. Two step processes includes esterfication and transesterification, single step includes only transesterification. The properties of biodiesel are checked. Engine test is done for biodiesel produced. Result: It is concluded that biodiesel quality parameters such as yield(85% & 90%), flash point(1710C & 1760C),fire point(1950C & 1980C), viscosity(4.9991 and 5.21 mm2/s) for the biodiesel from seed oil of Thevetiaperuviana produced by using KOH & NaOH respectively. Thus the seed oil of Thevetiaperuviana is a viable feedstock for good quality fuel.The outcomes of our project are a substitute for conventional fuel, to reduce petro diesel requirement,improved performance in terms of emissions. Future prospects: Optimization of biodiesel production using response surface method.

Keywords: yellow oleander seeds, biodiesel, quality parameters, renewable sources

Procedia PDF Downloads 420
200 Accountant Strategists Challenge the Dominant Business Model: A Strategy-as-Practice Perspective

Authors: Lindie Grebe

Abstract:

This paper reports on a study that explored the strategizing practices of professional accountants in the mining industry, based on Jarratt and Stiles’ dominant strategizing practice models framework. Drawing on a strategy-as-practice perspective, the paper recognises qualified professional accountants in strategic management such as Chief Executive Officers, as strategy practitioners that perform their strategizing practices and praxis within a specific context. The main findings of this paper were produced through semi-structured individual interviews with accountants that perform strategy on a business level in the South African mining industry. Qualitative data were analysed through conversation analysis over two coding-cycles. Findings describe accountant strategists as practitioners who challenge the dominant business model when a disconnect seems to exist between international corporate level strategy and business level strategy in the South African mining industry. Accountant strategy practitioners described their dominant strategizing practice model as incremental change during strategic planning and as a lived experience during strategy implementation. Findings portrayed these strategists as taking initiative as strategy leaders in a dynamic and volatile environment to combine their accounting background with strategic management and challenge the dominant business model. Understanding how accountant strategists perform strategizing offers insight into the social practice of strategic management. This understanding contributes to the body of knowledge on strategizing in the South African mining industry. In addition, knowledge on the transformation of accountants as strategists could provide valuable practice relevant insights for accounting educators and the accounting profession alike.

Keywords: accountant strategists, dominant strategizing practice models framework, mining industry, strategy-as-practice

Procedia PDF Downloads 153
199 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values

Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne

Abstract:

Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.

Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil

Procedia PDF Downloads 278
198 Potential Use of Thymus mastichina L. Extract as a Natural Agent against Cheese Spoilage Microorganisms

Authors: Susana P. Dias, Andrea Gomes, Fernanda M. Ferreira, Marta F. Henriques

Abstract:

Thymus mastichina L. is an endogenous medicinal and aromatic plant of the Mediterranean flora. It has been used empirically over the years as a natural preservative in food. Nowadays, the antimicrobial activity of its bioactive compounds, such as essential oils and extracts, has been well recognized. The main purpose of this study was to evaluate the antimicrobial effect of Thymus mastichina ethanolic and aqueous extracts on pathogens and spoilage microorganisms present in cheese during ripening. The effect that the extract type and its concentration has on the development of Staphylococcus aureus, Escherichia coli, and Yarrowia lipolytica populations during 24 hours, was studied 'in vitro' using appropriate culture media. The results achieved evidenced the antimicrobial activity of T. mastichina extracts against the studied strains, and the concentration of 2 mg/mL (w/v) was selected and used directly on the cheese surface during ripening. In addition to the microbiological evaluation in terms of total aerobic bacteria, Enterobacteriaceae, yeasts (particularly Y. lipolytica) and molds, the treated cheeses physicochemical evaluation (humidity, aw, pH, colour, and texture) was also performed. The results were compared with cheeses with natamicyn (positive control) and without any treatment (negative control). The physicochemical evaluation showed that the cheeses treated with ethanolic extract of Thymus mastichina, except the fact that they lead to a faster water loss during ripening, did not present considerable differences when compared to controls. The study revealed an evident antimicrobial power of the extracts, although less effective than the one shown by the use of natamycin. For this reason, the improvement of the extraction methods and the adjustment of the extract concentrations will contribute to the use of T. mastichina as a healthier and eco-friendly alternative to natamycin, that is also more attractive from an economic point of view.

Keywords: antimicrobial activity, cheese, ethanolic extract, Thymus mastichina

Procedia PDF Downloads 158
197 Jatropha curcas L. Oil Selectivity in Froth Flotation

Authors: André C. Silva, Izabela L. A. Moraes, Elenice M. S. Silva, Carlos M. Silva Filho

Abstract:

In Brazil, most soils are acidic and low in essential nutrients required for the growth and development of plants, making fertilizers essential for agriculture. As the biggest producer of soy in the world and a major producer of coffee, sugar cane and citrus fruits, Brazil is a large consumer of phosphate. Brazilian’s phosphate ores are predominantly from igneous rocks showing a complex mineralogy, associated with carbonites and oxides, typically iron, silicon and barium. The adopted industrial concentration circuit for this type of ore is a mix between magnetic separation (both low and high field) to remove the magnetic fraction and a froth flotation circuit composed by a reverse flotation of apatite (barite’s flotation) followed by direct flotation circuit (rougher, cleaner and scavenger circuit). Since the 70’s fatty acids obtained from vegetable oils are widely used as lower-cost collectors in apatite froth flotation. This is a very effective approach to the apatite family of minerals, being that this type of collector is both selective and efficient (high recovery). This paper presents Jatropha curcas L. oil (JCO) as a renewable and sustainable source of fatty acids with high selectivity in froth flotation of apatite. JCO is considerably rich in fatty acids such as linoleic, oleic and palmitic acid. The experimental campaign involved 216 tests using a modified Hallimond tube and two different minerals (apatite and quartz). In order to be used as a collector, the oil was saponified. The results found were compared with the synthetic collector, Fotigam 5806 produced by Clariant, which is composed mainly by soy oil. JCO showed the highest selectivity for apatite flotation with cold saponification at pH 8 and concentration of 2.5 mg/L. In this case, the mineral recovery was around 95%.

Keywords: froth flotation, jatropha curcas, microflotation, selectivity

Procedia PDF Downloads 407
196 Oil-Oil Correlation Using Polar and Non-Polar Fractions of Crude Oil: A Case Study in Iranian Oil Fields

Authors: Morteza Taherinezhad, Ahmad Reza Rabbani, Morteza Asemani, Rudy Swennen

Abstract:

Oil-oil correlation is one of the most important issues in geochemical studies that enables to classify oils genetically. Oil-oil correlation is generally estimated based on non-polar fractions of crude oil (e.g., saturate and aromatic compounds). Despite several advantages, the drawback of using these compounds is their susceptibility of being affected by secondary processes. The polar fraction of crude oil (e.g., asphaltenes) has similar characteristics to kerogen, and this structural similarity is preserved during migration, thermal maturation, biodegradation, and water washing. Therefore, these structural characteristics can be considered as a useful correlation parameter, and it can be concluded that asphaltenes from different reservoirs with the same genetic signatures have a similar origin. Hence in this contribution, an integrated study by using both non-polar and polar fractions of oil was performed to use the merits of both fractions. Therefore, five oil samples from oil fields in the Persian Gulf were studied. Structural characteristics of extracted asphaltenes were investigated by Fourier transform infrared (FTIR) spectroscopy. Graphs based on aliphatic and aromatic compounds (predominant compounds in asphaltenes structure) and sulphoxide and carbonyl functional groups (which are representatives of sulphur and oxygen abundance in asphaltenes) were used for comparison of asphaltenes structures in different samples. Non-polar fractions were analyzed by GC-MS. The study of asphaltenes showed the studied oil samples comprise two oil families with distinct genetic characteristics. The first oil family consists of Salman and Reshadat oil samples, and the second oil family consists of Resalat, Siri E, and Siri D oil samples. To validate our results, biomarker parameters were employed, and this approach completely confirmed previous results. Based on biomarker analyses, both oil families have a marine source rock, whereby marl and carbonate source rocks are the source rock for the first and the second oil family, respectively.

Keywords: biomarker, non-polar fraction, oil-oil correlation, petroleum geochemistry, polar fraction

Procedia PDF Downloads 104
195 Fatty Acid Structure and Composition Effects of Biodiesel on Its Oxidative Stability

Authors: Gelu Varghese, Khizer Saeed

Abstract:

Biodiesel is as a mixture of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats. Recent studies in the literature suggest that end property of biodiesel such as its oxidative stability (OS) is highly influenced by the structure and composition of its alkyl esters than by environmental conditions. The structure and composition of these long chain fatty acid components have been also associated with trends in Cetane number, heat of combustion, cold flow properties viscosity, and lubricity. In the present work, detailed investigation has been carried out to decouple and correlate the fatty acid structure indices of biodiesel such as degree of unsaturation, chain length, double bond orientation, and composition with its oxidative stability. Measurements were taken using the EN14214 established Rancimat oxidative stability test method (EN141120). Firstly, effects of the degree of unsaturation, chain length and bond orientation were tested for the pure fatty acids to establish their oxidative stability. Results for pure Fatty acid show that Saturated FAs are more stable than unsaturated ones to oxidation; superior oxidative stability can be achieved by blending biodiesel fuels with relatively high in saturated fatty acid contents. A lower oxidative stability is noticed when a greater quantity of double bonds is present in the methyl ester. A strong inverse relationship with the number of double bonds and the Rancimat IP values can be identified. Trans isomer Methyl elaidate shows superior stability to oxidation than its cis isomer methyl oleate (7.2 vs. 2.3). Secondly, the effects of the variation in the composition of the biodiesel were investigated and established. Finally, biodiesels with varying structure and composition were investigated and correlated.

Keywords: biodiesel, fame, oxidative stability, fatty acid structure, acid composition

Procedia PDF Downloads 261
194 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil

Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.

Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli

Procedia PDF Downloads 190
193 Workers’ Prevention from Occupational Chemical Exposures during Container Handling

Authors: Balázs Ádám, Randi Nørgaard Fløe Pedersen, Jørgen Riis Jepsen

Abstract:

Volatile chemicals that accumulate and release from freight containers constitute significant health risks. Fumigation to prevent spread of pests and off-gassing of freight are sources of hazardous chemicals. The aim of our study was to investigate the regulation and practice of container handling with focus on preventive measures applied against chemical exposures in Denmark. A comprehensive systematic search of scientific literature and organizational domains of international and Danish regulatory bodies was performed to explore regulations related to safe work with transport containers. The practice of container work was investigated in a series of semi-structured interviews with managers and health and safety representatives of organizations that handle transport containers. Although there are several international and national regulations and local safety instructions that relate to container handling, the provided information is not specific or up-to-date enough to conduct safe practice in many aspects. The interviewees estimate high frequency of containers with chemical exposure and deem that they can potentially damage health, although recognizable health effects are rare. Knowledge is limited about the chemicals and most of them cannot be measured by available devices. Typical preventive measures are passive ventilation and personal protective equipment but their use is not consistent and may not provide adequate protection. Hazardous chemicals are frequently present in transport containers; however, managers, workers and even occupational health professionals have limited knowledge about the problem. Detailed risk assessment and specific instructions on risk management are needed to provide safe conditions for work with containers.

Keywords: chemical exposure, fumigation, occupational health and safety regulation, transport container

Procedia PDF Downloads 359
192 Nano-Enhanced In-Situ and Field Up-Gradation of Heavy Oil

Authors: Devesh Motwani, Ranjana S. Baruah

Abstract:

The prime incentive behind up gradation of heavy oil is to increase its API gravity for ease of transportation to refineries, thus expanding the market access of bitumen-based crude to the refineries. There has always been a demand for an integrated approach that aims at simplifying the upgrading scheme, making it adaptable to the production site in terms of economics, environment, and personnel safety. Recent advances in nanotechnology have facilitated the development of two lines of heavy oil upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. The In-Situ upgrading scheme makes use of Hot Fluid Injection (HFI) technique where heavy fractions separated from produced oil are injected into the formations to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. In the presence of hydrogen, catalytic exothermic hydro-processing reactions occur that produce light gases and volatile hydrocarbons which contribute to increased oil detachment from the rock resulting in enhanced recovery. In this way the process is a combination of enhanced heavy oil recovery along with up gradation that effectively handles the heat load within the reservoirs, reduces hydrocarbon waste generation and minimizes the need for diluents. By eliminating most of the residual oil, the Synthetic Crude Oil (SCO) is much easier to transport and more amenable for processing in refineries. For heavy oil reservoirs seriously impacted by the presence of aquifers, the nano-catalytic technology can still be implemented on field though with some additional investments and reduced synergies; however still significantly serving the purpose of production of transportable oil with substantial benefits with respect to both large scale upgrading, and known commercial field upgrading technologies currently on the market. The paper aims to delve deeper into the technology discussed, and the future compatibility.

Keywords: upgrading, synthetic crude oil, nano-catalytic technology, compatibility

Procedia PDF Downloads 384
191 Spherical Organic Particle (SOP) Emissions from Fixed-Bed Residential Coal-Burning Devices

Authors: Tafadzwa Makonese, Harold Annegarn, Patricia Forbes

Abstract:

Residential coal combustion is one of the largest sources of carbonaceous aerosols in the Highveld region of South Africa, significantly affecting the local and regional climate. In this study, we investigated single coal burning particles emitted when using different fire-ignition techniques (top-lit up-draft vs bottom-lit up-draft) and air ventilation rates (defined by the number of air holes above and below the fire grate) in selected informal braziers. Aerosol samples were collected on nucleopore filters at the SeTAR Centre Laboratory, University of Johannesburg. Individual particles (~700) were investigated using a scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy (EDS). Two distinct forms of spherical organic particles (SOPs) were identified, one less oxidized than the other. The particles were further classified into "electronically" dark and bright, according to China et al. [2014]. EDS analysis showed that 70% of the dark spherical organic particles balls had higher (~60%) relative oxygen content than in the bright SOPs. We quantify the morphology of spherical organic particles and classify them into four categories: ~50% are bare single particles; ~35% particles are aggregated and form diffusion accretion chains; 10% have inclusions; and 5% are deformed due to impaction on filter material during sampling. We conclude that there are two distinct kinds of coal burning spherical organic particles and that dark SOPs are less volatile than bright SOPs. We also show that these spherical organic particles are similar in nature and characteristics to tar balls observed in biomass combustion, and that they have the potential to absorb sunlight thereby affecting the earth’s radiative budget and climate. This study provides insights on the mixing states, morphology, and possible formation mechanisms of these organic particles from residential coal combustion in informal stoves.

Keywords: spherical organic particles, residential coal combustion, fixed-bed, aerosols, morphology, stoves

Procedia PDF Downloads 443
190 A Combinatorial Approach of Treatment for Landfill Leachate

Authors: Anusha Atmakuri, R. D. Tyagi, Patrick Drogui

Abstract:

Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate.

Keywords: landfill leachate, extracellular polymeric substances, electrocoagulation, bioflocculant.

Procedia PDF Downloads 63
189 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts

Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert

Abstract:

Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.

Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs

Procedia PDF Downloads 308
188 Sustainable Milling Process for Tensile Specimens

Authors: Shilpa Kumari, Ramakumar Jayachandran

Abstract:

Machining of aluminium extrusion profiles in the automotive industry has gained much interest in the last decade, particularly due to the higher utilization of aluminum profiles and the weight reduction benefits it brings. Milling is the most common material removal process, where the rotary milling cutter is moved against a workpiece. The physical contact of the milling cutter to the workpiece increases the friction between them, thereby affecting the longevity of the milling tool and also the surface finish of the workpiece. To minimise this issue, the milling process uses cutting fluids or emulsions; however, the use of emulsion in the process has a negative impact on the environment ( such as consumption of water, oils and the used emulsion needs to be treated before disposal) and also on the personal ( may cause respiratory problems, exposure to microbial toxins generated by bacteria in the emulsions on prolonged use) working close to the process. Furthermore, the workpiece also needs to be cleaned after the milling process, which is not adding value to the process, and the cleaning also disperses mist of emulsion in the working environment. Hydro Extrusion is committed to improving the performance of sustainability from its operations, and with the negative impact of using emulsion in the milling process, a new innovative process- Dry Milling was developed to minimise the impact the cutting fluid brings. In this paper, the authors present one application of dry milling in the machining of tensile specimens in the laboratory. Dry milling is an innovative milling process without the use of any cooling/lubrication and has several advantages. Several million tensile tests are carried out in extrusion laboratories worldwide with the wet milling process. The machining of tensile specimens has a significant impact on the reliability of test results. The paper presents the results for different 6xxx alloys with different wall thicknesses of the specimens, which were machined by both dry and wet milling processes. For both different 6xxx alloys and different wall thicknesses, mechanical properties were similar for samples milled using dry and wet milling. Several tensile specimens were prepared using both dry and wet milling to compare the results, and the outcome showed the dry milling process does not affect the reliability of tensile test results.

Keywords: dry milling, tensile testing, wet milling, 6xxx alloy

Procedia PDF Downloads 171
187 Alternative Water Resources and Brominated Byproducts

Authors: Nora Kuiper, Candace Rowell, Hugues Preud'Homme, Basem Shomar

Abstract:

As the global dependence on seawater desalination as a primary drinking water resource increases, a unique class of secondary pollutants is emerging. The presence of bromide salts in seawater may result in increased levels of bromine and brominated byproducts in drinking water. The State of Qatar offers a unique setting to study these pollutants and their impacts on consumers as the country is 100% dependent on seawater desalination to supply municipal tap water and locally produced bottled water. Tap water (n=115) and bottled water (n=62) samples were collected throughout the State of Qatar and analyzed for a suite of inorganic and organic compounds, including 54 volatile organic compounds (VOCs), with an emphasis on brominated byproducts. All VOC identification and quantification was completed using a Bruker Scion GCMSMS with static headspace technologies. A risk survey tool was used to collect information regarding local consumption habits, health outcomes and perception of water sources for adults and children. This study is the first of its kind in the country. Dibromomethane, bromoform, and bromobenzene were detected in 61%, 88% and 2%, of the drinking water samples analyzed. The levels of dibromomethane ranged from approximately 100-500 ng/L and the concentrations of bromoform ranged from approximately 5-50 µg/L. Additionally, bromobenzene concentrations were 60 ng/L. The presence of brominated compounds in drinking water is a public health concern specific to populations using seawater as a feed water source and may pose unique risks that have not been previously studied. Risk assessments are ongoing to quantify the risks associated with prolonged consumption of disinfection byproducts; specifically the risks of brominated trihalomethanes as the levels of bromoform found in Qatar’s drinking water reach more than 60% of the US EPA’s Maximum Contaminant Level of all THMs.

Keywords: brominated byproducts, desalination, trihalomethanes, risk assessment

Procedia PDF Downloads 404
186 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study

Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan

Abstract:

Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.

Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.

Procedia PDF Downloads 48
185 Mother as Troubles Teller: A Discourse Analytic Case Study of Mother-Adolescent Daughter Interaction

Authors: Domenica L. DelPrete

Abstract:

Viewed as a type of rapport-talk, troubles telling is a common conversational practice among female friends who wish to establish connection, show empathy, or share a disconcerting experience. This study shows how troubles talk between a mother and her adolescent daughter has a different interactional outcome. Specifically, it reveals how discursive interaction with an adolescent daughter becomes increasingly volatile when the mother steps out of the role of nurturer and into the role of troubles teller. Naturally occurring interactions between a mother and her 15-year-old daughter were videotaped in their family home over a two-week period. The data were primarily analyzed from an interactional sociolinguistic perspective, using conversation analytic techniques for transcriptions and discursive analysis. The following questions guided this research: (1) How are troubles telling discursively accomplished in the everyday talk of a mother and her adolescent daughter? and (2) What topic prompts the mother to engage in troubles talk? The data show that the mother engages her daughter in troubles to talk on issues related to body image and physical appearance and does so by (1) repeated questioning, (2) not accepting the daughter’s response as adequate, and (3) proffering self-deprecation. Findings reveal that engaging an adolescent daughter in a conversational practice reserved for female friendship groups creates a negative connection and relational disharmony. Since 'telling one’s troubles' assumes an egalitarian relationship between individuals, mother’s trouble telling creates a peer-like interaction that the adolescent daughter repeatedly resists. This study also proposes a discursive consciousness raising, which hopes to enhance communication between mothers and daughters by revealing the signals that show an adolescent daughter’s unwillingness to participate in troubles talk. Being in tune to these cues may prompt mothers to hesitate before pursuing a topic that will not garner the positive interactional outcome they seek.

Keywords: discursive interaction, maternal roles, mother-daughter interaction, troubles telling

Procedia PDF Downloads 104
184 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes

Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali

Abstract:

Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.

Keywords: biochar, biomass, cassava wastes, corn cob, pyrolysis

Procedia PDF Downloads 275
183 Green Synthesis of Silver Nanoparticles Mediated by Plant by-Product Extracts

Authors: Cristian Moisa, Andreea Lupitu, Adriana Csakvari, Dana G. Radu, Leonard Marian Olariu, Georgeta Pop, Dorina Chambre, Lucian Copolovici, Dana Copolovici

Abstract:

Green synthesis of nanoparticles (NPs) represents a promising, accessible, eco-friendly, and safe process with significant applications in biotechnology, pharmaceutical sciences, and farming. The aim of our study was to obtain silver nanoparticles, using plant wastes extracts resulted in the essential oils extraction process: Thymus vulgaris L., Origanum vulgare L., Lavandula angustifolia L., and in hemp processing for seed and fibre, Cannabis sativa. Firstly, we obtained aqueous extracts of thyme, oregano, lavender, and hemp (two monoicous and one dioicous varieties), all harvested in western part of Romania. Then, we determined the chemical composition of the extracts by liquid-chromatography coupled with diode array and mass spectrometer detectors. The compounds identified in the extracts were in agreement with earlier published data, and the determination of the antioxidant activity of the obtained extracts by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays confirmed their antioxidant activity due to their total polyphenolic content evaluated by Folin-Ciocalteu assay. Then, the silver nanoparticles (AgNPs) were successfully biosynthesised, as was demonstrated by UV-VIS, FT-IR spectroscopies, and SEM, by reacting AgNO₃ solution and plant extracts. AgNPs were spherical in shape, with less than 30 nm in diameter, and had a good bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens).

Keywords: plant wastes extracts, chemical composition, high performance liquid chromatography mass spectrometer, HPLC-MS, scanning electron microscopy, SEM, silver nanoparticles

Procedia PDF Downloads 158
182 Cannabis Use Reported by Patients in an Academic Medical Practice

Authors: Siddhant Yadav, Ann Vincent, Sanjeev Nanda, Karen M. Fischer, Jessica A. Wright

Abstract:

Statement of the Problem: Despite the growing popularity of cannabis in the general population, there are several unknowns regarding its use, specific reasons for use, patient’s choice of products, health benefits, and adverse effects. The aim of our study was to evaluate patient-reported information related to cannabis use that was recorded in the electronic medical records. Methodology & Theoretical Orientation: We manually reviewed the electronic medical records of cannabis users who were part of a large pharmacogenomic study. Data abstracted included demographics, level of education, concurrent alcohol and tobacco use, type of cannabis utilized, formulation, indication, symptomatic improvement, or adverse effects reported. Following this, we did a descriptive statistical analysis. Findings: Our sample of 164 cannabis users were predominantly female (73.2%); 66% of users reported using cannabis for medical indications. Of the 109 patients who recorded information pertaining to alcohol/tobacco use, two-thirds of cannabis users reported concurrent use of alcohol, and about half of them were former or current tobacco users. The mean age of cannabis use was 66 years. Regarding the type of cannabis, 34.1% reported using marijuana, 32.3% reported CBD use, 1.8% reported using THC, and 1.2% reported using Marinol. Oral formulations (capsules, oils, suspensions, brownies, cakes, and tea) were the most common route (44 %). Indications for use included chronic pain (n=76), anxiety (n=9), counteracting side effects of chemotherapy (n=4), and palliative reasons (n=2). Fifty-eight of the 76 users endorsed improvement in chronic pain (80%), 5 users reported improvement in anxiety, and 2 reported improvement in side effects of chemotherapy. Conclusion & Significance: The majority of our cannabis users were Caucasian females, and there was a high likelihood of coinciding use of alcohol/tobacco in patients using cannabis. Most of our patients used the oral formulation for chronic pain. Importantly, a considerable number of patients reported improvements in chronic pain, anxiety, and side effects of chemotherapy.

Keywords: cannabis use, adverse effects, medical practice, indications

Procedia PDF Downloads 73