Search results for: validation techniques
7322 Principal Component Analysis Combined Machine Learning Techniques on Pharmaceutical Samples by Laser Induced Breakdown Spectroscopy
Authors: Kemal Efe Eseller, Göktuğ Yazici
Abstract:
Laser-induced breakdown spectroscopy (LIBS) is a rapid optical atomic emission spectroscopy which is used for material identification and analysis with the advantages of in-situ analysis, elimination of intensive sample preparation, and micro-destructive properties for the material to be tested. LIBS delivers short pulses of laser beams onto the material in order to create plasma by excitation of the material to a certain threshold. The plasma characteristics, which consist of wavelength value and intensity amplitude, depends on the material and the experiment’s environment. In the present work, medicine samples’ spectrum profiles were obtained via LIBS. Medicine samples’ datasets include two different concentrations for both paracetamol based medicines, namely Aferin and Parafon. The spectrum data of the samples were preprocessed via filling outliers based on quartiles, smoothing spectra to eliminate noise and normalizing both wavelength and intensity axis. Statistical information was obtained and principal component analysis (PCA) was incorporated to both the preprocessed and raw datasets. The machine learning models were set based on two different train-test splits, which were 70% training – 30% test and 80% training – 20% test. Cross-validation was preferred to protect the models against overfitting; thus the sample amount is small. The machine learning results of preprocessed and raw datasets were subjected to comparison for both splits. This is the first time that all supervised machine learning classification algorithms; consisting of Decision Trees, Discriminant, naïve Bayes, Support Vector Machines (SVM), k-NN(k-Nearest Neighbor) Ensemble Learning and Neural Network algorithms; were incorporated to LIBS data of paracetamol based pharmaceutical samples, and their different concentrations on preprocessed and raw dataset in order to observe the effect of preprocessing.Keywords: machine learning, laser-induced breakdown spectroscopy, medicines, principal component analysis, preprocessing
Procedia PDF Downloads 887321 Learning Compression Techniques on Smart Phone
Authors: Farouk Lawan Gambo, Hamada Mohammad
Abstract:
Data compression shrinks files into fewer bits than their original presentation. It has more advantage on the internet because the smaller a file, the faster it can be transferred but learning most of the concepts in data compression are abstract in nature, therefore, making them difficult to digest by some students (engineers in particular). This paper studies the learning preference of engineering students who tend to have strong, active, sensing, visual and sequential learning preferences, the paper also studies the three shift of technology-aided that learning has experienced, which mobile learning has been considered to be the feature of learning that will integrate other form of the education process. Lastly, we propose a design and implementation of mobile learning application using software engineering methodology that will enhance the traditional teaching and learning of data compression techniques.Keywords: data compression, learning preference, mobile learning, multimedia
Procedia PDF Downloads 4487320 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 4357319 Digital Art Fabric Prints: Procedure, Process and Progress
Authors: Tripti Singh
Abstract:
Digital tools are merging boundaries of different mediums as endeavoured artists exploring new areas. Digital fabric printing has motivated artists to create prints by combining images acquired by photograph, scanned images, computer graphics and microscopic imaginary etc to name few, with traditional media such as hand drawing, weaving, hand printed patterns, printing making techniques and so on. It opened whole new world of possibilities for artists to search, research and combine old and contemporary mediums for their unique art prints. As artistic medium digital art fabrics have aesthetic values which have impact and influence on not only on a personality but also interiors of a living or work space. In this way it can be worn, as fashion statement and also an interior decoration. Digital art fabric prints gives opportunity to print almost everything on any fabric with long lasting prints quality. Single edition and limited editions are possible for maintaining scarcity and uniqueness of an art form. These fabric prints fulfill today’s need, as they are eco-friendly in nature and they produce less wastage compared to traditional fabric printing techniques. These prints can be used to make unique and customized curtains, quilts, clothes, bags, furniture, dolls, pillows, framed artwork, costumes, banners and much, much more. This paper will explore the procedure, process, and progress techniques of digital art fabric printing in depth with suitable pictorial examples.Keywords: digital art, fabric prints, digital fabric prints, new media
Procedia PDF Downloads 5167318 KAP Study on Breast Cancer Among Women in Nirmala Educational Institutions-A Prospective Observational Study
Authors: Shaik Asha Begum, S. Joshna Rani, Shaik Abdul Rahaman
Abstract:
INTRODUCTION: Breast cancer is a disease that creates in breast cells. "KAP" study estimates the Knowledge, Attitude, and Practices of a local area. More than 1.5 million ladies (25% of all ladies with malignancy) are determined to have bosom disease consistently all through the world. Understanding the degrees of Knowledge, Attitude and Practice will empower a more effective cycle of mindfulness creation as it will permit the program to be custom-made all the more properly to the necessities of the local area. OBJECTIVES: The objective of this study is to assess the knowledge on signs and symptoms, risk factors, provide awareness on the practicing of the early detection techniques of breast cancer and provide knowledge on the overall breast cancer including preventive techniques. METHODOLOGY: This is an expressive cross-sectional investigation. This investigation of KAP was done in the Nirmala Educational Institutions from January to April 2021. A total of 300 participants are included from women students in pharmacy graduates & lecturers, and also from graduates other than the pharmacy. The examiners are taken from the BCAM (Breast Cancer Awareness Measure), tool compartment (Version 2). RESULT: According to the findings of the study, the majority of the participants were not well informed about breast cancer. A lump in the breast was the most commonly mentioned sign of breast cancer, followed by pain in the breast or nipple. The percentage of knowledge related to the breast cancer risk factors was also very less. The correct answers for breast cancer risk factors were radiation exposure (58.20 percent), a positive family history (47.6 percent), obesity (46.9 percent), a lack of physical activity (43.6 percent), and smoking (43.2 percent). Breast cancer screening, on the other hand, was uncommon (only 30 and 11.3 percent practiced clinical breast examination and mammography respectively). CONCLUSION: In this study, the knowledge on the signs and symptoms, risk factors of breast cancer - pharmacy graduates have more knowledge than the non-pharmacy graduates but in the preventive techniques and early detective tools of breast cancer -had poor knowledge in the pharmacy and non-pharmacy graduate. After the awareness program, pharmacy and non-pharmacy graduates got supportive knowledge on the preventive techniques and also practiced the early detective techniques of breast cancer.Keywords: breast cancer, mammography, KAP study, early detection
Procedia PDF Downloads 1387317 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation
Authors: Miao Yang
Abstract:
PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis
Procedia PDF Downloads 1807316 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: landsat 8, oligotrophic lake, remote sensing, water quality
Procedia PDF Downloads 3977315 An Application of Modified M-out-of-N Bootstrap Method to Heavy-Tailed Distributions
Authors: Hannah F. Opayinka, Adedayo A. Adepoju
Abstract:
This study is an extension of a prior study on the modification of the existing m-out-of-n (moon) bootstrap method for heavy-tailed distributions in which modified m-out-of-n (mmoon) was proposed as an alternative method to the existing moon technique. In this study, both moon and mmoon techniques were applied to two real income datasets which followed Lognormal and Pareto distributions respectively with finite variances. The performances of these two techniques were compared using Standard Error (SE) and Root Mean Square Error (RMSE). The findings showed that mmoon outperformed moon bootstrap in terms of smaller SEs and RMSEs for all the sample sizes considered in the two datasets.Keywords: Bootstrap, income data, lognormal distribution, Pareto distribution
Procedia PDF Downloads 1867314 Innovative Acoustic Emission Techniques for Concrete Health Monitoring
Authors: Rahmat Ali, Beenish Khan, Aftabullah, Abid A. Shah
Abstract:
This research is an attempt to investigate the wide range of events using acoustic emission (AE) sensors of the concrete cubes subjected to different stress condition loading and unloading of concrete cubes. A total of 27 specimens were prepared and tested including 18 cubic (6”x6”x6”) and nine cylindrical (4”x8”) specimens were molded from three batches of concrete using w/c of 0.40, 0.50, and 0.60. The compressive strength of concrete was determined from concrete cylinder specimens. The deterioration of concrete was evaluated using the occurrence of felicity and Kaiser effects at each stress condition. It was found that acoustic emission hits usually exceeded when damage increases. Additionally, the correlation between AE techniques and the load applied were determined by plotting the normalized values. The influence of w/c on sensitivity of the AE technique in detecting concrete damages was also investigated.Keywords: acoustic emission, concrete, felicity ratio, sensors
Procedia PDF Downloads 3627313 Validation of the Arabic Version of the Positive and Negative Syndrome Scale (PANSS)
Authors: Arij Yehya, Suhaila Ghuloum, Abdlmoneim Abdulhakam, Azza Al-Mujalli, Mark Opler, Samer Hammoudeh, Yahya Hani, Sundus Mari, Reem Elsherbiny, Ziyad Mahfoud, Hassen Al-Amin
Abstract:
Introduction: The Positive and Negative Syndrome Scale (PANSS) is a valid instrument developed by Kay and colleagues6 to assess symptoms of patients with schizophrenia. It consists of 30 items that factor the symptoms into three subscales: positive, negative and general psychopathology. This scale has been translated and validated in several languages. Objective: This study aims to determine the validity and psychometric properties of the Arabic version of the PANSS. Methods: A standardized translation and cultural adaptation method was adopted. Patients diagnosed with schizophrenia (n=98), according to psychiatrist’s diagnosis based on DSM-IV criteria, were recruited from the Psychiatry Department at Rumailah Hospital, Qatar. A first rater confirmed the diagnosis using the Arabic version of Mini International Neuropsychiatric Interview (MINI 6). A second and independent rater-administered the Arabic version of PANSS. Also, a control group (n=101), with no history of psychiatric disorder was recruited from the family and friends of the patients and from primary health care centers in Qatar. Results: There were more males than females in our sample of patients with schizophrenia (68.9% and 31.6%, respectively). On the other hand, in the control group the number of females outweighed that of males (58.4% and 41.6% respectively). The scale had a good internal consistency with Cronbach’s alpha 0.91. There was a significant difference between the scores on the three subscales of the PANSS. Patients with schizophrenia scored significantly higher (p<.0001) than the control subjects on subscales for positive symptoms 20.01(SD=7.21) and 7.30(SD=1.38), negative symptoms 18.89(SD=8.88) and 7.37(SD=2.38) and general psychopathology 34.41 (SD=11.56) and 16.93 (SD=3.93), respectively. Factor analysis and ROC curve were carried out to further test the psychometrics of the scale. Conclusions: The Arabic version of PANSS is a reliable and valid tool to assess both positive and negative symptoms of patients with schizophrenia in a balanced manner. In addition to providing the Arab population with a standardized tool to monitor symptoms of schizophrenia, this version provides a gateway to compare the prevalence of positive and negative symptoms in the Arab world which can be compared to others done elsewhere.Keywords: Arabic version, assessment, diagnosis, schizophrenia, validation
Procedia PDF Downloads 6357312 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 2957311 An Energy Transfer Fluorescent Probe System for Glucose Sensor at Biomimetic Membrane Surface
Authors: Hoa Thi Hoang, Stephan Sass, Michael U. Kumke
Abstract:
Concanavalin A (conA) is a protein has been widely used in sensor system based on its specific binding to α-D-Glucose or α-D-Manose. For glucose sensor using conA, either fluoresence based techniques with intensity based or lifetime based are used. In this research, liposomes made from phospholipids were used as a biomimetic membrane system. In a first step, novel building blocks containing perylene labeled glucose units were added to the system and used to decorate the surface of the liposomes. Upon the binding between rhodamine labeled con A to the glucose units at the biomimetic membrane surface, a Förster resonance energy transfer system can be formed which combines unique fluorescence properties of perylene (e.g., high fluorescence quantum yield, no triplet formation) and its high hydrophobicity for efficient anchoring in membranes to form a novel probe for the investigation of sugar-driven binding reactions at biomimetic surfaces. Two glucose-labeled perylene derivatives were synthesized with different spacer length between the perylene and glucose unit in order to probe the binding of conA. The binding interaction was fully characterized by using high-end fluorescence techniques. Steady-state and time-resolved fluorescence techniques (e.g., fluorescence depolarization) in combination with single-molecule fluorescence spectroscopy techniques (fluorescence correlation spectroscopy, FCS) were used to monitor the interaction with conA. Base on the fluorescence depolarization, the rotational correlation times and the alteration in the diffusion coefficient (determined by FCS) the binding of the conA to the liposomes carrying the probe was studied. Moreover, single pair FRET experiments using pulsed interleaved excitation are used to characterize in detail the binding of conA to the liposome on a single molecule level avoiding averaging out effects.Keywords: concanavalin A, FRET, sensor, biomimetic membrane
Procedia PDF Downloads 3077310 Non–Geometric Sensitivities Using the Adjoint Method
Authors: Marcelo Hayashi, João Lima, Bruno Chieregatti, Ernani Volpe
Abstract:
The adjoint method has been used as a successful tool to obtain sensitivity gradients in aerodynamic design and optimisation for many years. This work presents an alternative approach to the continuous adjoint formulation that enables one to compute gradients of a given measure of merit with respect to control parameters other than those pertaining to geometry. The procedure is then applied to the steady 2–D compressible Euler and incompressible Navier–Stokes flow equations. Finally, the results are compared with sensitivities obtained by finite differences and theoretical values for validation.Keywords: adjoint method, aerodynamics, sensitivity theory, non-geometric sensitivities
Procedia PDF Downloads 5487309 Role of Natural Language Processing in Information Retrieval; Challenges and Opportunities
Authors: Khaled M. Alhawiti
Abstract:
This paper aims to analyze the role of natural language processing (NLP). The paper will discuss the role in the context of automated data retrieval, automated question answer, and text structuring. NLP techniques are gaining wider acceptance in real life applications and industrial concerns. There are various complexities involved in processing the text of natural language that could satisfy the need of decision makers. This paper begins with the description of the qualities of NLP practices. The paper then focuses on the challenges in natural language processing. The paper also discusses major techniques of NLP. The last section describes opportunities and challenges for future research.Keywords: data retrieval, information retrieval, natural language processing, text structuring
Procedia PDF Downloads 3417308 Urban Analysis of the Old City of Oran and Its Building after an Earthquake
Authors: A. Zatir, A. Mokhtari, A. Foufa, S. Zatir
Abstract:
The city of Oran, like any other region of northern Algeria, is subject to frequent seismic activity, the study presented in this work will be based on an analysis of urban and architectural context of the city of Oran before the date of the earthquake of 1790, and then try to deduce the differences between the old city before and after the earthquake. The analysis developed as a specific objective to tap into the seismic history of the city of Oran parallel to its urban history. The example of the citadel of Oran indicates that constructions presenting the site of the old citadel, may present elements of resistance for face to seismic effects. Removed in city observations of these structures, showed the ingenuity of the techniques used by the ancient builders, including the good performance of domes and arches in resistance to seismic forces.Keywords: earthquake, citadel, performance, traditional techniques, constructions
Procedia PDF Downloads 3057307 Droplet Entrainment and Deposition in Horizontal Stratified Two-Phase Flow
Authors: Joshua Kim Schimpf, Kyun Doo Kim, Jaseok Heo
Abstract:
In this study, the droplet behavior of under horizontal stratified flow regime for air and water flow in horizontal pipe experiments from a 0.24 m, 0.095 m, and 0.0486 m size diameter pipe are examined. The effects of gravity, pipe diameter, and turbulent diffusion on droplet deposition are considered. Models for droplet entrainment and deposition are proposed that considers developing length. Validation for experimental data dedicated from the REGARD, CEA and Williams, University of Illinois, experiment were performed using SPACE (Safety and Performance Analysis Code for Nuclear Power Plants).Keywords: droplet, entrainment, deposition, horizontal
Procedia PDF Downloads 3777306 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds
Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi
Abstract:
Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.Keywords: electrochemical, endocrine disruptors, microscopy, nanoparticles, sensors
Procedia PDF Downloads 2747305 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles
Authors: Jafar Mortadha, Imran Qureshi
Abstract:
This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes
Procedia PDF Downloads 2977304 Optimal Classifying and Extracting Fuzzy Relationship from Query Using Text Mining Techniques
Authors: Faisal Alshuwaier, Ali Areshey
Abstract:
Text mining techniques are generally applied for classifying the text, finding fuzzy relations and structures in data sets. This research provides plenty text mining capabilities. One common application is text classification and event extraction, which encompass deducing specific knowledge concerning incidents referred to in texts. The main contribution of this paper is the clarification of a concept graph generation mechanism, which is based on a text classification and optimal fuzzy relationship extraction. Furthermore, the work presented in this paper explains the application of fuzzy relationship extraction and branch and bound method to simplify the texts.Keywords: extraction, max-prod, fuzzy relations, text mining, memberships, classification, memberships, classification
Procedia PDF Downloads 5837303 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery
Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene
Abstract:
Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.Keywords: multi-objective, analysis, data flow, freight delivery, methodology
Procedia PDF Downloads 1807302 Analysis of Supply Chain Risk Management Strategies: Case Study of Supply Chain Disruptions
Authors: Marcelo Dias Carvalho, Leticia Ishikawa
Abstract:
Supply Chain Risk Management refers to a set of strategies used by companies to avoid supply chain disruption caused by damage at production facilities, natural disasters, capacity issues, inventory problems, incorrect forecasts, and delays. Many companies use the techniques of the Toyota Production System, which in a way goes against a better management of supply chain risks. This paper studies key events in some multinationals to analyze the trade-off between the best supply chain risk management techniques and management policies designed to create lean enterprises. The result of a good balance of these actions is the reduction of losses, increased customer trust in the company and better preparedness to face the general risks of a supply chain.Keywords: just in time, lean manufacturing, supply chain disruptions, supply chain management
Procedia PDF Downloads 3387301 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 6467300 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1587299 Synthesis and Characterization of Hydroxyapatite from Biowaste for Potential Medical Application
Authors: M. D. H. Beg, John O. Akindoyo, Suriati Ghazali, Nitthiyah Jeyaratnam
Abstract:
Over the period of time, several approaches have been undertaken to mitigate the challenges associated with bone regeneration. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. The former three techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Synthetic routes remain the only feasible alternative option for treatment of bone defects. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are either expensive, complicated or environmentally unfriendly. Interestingly, extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment friendly. In this research, HA was synthesized from bio-waste: namely bovine bones through three different methods which are hydrothermal chemical processes, ultrasound assisted synthesis and ordinary calcination techniques. Structure and property analysis of the HA was carried out through different characterization techniques such as TGA, FTIR, and XRD. All the methods applied were able to produce HA with similar compositional properties to biomaterials found in human calcified tissues. Calcination process was however observed to be more efficient as it eliminated all the organic components from the produced HA. The HA synthesized is unique for its minimal cost and environmental friendliness. It is also perceived to be suitable for tissue and bone engineering applications.Keywords: hydroxyapatite, bone, calcination, biowaste
Procedia PDF Downloads 2497298 Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation
Authors: Muhaned Zaidi, Ian Grout, Abu Khari bin A’ain
Abstract:
In this paper, a two-stage op-amp design is considered using both Miller and negative Miller compensation techniques. The first op-amp design uses Miller compensation around the second amplification stage, whilst the second op-amp design uses negative Miller compensation around the first stage and Miller compensation around the second amplification stage. The aims of this work were to compare the gain and phase margins obtained using the different compensation techniques and identify the ability to choose either compensation technique based on a particular set of design requirements. The two op-amp designs created are based on the same two-stage rail-to-rail output CMOS op-amp architecture where the first stage of the op-amp consists of differential input and cascode circuits, and the second stage is a class AB amplifier. The op-amps have been designed using a 0.35mm CMOS fabrication process.Keywords: op-amp, rail-to-rail output, Miller compensation, Negative Miller capacitance
Procedia PDF Downloads 3397297 Image Processing techniques for Surveillance in Outdoor Environment
Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.
Abstract:
This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management
Procedia PDF Downloads 277296 Lotus Mechanism: Validation of Deployment Mechanism Using Structural and Dynamic Analysis
Authors: Parth Prajapati, A. R. Srinivas
Abstract:
The purpose of this paper is to validate the concept of the Lotus Mechanism using Computer Aided Engineering (CAE) tools considering the statics and dynamics through actual time dependence involving inertial forces acting on the mechanism joints. For a 1.2 m mirror made of hexagonal segments, with simple harnesses and three-point supports, the maximum diameter is 400 mm, minimum segment base thickness is 1.5 mm, and maximum rib height is considered as 12 mm. Manufacturing challenges are explored for the segments using manufacturing research and development approaches to enable use of large lightweight mirrors required for the future space system.Keywords: dynamics, manufacturing, reflectors, segmentation, statics
Procedia PDF Downloads 3747295 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods
Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin
Abstract:
Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.Keywords: Burgers' equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile
Procedia PDF Downloads 1717294 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1377293 Determination of Complexity Level in Merged Irregular Transposition Cipher
Authors: Okike Benjamin, Garba Ejd
Abstract:
Today, it has been observed security of information along the superhighway is often compromised by those who are not authorized to have access to such information. In order to ensure the security of information along the superhighway, such information should be encrypted by some means to conceal the real meaning of the information. There are many encryption techniques out there in the market. However, some of these encryption techniques are often easily decrypted by adversaries. The researcher has decided to develop an encryption technique that may be more difficult to decrypt. This may be achieved by splitting the message to be encrypted into parts and encrypting each part separately and swapping the positions before transmitting the message along the superhighway. The method is termed Merged Irregular Transposition Cipher. Also, the research would determine the complexity level in respect to the number of splits of the message.Keywords: transposition cipher, merged irregular cipher, encryption, complexity level
Procedia PDF Downloads 345