Search results for: sound interfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1127

Search results for: sound interfaces

467 Intervention of Self-Limiting L1 Inner Speech during L2 Presentations: A Study of Bangla-English Bilinguals

Authors: Abdul Wahid

Abstract:

Inner speech, also known as verbal thinking, self-talk or private speech, is characterized by the subjective language experience in the absence of overt or audible speech. It is a psychological form of verbal activity which is being rehearsed without the articulation of any sound wave. In Psychology, self-limiting speech means the type of speech which contains information that inhibits the development of the self. People, in most cases, experience inner speech in their first language. It is very frequent in Bangladesh where the Bangla (L1) speaking students lose track of speech during their presentations in English (L2). This paper investigates into the long pauses (more than 0.4 seconds long) in English (L2) presentations by Bangla speaking students (18-21 year old) and finds the intervention of Bangla (L1) inner speech as one of its causes. The overt speeches of the presenters are placed on Audacity Audio Editing software where the length of pauses are measured in milliseconds. Varieties of inner speech questionnaire (VISQ) have been conducted randomly amongst the participants out of whom 20 were selected who have similar phenomenology of inner speech. They have been interviewed to describe the type and content of the voices that went on in their head during the long pauses. The qualitative interview data are then codified and converted into quantitative data. It was observed that in more than 80% cases students experience self-limiting inner speech/self-talk during their unwanted pauses in L2 presentations.

Keywords: Bangla-English Bilinguals, inner speech, L1 intervention in bilingualism, motor schema, pauses, phonological loop, phonological store, working memory

Procedia PDF Downloads 145
466 Impact of Organic Architecture in Building Design

Authors: Zainab Yahaya Suleiman

Abstract:

Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.

Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design

Procedia PDF Downloads 404
465 Evaluation of Three Commercially Available Materials in Reducing the White Spot Lesions During Fixed Orthodontic Treatment: A Prospective Randomized Controlled Trial

Authors: Sayeeda Laeque Bangi

Abstract:

Objectives: Treating white spot lesions (WSL) to create a sound and esthetically pleasing enamel surface is a question yet to be fully answered. The objective of this randomized controlled trial was to measure and compare the degree of regression of WSL during orthodontic treatment achieved by using three commercially available materials. Methods: A single-blinded randomized prospective clinical trial, comprising 80 patients categorized into four groups (one control group and three experimental groups, with 20 subjects per group) using block randomization, was conducted. Group A (control group): Colgate strong toothpaste; and experiments groups were Group B: GC tooth mousse, Group C: Phos-Flur mouthwash and Group D: SHY-NM. Subjects were instructed to use the designated dentifrice/mouthwash and photographs were taken at baseline, third and sixth months, and white spot lesions were reassessed in the maxillomandibular anterior teeth. Results: All the three groups had shown an improvement in WSL. But Group B has shown the greatest difference in mean values of decalcification index (DI) scores. Conclusion: All three commercially available products showed a regression of WSL over a 6-month duration. GC tooth mousse proved to be the most effective means of treating WSL over other regimens.

Keywords: white spot lesions, dentifrices, orthodontic therapy, remineralization

Procedia PDF Downloads 184
464 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications

Authors: B. Soni, S. Biswas

Abstract:

Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).

Keywords: metal foam, Al, salt replication method, mechanical properties, SEM

Procedia PDF Downloads 345
463 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement

Authors: Zahra Alikhani Koopaei

Abstract:

In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.

Keywords: intelligent multiplication table, design, construction, education, increased interest, students

Procedia PDF Downloads 58
462 Large-Eddy Simulations for Aeronautical Systems

Authors: R. R. Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aeroacoustics, flow control, aerodynamics, large eddy simulations

Procedia PDF Downloads 278
461 Difficulties Encountered in the Process of Supporting Reading Skills of a Student with Hearing Loss Whose Inclusion Was Ongoing and Solution Proposals

Authors: Ezgi Tozak, H. Pelin Karasu, Umit Girgin

Abstract:

In this study, difficulties encountered in the process of supporting the reading skills of a student with hearing loss whose inclusion was ongoing and the solutions improved during the practice process were examined. The study design was action research. Participants of this study, which was conducted between the dates of 29 September 2016 and 22 February 2017, consisted of a student with hearing loss, a classroom teacher, a teacher in the rehabilitation center, researcher/teacher and validity committee members. The data were obtained through observations, validity committee meeting, interviews, documents, and the researcher diary. Research findings show that in the process of supporting reading skills of the student with hearing loss, the student's knowledge of concepts was limited, and the student had difficulties in feeling and identification of sounds, reading and understanding words-sentences and retelling what he/she listened to. With the purpose of overcoming these difficulties in the implementation process, activities were prepared towards concepts, sound education, reading and understanding words and sentences, and retelling what you listen to; these activities were supported with visual materials and real objects and repeated with diversities.

Keywords: inclusion, reading process, supportive education, student with hearing loss

Procedia PDF Downloads 140
460 Passive Vibration Isolation Analysis and Optimization for Mechanical Systems

Authors: Ozan Yavuz Baytemir, Ender Cigeroglu, Gokhan Osman Ozgen

Abstract:

Vibration is an important issue in the design of various components of aerospace, marine and vehicular applications. In order not to lose the components’ function and operational performance, vibration isolation design involving the optimum isolator properties selection and isolator positioning processes appear to be a critical study. Knowing the growing need for the vibration isolation system design, this paper aims to present two types of software capable of implementing modal analysis, response analysis for both random and harmonic types of excitations, static deflection analysis, Monte Carlo simulations in addition to study of parameter and location optimization for different types of isolation problem scenarios. Investigating the literature, there is no such study developing a software-based tool that is capable of implementing all those analysis, simulation and optimization studies in one platform simultaneously. In this paper, the theoretical system model is generated for a 6-DOF rigid body. The vibration isolation system of any mechanical structure is able to be optimized using hybrid method involving both global search and gradient-based methods. Defining the optimization design variables, different types of optimization scenarios are listed in detail. Being aware of the need for a user friendly vibration isolation problem solver, two types of graphical user interfaces (GUIs) are prepared and verified using a commercial finite element analysis program, Ansys Workbench 14.0. Using the analysis and optimization capabilities of those GUIs, a real application used in an air-platform is also presented as a case study at the end of the paper.

Keywords: hybrid optimization, Monte Carlo simulation, multi-degree-of-freedom system, parameter optimization, location optimization, passive vibration isolation analysis

Procedia PDF Downloads 555
459 Structural Protein-Protein Interactions Network of Breast Cancer Lung and Brain Metastasis Corroborates Conformational Changes of Proteins Lead to Different Signaling

Authors: Farideh Halakou, Emel Sen, Attila Gursoy, Ozlem Keskin

Abstract:

Protein–Protein Interactions (PPIs) mediate major biological processes in living cells. The study of PPIs as networks and analyze the network properties contribute to the identification of genes and proteins associated with diseases. In this study, we have created the sub-networks of brain and lung metastasis from primary tumor in breast cancer. To do so, we used seed genes known to cause metastasis, and produced their interactions through a network-topology based prioritization method named GUILDify. In order to have the experimental support for the sub-networks, we further curated them using STRING database. We proceeded by modeling structures for the interactions lacking complex forms in Protein Data Bank (PDB). The functional enrichment analysis shows that KEGG pathways associated with the immune system and infectious diseases, particularly the chemokine signaling pathway, are important for lung metastasis. On the other hand, pathways related to genetic information processing are more involved in brain metastasis. The structural analyses of the sub-networks vividly demonstrated their difference in terms of using specific interfaces in lung and brain metastasis. Furthermore, the topological analysis identified genes such as RPL5, MMP2, CCR5 and DPP4, which are already known to be associated with lung or brain metastasis. Additionally, we found 6 and 9 putative genes that are specific for lung and brain metastasis, respectively. Our analysis suggests that variations in genes and pathways contributing to these different breast metastasis types may arise due to change in tissue microenvironment. To show the benefits of using structural PPI networks instead of traditional node and edge presentation, we inspect two case studies showing the mutual exclusiveness of interactions and effects of mutations on protein conformation which lead to different signaling.

Keywords: breast cancer, metastasis, PPI networks, protein conformational changes

Procedia PDF Downloads 236
458 Evaluation of Green Logistics Performance: An Application of Analytic Hierarchy Process Method for Ranking Environmental Indicators

Authors: Eduarda Dutra De Souza, Gabriela Hammes, Marina Bouzon, Carlos M. Taboada Rodriguez

Abstract:

The search for minimizing harmful impacts on the environment has become the focus of global society, affecting mainly how to manage organizations. Thus, companies have sought to transform their activities into environmentally friendly initiatives by applying green practices throughout their supply chains. In the logistics domain, the implementation of environmentally sound practices is still in its infancy in emerging countries such as Brazil. Given the need to reduce these environmental damages, this study aims to evaluate the performance of green logistics (GL) in the plastics industry sector in order to help to improve environmental performance within organizations and reduce the impact caused by their activities. The performance tool was based on theoretical research and the use of experts in the field. The Analytic Hierarchy Process (AHP) was used to prioritize green practices and assign weight to the indicators contained in the proposed tool. The tool also allows the co-production of a single indicator. The developed tool was applied in an industry of the plastic packaging sector. However, this tool may be applied in different industry sectors, and it is adaptable to different sizes of companies. Besides the contributions to the literature, this work also presents future paths of research in the field of green logistics.

Keywords: AHP, green logistics, green supply chain, performance evaluation

Procedia PDF Downloads 153
457 The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores

Authors: Xin Chen, Moxiao Li, Xuechao Sun, Fei Ti, Shaobao Liu, Feng Xu, Tian Jian Lu

Abstract:

The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field.

Keywords: composite mechanics, nano-inhomogeneity, nano-pores, scale effect

Procedia PDF Downloads 127
456 Developing Biocompatible Iridium Oxide Electrodes for Bone-Guided Extra-Cochlear Implant

Authors: Yung-Shan Lu, Chia-Fone Lee, Shang-Hsuan Li, Chien-Hao Liu

Abstract:

Recently, various bioelectronic devices have been developed for neurologic disease treatments via electro-stimulations such as cochlear implants and retinal prosthesis. Since the electric signal needs electrodes to be transmitted to an organism, electrodes play an important role of stimulations. The materials of stimulation electrodes affect the efficiency of the delivered currents. The higher the efficiency of the electrodes, the lower the threshold current can be used to stimulate the organism which minimizes the potential damages to the adjacent tissues. In this study, we proposed a biocompatible composite electrode composed of high-charge-capacity iridium oxide (IrOₓ) film for a bone-guide extra-cochlear implant. IrOₓ was exploited to decrease the threshold current due to its high capacitance and low impedance. The IrOₓ electrode was fabricated via microelectromechanical systems (MEMS) photolithography and examined with in-vivo tests with guinea pigs. Based on the measured responses of brain waves to sound, the results demonstrated that IrOₓ electrodes have a lower threshold current compared with the Platinum (Pt) electrodes. The research results are expected to be beneficial for implantable and biocompatible electrodes for electrical stimulations.

Keywords: cochlear implants, electrode, electrical stimulation, iridium oxide

Procedia PDF Downloads 179
455 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric

Procedia PDF Downloads 425
454 A Method for Multimedia User Interface Design for Mobile Learning

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and are increasingly used as an enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material user interfaces for mobile devices is beset by many unresolved research issues such as those arising from emphasising the information concepts then mapping this information to appropriate media (modelling information then mapping media effectively). This report describes a multimedia user interface design method for mobile learning. The method covers specification of user requirements and information architecture, media selection to represent the information content, design for directing attention to important information, and interaction design to enhance user engagement based on Human-Computer Interaction design strategies (HCI). The method will be evaluated by three different case studies to prove the method is suitable for application to different areas / applications, these are; an application to teach about major computer networking concepts, an application to deliver a history-based topic; (after these case studies have been completed, the method will be revised to remove deficiencies and then used to develop a third case study), an application to teach mathematical principles. At this point, the method will again be revised into its final format. A usability evaluation will be carried out to measure the usefulness and effectiveness of the method. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the MDMLM method. The researcher has successfully produced the method at this point which is now under validation and testing procedures. From this point forward in the report, the researcher will refer to the method using the MDMLM abbreviation which means Multimedia Design Mobile Learning Method.

Keywords: human-computer interaction, interface design, mobile learning, education

Procedia PDF Downloads 235
453 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: catchment characteristics model, GIS, synthetic data, ungauged basin

Procedia PDF Downloads 315
452 Public Environmental Investment Analysis of Japan

Authors: K. Y. Chen, H. Chua, C. W. Kan

Abstract:

Japan is a well-developed country but the environmental issues are still a hot issue. In this study, we will analyse how the environmental investment affects the sustainable development in Japan. This paper will first describe the environmental policy of Japan and the effort input by the Japan government. Then, we will collect the yearly environmental data and also information about the environmental investment. Based on the data collected, we try to figure out the relationship between environmental investment and sustainable development in Japan. In addition, we will analyse the SWOT of environmental investment in Japan. Based on the economic information collected, Japan established a sound material-cycle society through changes in business and life styles. A comprehensive legal system for this kind of society was established in Japan. In addition, other supporting measures, such as financial measures, utilization of economic instruments, implementation of research and promotion of education and science and technology, help Japan to cope with the recent environmental challenges. Japan’s excellent environmental technologies changed its socioeconomic system. They are at the highest global standards. This can be reflected by the number of patents registered in Japan which has been on the steady growth. Country by country comparison in the application for patents on environmental technologies also indicates that Japan ranks high in such areas as atmospheric pollution and water quality management, solid waste management and renewable energy. This is a result of the large expenditure invested on research and development.

Keywords: Japan, environmental investment, sustainable development, analysis

Procedia PDF Downloads 256
451 Effect of Spelling on Communicative Competence: A Case Study of Registry Staff of the University of Ibadan, Nigeria

Authors: Lukman Omobola Adisa

Abstract:

Spelling is rule bound in a written discourse. It, however, calls into question, when such convention is grossly contravened in a formal setting revered as citadel of learning, despite availability of computer spell-checker, human knowledge, and lexicon. The foregoing reveals the extent of decadence pervading education sector in Nigeria. It is on this premise that this study reviews the effect of spelling on communicative competence of the University of Ibadan Registry Staff. The theoretical framework basically evaluates diverse scholars’ views on communicative competence and how spelling influences the intended meaning of a word/ sentence as a result of undue infringement on grammatical (spelling) rule. Newsletter, bulletin, memo, and letter are four print materials purposively selected while the methodology adopted is content analysis. Similarly, five categories, though not limited to, through which spelling blunders are committed are considered: effect of spelling (omission, addition, and substitution); sound ( homophone); transposition (heading/body: content) and ambiguity (capitalisation, space, and acronym). Subsequently, the analyses, findings, and recommendations are equally looked into. Summarily, the study x-rays effective role(s) plays by spelling in enhancing communicative competence through appropriate usage of linguistic registers.

Keywords: communicative competence, content analysis, effect of spelling, linguistics registers

Procedia PDF Downloads 205
450 An Extra-Curricular Program to Enhance Student Outcome of a Class

Authors: Dong Jin Kang

Abstract:

Application of single board microcontrollers is an important skill even for non-electronic engineering major students. Arduino board is widely utilized in engineering classes of the Yeungnam University of South Korea. In those classes, students are subjected to learn how to use various sensor components related to motion, sound, light, and so on as well as physical quantities. Students are grouped into several teams, and each team consists of 4~5 students. Many students are not motivated enough to learn those skills. An extracurricular program was planned to improve this problem. The extracurricular program was held as an international boot camp where students from three different countries were invited to participate. 10 students groups were formed, and each team was consisted of students having different nationality. The camp was 4 days long and wrapped up with competitions. During the camp, every student was assigned to design and make a two wheel robot. The competition was carried out in two different areas; individual and group performances. As most skills dealt in the class are used to build the robot, students are much motivated to review the whole subjects of the class. All students were surveyed after the program. The survey shows that the skills studied in the class are greatly improved, and practically understood. Staying at the dormitory and teaming with international students are help students improve communication skills. Competition at the camp was found as a key element to inspire and attract students for voluntary participation.

Keywords: extracurricular program, robot, Arduino board, international camp, competition

Procedia PDF Downloads 212
449 Auditory Function in MP3 Users and Association with Hidden Hearing Loss

Authors: Nana Saralidze, Nino Sharashenidze, Zurab Kevanishvili

Abstract:

Hidden hearing loss may occur in humans exposed to prolonged high-level sound. It is the loss of ability to hear high-level background noise while having normal hearing in quiet. We compared the hearing of people who regularly listen 3 hours and more to personal music players and those who do not. Forty participants aged 18-30 years were divided into two groups: regular users of music players and people who had never used them. And the third group – elders aged 50-55 years, had 15 participants. Pure-tone audiometry (125-16000 Hz), auditory brainstem response (ABR) (70dB SPL), and ability to identify speech in noise (4-talker babble with a 65-dB signal-to-noise ratio at 80 dB) were measured in all participants. All participants had normal pure-tone audiometry (all thresholds < 25 dB HL). A significant difference between groups was observed in that regular users of personal audio systems correctly identified 53% of words, whereas the non-users identified 74% and the elder group – 63%. This contributes evidence supporting the presence of a hidden hearing loss in humans and demonstrates that speech-in-noise audiometry is an effective method and can be considered as the GOLD standard for detecting hidden hearing loss.

Keywords: mp3 player, hidden hearing loss, speech audiometry, pure tone audiometry

Procedia PDF Downloads 64
448 Automation of AAA Game Development using AI

Authors: Branden Heng, Harsheni Siddharthan, Allison Tseng, Paul Toprac, Sarah Abraham, Etienne Vouga

Abstract:

The goal of this project was to evaluate and document the capabilities and limitations of AI tools for empowering small teams to create high-budget, high-profile (AAA) 3D games typically developed by large studios. Two teams of novice game developers attempted to create two different games using AI and Unreal Engine 5.3. First, the teams evaluated 60 AI art, design, sound, and programming tools by considering their capability, ease of use, cost, and license restrictions. Then, the teams used a shortlist of 12 AI tools for game development. During this process, the following tools were found to be the most productive: (i) ChatGPT 4.0 for both game and narrative concepts and documentation; (ii) Dall-E 3 and OpenArt for concept art; (iii) Beatoven for music drafting; (iv) ChatGPT 4.0 and Github Copilot for generating simple code and to complement human-made tutorials as an additional learning resource. While current generative AI may appear impressive at first glance, the assets they produce fall short of AAA industry standards. Generative AI tools are helpful when brainstorming ideas such as concept art and basic storylines, but they still cannot replace human input or creativity at this time. Regarding programming, AI can only effectively generate simple code and act as an additional learning resource. Thus, generative AI tools are, at best, tools to enhance developer productivity rather than as a system to replace developers.

Keywords: AAA games, AI, automation tools, game development

Procedia PDF Downloads 0
447 The Importance of Absorptive Capacities in the Foreign Direct Investment-Growth Nexus: Evidence from Sub-Saharan Africa

Authors: Edmund Kwablah, Anthony Amoah

Abstract:

The merits associated with Foreign Direct Investment (FDI) inflows to host countries in Sub-Saharan Africa cannot be overemphasized. Against this background, countries have sought to design and implement strategic policies geared towards enhacing FDI and promoting economic growth. In this study, we used the Fully Modified Ordinary Least Squares technique and a panel data for Sub-Saharan African (SSA) countries spanning from 1998 to 2016. We hypothesize that FDI’s effect on economic growth is contingent on some absorptive capacities (e.g., financial market development and economic freedom) of the host country. We used financial market data that accounts for market fragility as a measure of financial market development and economic freedom data which uses the overall score of all the freedom indicators as a measure of economic freedom. Our results suggest that FDI has a statistically positive effect on economic growth when we account for host country’s absorptive capacities. However, a negative relationship will ensue if these absorptive capacities are not accounted for. We recommend that a developing continent like SSA should focus on identifying and building the relevant absorptive capacities that can translate the effect of FDI into a positive growth. This is because an economy with sound absorptive capacities reduces business risk and spur economic growth.

Keywords: FDI, absorptive capacity, economic growth, FMOLS, Fully Modified Ordinary Least Squares, SSA

Procedia PDF Downloads 176
446 Exploring 'Attachment Theory' in the Context of Early Childhood Education

Authors: Wendy Lee

Abstract:

From the mid-twentieth century onward, the notion of ‘attachment’ has been used to define the optimum relationship between young children and their carers; first applied to parents and young children and more recently with early childhood educators and children in their care. However, it is seldom, if ever, asked whether the notion of ‘attachment’ and more especially so-called Attachment Theory, as propounded by John Bowlby and others, provides a sound basis for conceptualising child-adult relationships in early years. Even if appropriate in the context of family, the use of the term raises a number of questions when used in early childhood education. Research has shown that our youngest children (infants) in early childhood centre based care settings, are given the utmost priority to build 'attachments' with their educators. But exactly when, how and why does this priority diminish - and should it (for preschoolers)? This presentation will elaborate on such issues and will argue that there is a need to reconceptualise and redefine how 'quality relationships' should be measured and implemented in the daily practices and pedagogical methods adopted by early childhood educators. Moreover, this presentation will include data collected from the empirical study conducted, that observed various early childhood educators and children in Australian early childhood centres. Lastly, the thoughts, feelings and desires of parents of children in early childhood centre-based care, regarding the term 'attachment' and 'quality relationships' will be shared in the hope that we can take one step closer in bridging the needs of families, children, early childhood centres, educators, and the wider community.

Keywords: attachment, early childhood education, pedagogy, relationships

Procedia PDF Downloads 188
445 Bulk Modification of Poly(Dimethylsiloxane) for Biomedical Applications

Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta

Abstract:

In the last decade microfabrication processes including rapid prototyping techniques have advanced rapidly and achieved a fairly matured stage. These advances encouraged and enabled the use of microfluidic devices by a wider range of users with applications in biological separations, and cell and organoid cultures. Accordingly, a significant current challenge in the field is controlling biomolecular interactions at interfaces and the development of novel biomaterials to satisfy the unique needs of the biomedical applications. Poly(dimethylsiloxane) (PDMS) is by far the most preferred material in the fabrication of microfluidic devices. This can be attributed its favorable properties, including: (1) simple fabrication by replica molding, (2) good mechanical properties, (3) excellent optical transparency from 240 to 1100 nm, (4) biocompatibility and non-toxicity, and (5) high gas permeability. However, high hydrophobicity (water contact angle ~108°±7°) of PDMS often limits its applications where solutions containing biological samples are concerned. In our study, we created a simple, easy method for modifying the surface chemistry of PDMS microfluidic devices through the addition of surface-segregating additives during manufacture. In this method, a surface segregating copolymer is added to precursors for silicone and the desired device is manufactured following the usual methods. When the device surface is in contact with an aqueous solution, the copolymer self-organizes to expose its hydrophilic segments to the surface, making the surface of the silicone device more hydrophilic. This can lead to several improved performance criteria including lower fouling, lower non-specific adsorption, and better wettability. Specifically, this approach is expected to be useful for the manufacture of microfluidic devices. It is also likely to be useful for manufacturing silicone tubing and other materials, biomaterial applications, and surface coatings.

Keywords: microfluidics, non-specific protein adsorption, PDMS, PEG, copolymer

Procedia PDF Downloads 256
444 Religio-Cultural Ethos and Mental Health

Authors: Haveesha Buddhdev

Abstract:

The most important right for a human being in a society is the freedom of expression as stated by Article 18 and 19 of the Universal Declaration of Human rights pledged by member states of United Nations. Will it be fair to expect him/her to be of sound mental health if this right is taken away? Religion as a primary social institution controls many rights, freedoms and duties of people in a society. It does so by imposing certain values and beliefs on people which would either enhance quality of life or curb their freedom adversely thus affecting individual mental health. This paper aims to study the positive and negative role that religion plays in influencing one’s freedom of expression. This paper will focus on reviewing existing studies on the positive and negative impacts of religion on mental health. It will also contain data collected by the researcher about the impacts of religion on freedom of expression which will be obtained by surveying a sample of 30 adolescents and young adults. The researcher will use a Likert scale for these purpose, with response options ranging from strongly disagree to strongly agree and quantify it accordingly. Descriptive statistics would be used to analyse the data. Such research would help to identify possible problems faced by adolescents and young adults when it comes to religio-cultural ethos and also facilitate further researches to study the role that religion plays in mental health.

Keywords: cultural Ethos, freedom of expression, adolescent mental health, social science

Procedia PDF Downloads 442
443 Reliability Assessment and Failure Detection in a Complex Human-Machine System Using Agent-Based and Human Decision-Making Modeling

Authors: Sanjal Gavande, Thomas Mazzuchi, Shahram Sarkani

Abstract:

In a complex aerospace operational environment, identifying failures in a procedure involving multiple human-machine interactions are difficult. These failures could lead to accidents causing loss of hardware or human life. The likelihood of failure further increases if operational procedures are tested for a novel system with multiple human-machine interfaces and with no prior performance data. The existing approach in the literature of reviewing complex operational tasks in a flowchart or tabular form doesn’t provide any insight into potential system failures due to human decision-making ability. To address these challenges, this research explores an agent-based simulation approach for reliability assessment and fault detection in complex human-machine systems while utilizing a human decision-making model. The simulation will predict the emergent behavior of the system due to the interaction between humans and their decision-making capability with the varying states of the machine and vice-versa. Overall system reliability will be evaluated based on a defined set of success-criteria conditions and the number of recorded failures over an assigned limit of Monte Carlo runs. The study also aims at identifying high-likelihood failure locations for the system. The research concludes that system reliability and failures can be effectively calculated when individual human and machine agent states are clearly defined. This research is limited to the operations phase of a system lifecycle process in an aerospace environment only. Further exploration of the proposed agent-based and human decision-making model will be required to allow for a greater understanding of this topic for application outside of the operations domain.

Keywords: agent-based model, complex human-machine system, human decision-making model, system reliability assessment

Procedia PDF Downloads 157
442 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method

Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama

Abstract:

Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.

Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics

Procedia PDF Downloads 103
441 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties

Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti

Abstract:

High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.

Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia

Procedia PDF Downloads 134
440 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 95
439 Determination of Foaming Behavior in Thermoplastic Composite Nonwoven Structures for Automotive Applications

Authors: Zulfiye Ahan, Mustafa Dogu, Elcin Yilmaz

Abstract:

The use of nonwoven textile materials in many application areas is rapidly increasing thanks to their versatile performance properties. The automotive industry is one of the largest sectors in the world with a potential market of more than 2 billion euros for nonwoven textile materials applications. Lightweight materials having higher mechanical performance, better sound and heat insulation properties are of interest in many applications. Since the usage of nonwoven surfaces provides many of these advantages, the demand for this kind of materials is gradually growing especially in the automotive industry. Nonwoven materials used in lightweight vehicles can contain economical and high strength thermoplastics as well as durable components such as glass fiber. By bringing these composite materials into foam structure containing micro or nanopores, products with high absorption ability, light and mechanically stronger can be fabricated. In this respect, our goal is to produce thermoplastic composite nonwoven by using nonwoven glass fiber fabric reinforced polypropylene (PP). Azodicarbonamide (ADC) was selected as a foaming agent and a thermal process was applied to obtain porous structure. Various foaming temperature ranges and residence times were studied to examine the foaming behaviour of the thermoplastic composite nonwoven. Physicochemical and mechanical tests were applied in order to analyze the characteristics of composite foams.

Keywords: composite nonwoven, thermoplastic foams, foaming agent, foaming behavior

Procedia PDF Downloads 231
438 3D Numerical Studies on Jets Acoustic Characteristics of Chevron Nozzles for Aerospace Applications

Authors: R. Kanmaniraja, R. Freshipali, J. Abdullah, K. Niranjan, K. Balasubramani, V. R. Sanal Kumar

Abstract:

The present environmental issues have made aircraft jet noise reduction a crucial problem in aero-acoustics research. Acoustic studies reveal that addition of chevrons to the nozzle reduces the sound pressure level reasonably with acceptable reduction in performance. In this paper comprehensive numerical studies on acoustic characteristics of different types of chevron nozzles have been carried out with non-reacting flows for the shape optimization of chevrons in supersonic nozzles for aerospace applications. The numerical studies have been carried out using a validated steady 3D density based, k-ε turbulence model. In this paper chevron with sharp edge, flat edge, round edge and U-type edge are selected for the jet acoustic characterization of supersonic nozzles. We observed that compared to the base model a case with round-shaped chevron nozzle could reduce 4.13% acoustic level with 0.6% thrust loss. We concluded that the prudent selection of the chevron shape will enable an appreciable reduction of the aircraft jet noise without compromising its overall performance. It is evident from the present numerical simulations that k-ε model can predict reasonably well the acoustic level of chevron supersonic nozzles for its shape optimization.

Keywords: supersonic nozzle, Chevron, acoustic level, shape optimization of Chevron nozzles, jet noise suppression

Procedia PDF Downloads 503