Search results for: solid solution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7552

Search results for: solid solution

6892 Post-Harvest Preservation of Mango Fruit Using Freeze and Tray Drying Methods

Authors: O. A. Adeyeye, E. R. Sadiku, Periyar Selvam Sellamuthu, Anand Babu Perumal, Reshma B. Nambiar

Abstract:

Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit and only very few off-seasonal cultivars are available in the market for consumption. Therefore, to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered. In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.

Keywords: postharvest, Mangos, cultivar, total soluble solid, total phenol content, antioxidant

Procedia PDF Downloads 352
6891 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem

Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit

Abstract:

We study the existence of positive solutions to the three points difference summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.

Keywords: positive solution, boundary value problem, fixed point theorem, cone

Procedia PDF Downloads 439
6890 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator

Authors: Mohammad Ruhul Amin, Nusrat Jahan

Abstract:

Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.

Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization

Procedia PDF Downloads 498
6889 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect

Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich

Abstract:

Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.

Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking

Procedia PDF Downloads 116
6888 Post Harvest Preservation of Mango Fruit Using Freeze Drying and Tray Drying Methods

Authors: O. A. Adeyeye, E. R. Sadiku, Selvam Sellamuthu Periyar, Babu Perumal Anand, B. Nambiar Reshma

Abstract:

Mango is a tropical fruit which is often labelled as ‘super-fruit’ because of its unquantifiable benefits to human beings. However, despite its great importance, mango is a seasonal fruit, and only very few off-seasonal species are available in the market for consumption. Therefore, in order to overcome the seasonal variation and to increase the shelf-life of mango fruits, different drying methods are considered In this study, freeze drying and tray drying methods were used to preserve two different cultivars of mango from South Africa. Moisture content, total soluble solid, ascorbic acid, total phenol content (TPC), antioxidant activity (DPPH) and organoleptic tests were carried out on the samples before and after drying. The effects of different edible preservatives and selected packaging materials used were analyzed on each sample. The result showed that freeze drying method is the best method of preserving the selected cultivar.

Keywords: postharvest, mangos, cultivar, total soluble solid, total phenol content, antioxidant

Procedia PDF Downloads 390
6887 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process

Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim

Abstract:

Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.

Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia

Procedia PDF Downloads 476
6886 A Mobile Application for Analyzing and Forecasting Crime Using Autoregressive Integrated Moving Average with Artificial Neural Network

Authors: Gajaanuja Megalathan, Banuka Athuraliya

Abstract:

Crime is one of our society's most intimidating and threatening challenges. With the majority of the population residing in cities, many experts and data provided by local authorities suggest a rapid increase in the number of crimes committed in these cities in recent years. There has been an increasing graph in the crime rates. People living in Sri Lanka have the right to know the exact crime rates and the crime rates in the future of the place they are living in. Due to the current economic crisis, crime rates have spiked. There have been so many thefts and murders recorded within the last 6-10 months. Although there are many sources to find out, there is no solid way of searching and finding out the safety of the place. Due to all these reasons, there is a need for the public to feel safe when they are introduced to new places. Through this research, the author aims to develop a mobile application that will be a solution to this problem. It is mainly targeted at tourists, and people who recently relocated will gain advantage of this application. Moreover, the Arima Model combined with ANN is to be used to predict crime rates. From the past researchers' works, it is evidently clear that they haven’t used the Arima model combined with Artificial Neural Networks to forecast crimes.

Keywords: arima model, ANN, crime prediction, data analysis

Procedia PDF Downloads 131
6885 Adsorption of Chromium Ions from Aqueous Solution by Carbon Adsorbent

Authors: S. Heydari, H. Sharififard, M. Nabavinia, H. Kiani, M. Parvizi

Abstract:

Rapid industrialization has led to increased disposal of heavy metals into the environment. Activated carbon adsorption has proven to be an effective process for the removal of trace metal contaminants from aqueous media. This paper was investigated chromium adsorption efficiency by commercial activated carbon. The sorption studied as a function of activated carbon particle size, dose of activated carbon and initial pH of solution. Adsorption tests for the effects of these factors were designed with Taguchi approach. According to the Taguchi parameter design methodology, L9 orthogonal array was used. Analysis of experimental results showed that the most influential factor was initial pH of solution. The optimum conditions for chromium adsorption by activated carbons were found to be as follows: Initial feed pH 6, adsorbent particle size 0.412 mm and activated carbon dose 6 g/l. Under these conditions, nearly %100 of chromium ions was adsorbed by activated carbon after 2 hours.

Keywords: chromium, adsorption, Taguchi method, activated carbon

Procedia PDF Downloads 400
6884 Effect of Arsenic Treatment on Element Contents of Sunflower, Growing in Nutrient Solution

Authors: Szilvia Várallyay, Szilvia Veres, Éva Bódi, Farzaneh Garousi, Béla Kovács

Abstract:

The agricultural environment is contaminated with heavy metals and other toxic elements, which means more and more threats. One of the most important toxic element is the arsenic. Consequences of arsenic toxicity in the plant organism is decreases the weight of the roots, and causes discoloration and necrosis of leaves. The toxicity of arsenic depends on the quality and quantity of the arsenic specialization. The arsenic in the soil and in the plant presents as a most hazardous specialization. A dicotyledon plant were chosen for the experiment, namely sunflower. The sunflower plants were grown in nutrient solution in different As(III) levels. The content of As, P, Fe were measured from experimental plants, using by ICP-MS.Negative correlation was observed between the higher concentration of As(V) and As(III) in the nutrition solution and the content of P in the sunflower tissue. The amount of Fe was decreasing if we used a higher concentration of arsenic (30 mg kg-1). We can tell the conclusion that the arsenic had a negative effect on the sunflower tissue P and Fe content.

Keywords: arsenic, sunflower, ICP-MS, toxicity

Procedia PDF Downloads 646
6883 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fin height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fin height has greater impact on performance factor than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer and pressure drop up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-finned tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 115
6882 Kinetic and Thermodynamic Study of Nitrates Removal by Sorption on Biochar

Authors: Amira Touil, Achouak Arfaoui, Ibtissem Mannaii

Abstract:

The aim of this work is to monitor the process adsorption of nitrates by the biochar via studying the influence of various parameters on the adsorption of this pollutant by biochar in a synthetic aqueous solution. The results which obtained indicate that the 4g/L biochar dose is the most efficient in terms of nitrates removal in aqueous solution. The biochar exhibited a good affinity for nitrates after 1hour of contact. The yield of removal of nitrate by the biochar decreases with the increase of pH of the solution and increases with increasing temperature (60°C>40°C>20°C). The best removal yield is about 80% of the initial concentration introduced (25mg/L) obtained at pH=2, T=60°C, and dose of biochar=4g/L. The second order model fit the nitrate adsorption kinetics of biochar with a high coefficient of determination (R2≥0.997); and a new equation correlating the rate constant of the reaction with temperature and pH was been built. Freundlich isotherms performed well to fit the nitrate adsorption data by biochar (R2>0.96) compared to Langmuir isotherms. The thermodynamic parameters (ΔH°, ΔG°, ΔS°) have been calculated for predicting the nature of adsorption.

Keywords: pollution, biochar, nitrate, adsorption

Procedia PDF Downloads 95
6881 Evolution of Sustainable Municipal Solid Waste Management in Nigeria: Lagos Case Study

Authors: Chinedu Bevis Dibia, Hom Nath Dhakal

Abstract:

Effective waste management in sub-Saharan Africa has been identified as a means of resolving the wicked problems posed by climate change. Municipal solid waste management in Nigeria could be argued to be ineffective and unsustainable, despite the tag of sustainable ascribed to most municipalities’ waste management. Relatively, few studies have enquired on the evolution of Sustainable Municipal Waste Management (SMWM) in Nigeria. The main objective of this research is to examine the evolution of SMWM in Nigeria using Lagos state as a case study. A qualitative method was used as methodology, soft systems analysis is the main tool of evaluation. Results indicated that effective policy implementation and management is the main challenge to the proper evolution of SMWM. These findings highlight the relevance of effective stakeholder’s engagement and management, policy consistency as major determinants in SMWM.

Keywords: high income localities, low middle income localities, SMWM, upper middle income localities, waste collection, waste disposal

Procedia PDF Downloads 153
6880 Arsenic(III) Removal from Aqueous Solutions by Adsorption onto Fly Ash

Authors: Olushola Ayanda, Simphiwe Nelana, Eliazer Naidoo

Abstract:

In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of As(III) ions from aqueous solution onto fly ash (FA) was investigated in batch adsorption system. Prior to the adsorption studies, the FA was characterized by means of x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) surface area determination. The effect of contact time, initial As(III) concentration, FA dosage, stirring speed, solution pH and temperature was examined on the adsorption rate. Experimental results showed a very good compliance with the pseudo-second-order equation, while the equilibrium study showed that the sorption of As(III) ions onto FA fitted the Langmuir and Freundlich isotherms. The adsorption process is endothermic and spontaneous, moreover, the maximum percentage removal of As(III) achieved with approx. 2.5 g FA mixed with 25 mL of 100 mg/L As(III) solution was 65.4 % at pH 10, 60 min contact time, temperature of 353 K and a stirring speed of 120 rpm.

Keywords: arsenic, fly ash, kinetics, isotherm, thermodynamics

Procedia PDF Downloads 241
6879 Usage of Military Continuity Management System for Flooding Solution

Authors: Jiri Palecek, Radmila Hajkova, Alena Oulehlova, Hana Malachova

Abstract:

The increase of emergency incidents and crisis situations requires proactive crisis management of authorities and for its solution. Application business continuity management systems help the crisis management authorities quickly and responsibly react to events and to plan more effectively and efficiently powers and resources. The main goal of this article is describing Military Continuity Management System (MCMS) based on the principles of Business Continuity Management System (BCMS) for dealing with floods in the territory of the selected municipalities. There are explained steps of loading, running and evaluating activities in the software application MCMS. Software MCMS provides complete control over the tasks, contribute a comprehensive and responsible approach solutions to solution floods in the municipality.

Keywords: business continuity management, floods plan, flood activity, level of flood activity

Procedia PDF Downloads 282
6878 Facile, Cost Effective and Green Synthesis of Graphene in Alkaline Aqueous Solution

Authors: Illyas Isa, Siti Nur Akmar Mohd Yazid, Norhayati Hashim

Abstract:

We report a simple, green and cost effective synthesis of graphene via chemical reduction of graphene oxide in alkaline aqueous solution. Extensive characterizations have been studied to confirm the formation of graphene in sodium carbonate solution. Cyclic voltammetry was used to study the electrochemical properties of the prepared graphene-modified glassy carbon electrode using potassium ferricyanide as a redox probe. Based on the result, with the addition of graphene to the glassy carbon electrode the current flow increases and the peak also broadens as compared to graphite and graphene oxide. This method is fast, cost effective, and green as nontoxic solvents are used which will not result in contamination of the products. Thus, this method can serve for the preparation of graphene which can be effectively used in sensors, electronic devices and supercapacitors.

Keywords: chemical reduction, electrochemical, graphene, green synthesis

Procedia PDF Downloads 337
6877 Encapsulation of Flexible OLED with an Auxiliary Sealing Line

Authors: Hanjun Yun, Gun Bae, Nabin Paul, Cheolhee Moon

Abstract:

Flexible OLED is an important technology for the next generation display over various kinds of applications. However, the organic materials of OLEDs degrade rapidly under the invasion of oxygen and water moisture. The degradation causes the formation of non-emitting areas which gradually suppress the device brightness, ultimately the lifetime of the device decreasing rapidly. Until now, the most suitable sealing process of the flexible OLED devices is a thin film encapsulation (TFE). However, TFE consists of a multilayer thin-film structure with organic-inorganic materials, so the cost is expensive and the process time is long. Another problem is that the blocking characteristics from the moisture and oxygen are not perfect. Therefore, the encapsulation of the flexible OLED device is a still key technical issue for the successful market entry. In this study, we are to introduce an auxiliary sealing line between the two flexible substrates. The electrode lines were formed on the substrates which have a SiNx barrier coating layer. To induce the solid phase diffusion process between the SiNx layer and the electrode lines, the electrode materials were determined as Al-Si composition. Thermal energy was supplied for both the SiNx layer and Al-Si electrode lines within the furnace to induce the interfacial bonding through the solid phase diffusion of Si. We printed a test pattern for the edge of the flexible PET substrate of 3cm*3cm size. Experimental conditions such as heating temperature, heating time were optimized to get enough adhesion strength which was estimated through the competitive bending test. Finally, OLED devices with flexible PET substrate of 3cm*3cm size were manufactured to investigate the blocking characteristics as an encapsulation layer.

Keywords: barrier, encapsulation, OLED, solid phase diffusion

Procedia PDF Downloads 237
6876 Liquid Tin(II) Alkoxide Initiators for Use in the Ring-Opening Polymerisation of Cyclic Ester Monomers

Authors: Sujitra Ruengdechawiwat, Robert Molloy, Jintana Siripitayananon, Runglawan Somsunan, Paul D. Topham, Brian J. Tighe

Abstract:

The main aim of this research has been to design and synthesize some completely soluble liquid tin(II) alkoxide initiators for use in the ring-opening polymerisation (ROP) of cyclic ester monomers. This is in contrast to conventional tin(II) alkoxides in solid form which tend to be molecular aggregates and difficult to dissolve. The liquid initiators prepared were bis(tin(II) monooctoate) diethylene glycol ([Sn(Oct)]2DEG) and bis(tin(II) monooctoate) ethylene glycol ([Sn(Oct)]2EG). Their efficiencies as initiators in the bulk ROP of ε-caprolactone (CL) at 130oC were studied kinetically by dilatometry. Kinetic data over the 20-70% conversion range was used to construct both first-order and zero-order rate plots. It was found that the rate data fitted more closely to first-order kinetics with respect to the monomer concentration and gave higher first-order rate constants than the corresponding tin(II) octoate/diol initiating systems normally used to generate the tin(II) alkoxide in situ. Since the ultimate objective of this work is to produce copolymers suitable for biomedical use as absorbable monofilament surgical sutures, poly(L-lactide-co-ε-caprolactone) 75:25 mol %, P(LL-co-CL), copolymers were synthesized using both solid and liquid tin(II) alkoxide initiators at 130°C for 48 hrs. The statistical copolymers were obtained in near-quantitative yields with compositions (from 1H-NMR) close to the initial comonomer feed ratios. The monomer sequencing (from 13C-NMR) was partly random and partly blocky (gradient-type) due to the much differing monomer reactivity ratios (rLL >> rCL). From GPC, the copolymers obtained using the soluble liquid tin(II) alkoxides were found to have higher molecular weights (Mn = 40,000-100,000) than those from the only partially soluble solid initiators (Mn = 30,000-52,000).

Keywords: biodegradable polyesters, poly(L-lactide-co-ε-caprolactone), ring-opening polymerisation, tin(II) alkoxide

Procedia PDF Downloads 194
6875 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 207
6874 Lead Chalcogenide Quantum Dots for Use in Radiation Detectors

Authors: Tom Nakotte, Hongmei Luo

Abstract:

Lead chalcogenide-based (PbS, PbSe, and PbTe) quantum dots (QDs) were synthesized for the purpose of implementing them in radiation detectors. Pb based materials have long been of interest for gamma and x-ray detection due to its high absorption cross section and Z number. The emphasis of the studies was on exploring how to control charge carrier transport within thin films containing the QDs. The properties of QDs itself can be altered by changing the size, shape, composition, and surface chemistry of the dots, while the properties of carrier transport within QD films are affected by post-deposition treatment of the films. The QDs were synthesized using colloidal synthesis methods and films were grown using multiple film coating techniques, such as spin coating and doctor blading. Current QD radiation detectors are based on the QD acting as fluorophores in a scintillation detector. Here the viability of using QDs in solid-state radiation detectors, for which the incident detectable radiation causes a direct electronic response within the QD film is explored. Achieving high sensitivity and accurate energy quantification in QD radiation detectors requires a large carrier mobility and diffusion lengths in the QD films. Pb chalcogenides-based QDs were synthesized with both traditional oleic acid ligands as well as more weakly binding oleylamine ligands, allowing for in-solution ligand exchange making the deposition of thick films in a single step possible. The PbS and PbSe QDs showed better air stability than PbTe. After precipitation the QDs passivated with the shorter ligand are dispersed in 2,6-difloupyridine resulting in colloidal solutions with concentrations anywhere from 10-100 mg/mL for film processing applications, More concentrated colloidal solutions produce thicker films during spin-coating, while an extremely concentrated solution (100 mg/mL) can be used to produce several micrometer thick films using doctor blading. Film thicknesses of micrometer or even millimeters are needed for radiation detector for high-energy gamma rays, which are of interest for astrophysics or nuclear security, in order to provide sufficient stopping power.

Keywords: colloidal synthesis, lead chalcogenide, radiation detectors, quantum dots

Procedia PDF Downloads 127
6873 Basal Cell Carcinoma: Epidemiological Analysis of a 5-Year Period in a Brazilian City with a High Level of Solar Radiation

Authors: Maria E. V. Amarante, Carolina L. Cerdeira, Julia V. Cortes, Fiorita G. L. Mundim

Abstract:

Basal cell carcinoma (BCC) is the most prevalent type of skin cancer in humans. It arises from the basal cells of the epidermis and cutaneous appendages. The role of sunlight exposure as a risk factor for BCC is very well defined due to its power to influence genetic mutations, in addition to having a suppressor effect on the skin immune system. Despite showing low metastasis and mortality rates, the tumor is locally infiltrative, aggressive, and destructive. Considering the high prevalence rate of this carcinoma and the importance of early detection, a retrospective study was carried out in order to correlate the clinical data available on BBC, characterize it epidemiologically, and thus enable effective prevention measures for the population. Data on the period from January 2015 to December 2019 were collected from the medical records of patients registered at one pathology service located in the southeast region of Brazil, known as SVO, which delivers skin biopsy results. The study was aimed at correlating the variables, sex, age, and subtypes found. Data analysis was performed using the chi-square test at a nominal significance level of 5% in order to verify the independence between the variables of interest. Fisher's exact test was applied in cases where the absolute frequency in the cells of the contingency table was less than or equal to five. The statistical analysis was performed using the R® software. Ninety-three basal cell carcinoma were analyzed, and its frequency in the 31-to 45-year-old age group was 5.8 times higher in men than in women, whereas, from 46 to 59 years, the frequency was found 2.4 times higher in women than in men. Between the ages of 46 to 59 years, it should be noted that the sclerodermiform subtype appears more than the solid one, with a difference of 7.26 percentage points. Reversely, the solid form appears more frequently in individuals aged 60 years or more, with a difference of 8.57 percentage points. Among women, the frequency of the solid subtype was 9.93 percentage points higher than the sclerodermiform frequency. In males, the same percentage difference is observed, but sclerodermiform is the most prevalent subtype. It is concluded in this study that, in general, there is a predominance of basal cell carcinoma in females and in individuals aged 60 years and over, which demonstrates the tendency of this tumor. However, when rarely found in younger individuals, the male gender prevailed. The most prevalent subtype was the solid one. It is worth mentioning that the sclerodermiform subtype, which is more aggressive, was seen more frequently in males and in the 46-to 59-year-old range.

Keywords: basal cell carcinoma, epidemiology, sclerodermiform basal cell carcinoma, skin cancer, solar radiation, solid basal cell carcinoma

Procedia PDF Downloads 139
6872 Parameters Affecting the Removal of Copper and Cobalt from Aqueous Solution onto Clinoptilolite by Ion-Exchange Process

Authors: John Kabuba, Hilary Rutto

Abstract:

Ion exchange is one of the methods used to remove heavy metal such as copper and cobalt from wastewaters. Parameters affecting the ion-exchange of copper and cobalt aqueous solutions using clinoptilolite are the objectives of this study. Synthetic solutions were prepared with the concentration of 0.02M, 0.06M and 0.1M. The cobalt solution was maintained to 0.02M while varying the copper solution to the above stated concentrations. The clinoptilolite was activated with HCl and H2SO4 for removal efficiency. The pHs of the solutions were found to be acidic hence enhancing the copper and cobalt removal. The natural clinoptilolite performance was also found to be lower compared to the HCl and H2SO4 activated one for the copper removal ranging from 68% to 78% of Cu2+ uptake with the natural clinoptilolite to 66% to 51% with HCl and H2SO4 respectively. It was found that the activated clinoptilolite removed more copper and cobalt than the natural one and found that the electronegativity of the metal plays a role in the metal removal and the clinoptilolite selectivity.

Keywords: clinoptilolite, cobalt and copper, ion-exchange, mass dosage, pH

Procedia PDF Downloads 296
6871 Utilization of Fishbone for the Removal of Nickel Ions from Aqueous Media

Authors: Bukunola A.Oguntade, Abdul- Azeez A. Oderinde

Abstract:

Fishbone is a type of waste generated from food and food processing industries. Fishbone wastes are usually treated as the source of organic matter for the by-production. It is a rich source of hydroxyapatite (HAP). In this study, the adsorption behavior of fishbone was examined in a batch system as an economically viable adsorbent for the removal of Ni⁺² ions from aqueous solution. The powdered fishbone was characterized using Fourier Transform Infrared (FT-IR) spectrophotometer and Scanning Electron microscope (SEM). The study investigated the influence of adsorbent dosage, solution pH, contact time, and initial metal concentration on the removal of Nickel (II) ions at room temperature. The batch kinetics study showed that the optimum adsorption of Ni(II) was 98% at pH 7, metal ion concentration of 30 mg/L. The results obtained from the experimental work showed that fishbone can be used as an adsorbent for the removal of Ni(II) ions from aqueous solution.

Keywords: adsorption, aqueous media, fishbone, kinetic study

Procedia PDF Downloads 131
6870 Effect of Milling Parameters on the Characteristics of Nanocrystalline TiAl Alloys Synthesized by Mechanical Alloying

Authors: Jinan B. Al-Dabbagh, Rozman Mohd Tahar, Mahadzir Ishak

Abstract:

TiAl alloy nano-powder was successfully produced by a mechanical alloying (MA) technique in a planetary ball mill. The influence of milling parameters, such as the milling duration, rotation speed, and balls-to-powder mass ratio, on the characteristics of the Ti50%Al powder, including the microstructure, crystallite size refinement, and phase formation, were investigated. It was found that MA of elemental Ti and Al powders promotes the formation of TiAl alloys, as Ti (Al) solid solution was formed after 5h of milling. Milling without the addition of process control agents led to a dramatic decrease in the crystallite size to 17.8 nm after 2h of milling. Higher rotation energy and a higher ball-to-powder weight ratio also accelerated the reduction in crystallite size. Subsequent heating up to 850°C resulted in the formation of a new intermetallic phase with a dominant TiAl3 phase plus minor γ-TiAl or α2-Ti3Al phase or both. A longer milling duration also exhibited a better effect on the micro-hardness of Ti50%Al powders.

Keywords: TiAl alloys, nanocrystalline materials, mechanical alloying, materials science

Procedia PDF Downloads 358
6869 Effect of Chemical Concentration on the Rheology of Inks for Inkjet Printing

Authors: M. G. Tadesse, J. Yu, Y. Chen, L. Wang, V. Nierstrasz, C. Loghin

Abstract:

Viscosity and surface tension are the fundamental rheological property of an ink for inkjet printing. In this work, we optimized the viscosity and surface tension of inkjet inks by varying the concentration of glycerol with water, PEDOT:PSS with glycerol and water, finally by adding the surfactant. The surface resistance of the sample was characterized by four-probe measurement principle. The change in volume of PEDOT:PSS in water, as well as the change in weight of glycerol in water has got a great influence on the viscosity on both temperature dependence and shear dependence behavior of the ink solution. The surface tension of the solution changed from 37 to 28 mN/m due to the addition of Triton. Varying the volume of PEDOT:PSS and the volume of glycerol in water has a great influence on the viscosity of the ink solution for inkjet printing. Viscosity drops from 12.5 to 9.5 mPa s with the addition of Triton at 25 oC. The PEDOT:PSS solution was found to be temperature dependence but not shear dependence as it is a Newtonian fluid. The sample was used to connect the light emitting diode (LED), and hence the electrical conductivity, with a surface resistance of 0.158 KΩ/square, was sufficient enough to give transfer current for LED lamp. The rheology of the inkjet ink is very critical for the successful droplet formation of the inkjet printing.

Keywords: shear rate, surface tension, surfactant, viscosity

Procedia PDF Downloads 172
6868 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor

Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young

Abstract:

In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.

Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy

Procedia PDF Downloads 415
6867 Development and Characterization of Topical 5-Fluorouracil Solid Lipid Nanoparticles for the Effective Treatment of Non-Melanoma Skin Cancer

Authors: Sudhir Kumar, V. R. Sinha

Abstract:

Background: The topical and systemic toxicity associated with present nonmelanoma skin cancer (NMSC) treatment therapy using 5-Fluorouracil (5-FU) make it necessary to develop a novel delivery system having lesser toxicity and better control over drug release. Solid lipid nanoparticles offer many advantages like: controlled and localized release of entrapped actives, nontoxicity, and better tolerance. Aim:-To investigate safety and efficacy of 5-FU loaded solid lipid nanoparticles as a topical delivery system for the treatment of nonmelanoma skin cancer. Method: Topical solid lipid nanoparticles of 5-FU were prepared using Compritol 888 ATO (Glyceryl behenate) as lipid component and pluronic F68 (Poloxamer 188), Tween 80 (Polysorbate 80), Tyloxapol (4-(1,1,3,3-Tetramethylbutyl) phenol polymer with formaldehyde and oxirane) as surfactants. The SLNs were prepared with emulsification method. Different formulation parameters viz. type and ratio of surfactant, ratio of lipid and ratio of surfactant:lipid were investigated on particle size and drug entrapment efficiency. Results: Characterization of SLNs like–Transmission Electron Microscopy (TEM), Differential Scannig calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Particle size determination, Polydispersity index, Entrapment efficiency, Drug loading, ex vivo skin permeation and skin retention studies, skin irritation and histopathology studies were performed. TEM results showed that shape of SLNs was spherical with size range 200-500nm. Higher encapsulation efficiency was obtained for batches having higher concentration of surfactant and lipid. It was found maximum 64.3% for SLN-6 batch with size of 400.1±9.22 nm and PDI 0.221±0.031. Optimized SLN batches and marketed 5-FU cream were compared for flux across rat skin and skin drug retention. The lesser flux and higher skin retention was obtained for SLN formulation in comparison to topical 5-FU cream, which ensures less systemic toxicity and better control of drug release across skin. Chronic skin irritation studies lacks serious erythema or inflammation and histopathology studies showed no significant change in physiology of epidermal layers of rat skin. So, these studies suggest that the optimized SLN formulation is efficient then marketed cream and safer for long term NMSC treatment regimens. Conclusion: Topical and systemic toxicity associated with long-term use of 5-FU, in the treatment of NMSC, can be minimized with its controlled release with significant drug retention with minimal flux across skin. The study may provide a better alternate for effective NMSC treatment.

Keywords: 5-FU, topical formulation, solid lipid nanoparticles, non melanoma skin cancer

Procedia PDF Downloads 516
6866 Fragility Analysis of a Soft First-Story Building in Mexico City

Authors: Rene Jimenez, Sonia E. Ruiz, Miguel A. Orellana

Abstract:

On 09/19/2017, a Mw = 7.1 intraslab earthquake occurred in Mexico causing the collapse of about 40 buildings. Many of these were 5- or 6-story buildings with soft first story; so, it is desirable to perform a structural fragility analysis of typical structures representative of those buildings and to propose a reliable structural solution. Here, a typical 5-story building constituted by regular R/C moment-resisting frames in the first story and confined masonry walls in the upper levels, similar to the collapsed structures on the 09/19/2017 Mexico earthquake, is analyzed. Three different structural solutions of the 5-story building are considered: S1) it is designed in accordance with the Mexico City Building Code-2004; S2) then, the column dimensions of the first story corresponding to S1 are reduced, and S3) viscous dampers are added at the first story of solution S2. A number of dynamic incremental analyses are performed for each structural solution, using a 3D structural model. The hysteretic behavior model of the masonry was calibrated with experiments performed at the Laboratory of Structures at UNAM. Ten seismic ground motions are used to excite the structures; they correspond to ground motions recorded in intermediate soil of Mexico City with a dominant period around 1s, where the structures are located. The fragility curves of the buildings are obtained for different values of the maximum inter-story drift demands. Results show that solutions S1 and S3 give place to similar probabilities of exceedance of a given value of inter-story drift for the same seismic intensity, and that solution S2 presents a higher probability of exceedance for the same seismic intensity and inter-story drift demand. Therefore, it is concluded that solution S3 (which corresponds to the building with soft first story and energy dissipation devices) can be a reliable solution from the structural point of view.

Keywords: demand hazard analysis, fragility curves, incremental dynamic analyzes, soft-first story, structural capacity

Procedia PDF Downloads 178
6865 Preparation and Characterization of Calcium Phosphate Cement

Authors: W. Thepsuwan, N. Monmaturapoj

Abstract:

Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.

Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties

Procedia PDF Downloads 390
6864 Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel

Authors: Partha P. Gopmandal, Somnath Bhattacharyya, Naren Bag

Abstract:

In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups.

Keywords: electroosmosis, finite volume method, functional group, surface charge

Procedia PDF Downloads 419
6863 Parametric Study of 3D Micro-Fin Tubes on Heat Transfer and Friction Factor

Authors: Shima Soleimani, Steven Eckels

Abstract:

One area of special importance for the surface-level study of heat exchangers is tubes with internal micro-fins (< 0.5 mm tall). Micro-finned surfaces are a kind of extended solid surface in which energy is exchanged with water that acts as the source or sink of energy. Significant performance gains are possible for either shell, tube, or double pipe heat exchangers if the best surfaces are identified. The parametric studies of micro-finned tubes that have appeared in the literature left some key parameters unexplored. Specifically, they ignored three-dimensional (3D) micro-fin configurations, conduction heat transfer in the fins, and conduction in the solid surface below the micro-fins. Thus, this study aimed at implementing a parametric study of 3D micro-finned tubes that considered micro-fine height and discontinuity features. A 3D conductive and convective heat-transfer simulation through coupled solid and periodic fluid domains is applied in a commercial package, ANSYS Fluent 19.1. The simulation is steady-state with turbulent water flow cooling the inner wall of a tube with micro-fins. The simulation utilizes a constant and uniform temperature on the tube outer wall. Performance is mapped for 18 different simulation cases, including a smooth tube using a realizable k-ε turbulence model at a Reynolds number of 48,928. Results compared the performance of 3D tubes with results for the similar two-dimensional (2D) one. Results showed that the micro-fine height has a greater impact on performance factors than discontinuity features in 3D micro-fin tubes. A transformed 3D micro-fin tube can enhance heat transfer, and pressure drops up to 21% and 56% compared to a 2D one, respectfully.

Keywords: three-dimensional micro-fin tube, heat transfer, friction factor, heat exchanger

Procedia PDF Downloads 118