Search results for: shrinkage regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3412

Search results for: shrinkage regression

2752 Income-Consumption Relationships in Pakistan (1980-2011): A Cointegration Approach

Authors: Himayatullah Khan, Alena Fedorova

Abstract:

The present paper analyses the income-consumption relationships in Pakistan using annual time series data from 1980-81 to 2010-1. The paper uses the Augmented Dickey-Fuller test to check the unit root and stationarity in these two time series. The paper finds that the two time series are nonstationary but stationary at their first difference levels. The Augmented Engle-Granger test and the Cointegrating Regression Durbin-Watson test imply that the two time series of consumption and income are cointegrated and that long-run marginal propensity to consume is 0.88 which is given by the estimated (static) equilibrium relation. The paper also used the error correction mechanism to find out to model dynamic relationship. The purpose of the ECM is to indicate the speed of adjustment from the short-run equilibrium to the long-run equilibrium state. The results show that MPC is equal to 0.93 and is highly significant. The coefficient of Engle-Granger residuals is negative but insignificant. Statistically, the equilibrium error term is zero, which suggests that consumption adjusts to changes in GDP in the same period. The short-run changes in GDP have a positive impact on short-run changes in consumption. The paper concludes that we may interpret 0.93 as the short-run MPC. The pair-wise Granger Causality test shows that both GDP and consumption Granger cause each other.

Keywords: cointegrating regression, Augmented Dickey Fuller test, Augmented Engle-Granger test, Granger causality, error correction mechanism

Procedia PDF Downloads 414
2751 HIV Disclosure Status and Factors among Women to Their Sexual Partner in Victory plus, Yogyakarta, Indonesia

Authors: Dwi Kartika Rukmi, Miftafu Darussalam

Abstract:

Background: The disclosure of women’s HIV status toward their sexual partners is an important issue that should be regarded as one of the efforts to prevent and control the spread of HIV. Research on the disclosure of seropositive HIV status as well as women-related factors in Indonesia, especially Yogyakarta is only a few. Methods: This is a correlational descriptive research along with its cross-sectional approach on 329 women with HIV/AIDS at the Victory Plus NGO from June to July 2016. This research used a purposive sampling method and a questionnaire as the data collection technique. The bivariate analysis test was undertaken by using a chi-square and multivariate test along with a logistic regression. Result: The multivariate analysis and logistic regression show five independent variables related to the disclosure of seropositive HIV status of women with HIV/AIDS toward their sexual partners, namely ethnicity (aOR = 36,859; 95% CI; (6,544-207,616)) religion (aOR =0,255; 95%CI; (0,075-0,868)), discussion with partners prior to the HIV test (aOR =0,069; 95%CI; (0,065-0,438)) , types of sexual partners (aOR = 0.191; 95% CI; (0.082-0,445)) and knowledge on the partners’ HIV status (aOR = 0.036; 95% CI; (0.008-0.160)). The highest level of reason for seropositive HIV women not to be open about their partners’ status is the fear of being rejected by their partners and the environmental stigma of HIV AIDS disease. Conclusion: The disclosure of seropositive HIV status in women with HIV/AIDS in the Victory Plus NGO of Yogyakarta was 79.4% or classified as a high category with some related factors such as ethnicity, religion, discussion with partners prior to the HIV test, types of partners and knowledge on the partners’ HIV status.

Keywords: women, HIV, disclosure, sexual partner

Procedia PDF Downloads 261
2750 The Role of Temporary Migration as Coping Mechanism of Weather Shock: Evidence from Selected Semi-Arid Tropic Villages in India

Authors: Kalandi Charan Pradhan

Abstract:

In this study, we investigate does weather variation determine temporary labour migration using 210 sample households from six Semi-Arid Tropic (SAT) villages for the period of 2005-2014 in India. The study has made an attempt to examine how households use temporary labour migration as a coping mechanism to minimise the risk rather than maximize the utility of the households. The study employs panel Logit regression model to predict the probability of household having at least one temporary labour migrant. As per as econometrics result, it is found that along with demographic and socioeconomic factors; weather variation plays an important role to determine the decision of migration at household level. In order to capture the weather variation, the study uses mean crop yield deviation over the study periods. Based on the random effect logit regression result, the study found that there is a concave relationship between weather variation and decision of temporary labour migration. This argument supports the theory of New Economics of Labour Migration (NELM), which highlights the decision of labour migration not only maximise the households’ utility but it helps to minimise the risks.

Keywords: temporary migration, socioeconomic factors, weather variation, crop yield, logit estimation

Procedia PDF Downloads 223
2749 Urban Household Waste Disposal Modes and Their Determinants: Evidence from Bure Town, North-Western Ethiopia

Authors: Mastawal Melese, Yismaw Assefa

Abstract:

This study aims to identify household-level determinants of solid waste disposal (SWD) practices in Bure Town, north-western Ethiopia. Using a cross-sectional design and a mixed-methods approach, data were collected from 238 randomly selected households through structured interviews, focus group discussions, and field observations. Descriptive analysis revealed that 14.7% of households used composting as a primary SWD method, 37.4% practiced open dumping, 25.6% used burning, and 22.3% resorted to burial. Multinomial logistic regression showed that factors such as monthly income, age, family size, length of residence, sex, home ownership, solid waste sorting procedures, and education significantly influenced the choice of disposal method. Households with lower education, income, home ownership, and shorter residence times were more likely to use improper disposal methods. Females were found to be more likely to engage in better waste disposal practices than males. These findings underscore the need for context-specific interventions in newly developing towns to enhance household-level SWM systems by addressing key socio-economic factors.

Keywords: multinomial logistic regression, solid waste management, solid waste disposal, urban household

Procedia PDF Downloads 20
2748 Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel

Authors: Nixon Kuruvila, H. V. Ravindra

Abstract:

Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.

Keywords: dimensional accuracy (DA), regression analysis (RA), Taguchi method (TM), volumetric material removal rate (VMRR)

Procedia PDF Downloads 409
2747 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 148
2746 Optimised Path Recommendation for a Real Time Process

Authors: Likewin Thomas, M. V. Manoj Kumar, B. Annappa

Abstract:

Traditional execution process follows the path of execution drawn by the process analyst without observing the behaviour of resource and other real-time constraints. Identifying process model, predicting the behaviour of resource and recommending the optimal path of execution for a real time process is challenging. The proposed AlfyMiner: αyM iner gives a new dimension in process execution with the novel techniques Process Model Analyser: PMAMiner and Resource behaviour Analyser: RBAMiner for recommending the probable path of execution. PMAMiner discovers next probable activity for currently executing activity in an online process using variant matching technique to identify the set of next probable activity, among which the next probable activity is discovered using decision tree model. RBAMiner identifies the resource suitable for performing the discovered next probable activity and observe the behaviour based on; load and performance using polynomial regression model, and waiting time using queueing theory. Based on the observed behaviour αyM iner recommend the probable path of execution with; next probable activity and the best suitable resource for performing it. Experiments were conducted on process logs of CoSeLoG Project1 and 72% of accuracy is obtained in identifying and recommending next probable activity and the efficiency of resource performance was optimised by 59% by decreasing their load.

Keywords: cross-organization process mining, process behaviour, path of execution, polynomial regression model

Procedia PDF Downloads 334
2745 The Relationship between Corporate Governance and Intellectual Capital Disclosure: Malaysian Evidence

Authors: Rabiaal Adawiyah Shazali, Corina Joseph

Abstract:

The disclosure of Intellectual Capital (IC) information is getting more vital in today’s era of a knowledge-based economy. Companies are advised by accounting bodies to enhance IC disclosure which complements the conventional financial disclosures. There are no accounting standards for Intellectual Capital Disclosure (ICD), therefore the disclosure is entirely voluntary. Hence, this study aims to investigate the extent of ICD and to examine the relationship between corporate governance and ICD in Malaysia. This study employed content analysis of 100 annual reports by the top 100 public listed companies in Malaysia during 2012. The uniqueness of this study lies on its underpinning theory used where it applies the institutional isomorphism theory to support the effect of the attributes of corporate governance towards ICD. In order to achieve the stated objective, multiple regression analysis were employed to conduct this study. From the descriptive statistics, it was concluded that public listed companies in Malaysia have increased their awareness towards the importance of ICD. Furthermore, results from the multiple regression analysis confirmed that corporate governance affects the company’s ICD where the frequency of audit committee meetings and the board size has positively influenced the level of ICD in companies. Findings from this study would provide an incentive for companies in Malaysia to enhance the disclosure of IC. In addition, this study would assist Bursa Malaysia and other regulatory bodies to come up with a proper guideline for the disclosure of IC.

Keywords: annual report, content analysis, corporate governance, intellectual capital disclosure

Procedia PDF Downloads 215
2744 The Role of Personality Characteristics and Psychological Harassment Behaviors Which Employees Are Exposed on Work Alienation

Authors: Hasan Serdar Öge, Esra Çiftçi, Kazım Karaboğa

Abstract:

The main purpose of the research is to address the role of psychological harassment behaviors (mobbing) to which employees are exposed and personality characteristics over work alienation. Research population was composed of the employees of Provincial Special Administration. A survey with four sections was created to measure variables and reach out the basic goals of the research. Correlation and step-wise regression analyses were performed to investigate the separate and overall effects of sub-dimensions of psychological harassment behaviors and personality characteristic on work alienation of employees. Correlation analysis revealed significant but weak relationships between work alienation and psychological harassment and personality characteristics. Step-wise regression analysis revealed also significant relationships between work alienation variable and assault to personality, direct negative behaviors (sub dimensions of mobbing) and openness (sub-dimension of personality characteristics). Each variable was introduced into the model step by step to investigate the effects of significant variables in explaining the variations in work alienation. While the explanation ratio of the first model was 13%, the last model including three variables had an explanation ratio of 24%.

Keywords: alienation, five-factor personality characteristics, mobbing, psychological harassment, work alienation

Procedia PDF Downloads 405
2743 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 45
2742 A Correlations Study on Nursing Staff's Shifts Systems, Workplace Fatigue, and Quality of Working Life

Authors: Jui Chen Wu, Ming Yi Hsu

Abstract:

Background and Purpose: Shift work of nursing staff is inevitable in hospital to provide continuing medical care. However, shift work is considered as a health hazard that may cause physical and psychological problems. Serious workplace fatigue of nursing shift work might impact on family, social and work life, moreover, causes serious reduction of quality of medical care, or even malpractice. This study aims to explore relationships among nursing staff’s shift, workplace fatigue and quality of working life. Method: Structured questionnaires were used in this study to explore relationships among shift work, workplace fatigue and quality of working life in nursing staffs. We recruited 590 nursing staffs in different Community Teaching hospitals in Taiwan. Data analysed by descriptive statistics, single sample t-test, single factor analysis, Pearson correlation coefficient and hierarchical regression, etc. Results: The overall workplace fatigue score is 50.59 points. In further analysis, the score of personal burnout, work-related burnout, over-commitment and client-related burnout are 57.86, 53.83, 45.95 and 44.71. The basic attributes of nursing staff are significantly different from those of workplace fatigue with different ages, licenses, sleeping quality, self-conscious health status, number of care patients of chronic diseases and number of care people in the obstetric ward. The shift variables revealed no significant influence on workplace fatigue during the hierarchical regression analysis. About the analysis on nursing staff’s basic attributes and shift on the quality of working life, descriptive results show that the overall quality of working life of nursing staff is 3.23 points. Comparing the average score of the six aspects, the ranked average score are 3.47 (SD= .43) in interrelationship, 3.40 (SD= .46) in self-actualisation, 3.30 (SD= .40) in self-efficacy, 3.15 (SD= .38) in vocational concept, 3.07 (SD= .37) in work aspects, and 3.02 (SD= .56) in organization aspects. The basic attributes of nursing staff are significantly different from quality of working life in different marriage situations, education level, years of nursing work, occupation area, sleep quality, self-conscious health status and number of care in medical ward. There are significant differences between shift mode and shift rate with the quality of working life. The results of the hierarchical regression analysis reveal that one of the shifts variables 'shift mode' which does affect staff’s quality of working life. The workplace fatigue is negatively correlated with the quality of working life, and the over-commitment in the workplace fatigue is positively related to the vocational concept of the quality of working life. According to the regression analysis of nursing staff’s basic attributes, shift mode, workplace fatigue and quality of working life related shift, the results show that the workplace fatigue has a significant impact on nursing staff’s quality of working life. Conclusion: According to our study, shift work is correlated with workplace fatigue in nursing staffs. This results work as important reference for human resources management in hospitals to establishing a more positive and healthy work arrangement policy.

Keywords: nursing staff, shift, workplace fatigue, quality of working life

Procedia PDF Downloads 272
2741 Estimating Anthropometric Dimensions for Saudi Males Using Artificial Neural Networks

Authors: Waleed Basuliman

Abstract:

Anthropometric dimensions are considered one of the important factors when designing human-machine systems. In this study, the estimation of anthropometric dimensions has been improved by using Artificial Neural Network (ANN) model that is able to predict the anthropometric measurements of Saudi males in Riyadh City. A total of 1427 Saudi males aged 6 to 60 years participated in measuring 20 anthropometric dimensions. These anthropometric measurements are considered important for designing the work and life applications in Saudi Arabia. The data were collected during eight months from different locations in Riyadh City. Five of these dimensions were used as predictors variables (inputs) of the model, and the remaining 15 dimensions were set to be the measured variables (Model’s outcomes). The hidden layers varied during the structuring stage, and the best performance was achieved with the network structure 6-25-15. The results showed that the developed Neural Network model was able to estimate the body dimensions of Saudi male population in Riyadh City. The network's mean absolute percentage error (MAPE) and the root mean squared error (RMSE) were found to be 0.0348 and 3.225, respectively. These results were found less, and then better, than the errors found in the literature. Finally, the accuracy of the developed neural network was evaluated by comparing the predicted outcomes with regression model. The ANN model showed higher coefficient of determination (R2) between the predicted and actual dimensions than the regression model.

Keywords: artificial neural network, anthropometric measurements, back-propagation

Procedia PDF Downloads 487
2740 Deformation Severity Prediction in Sewer Pipelines

Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed

Abstract:

Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.

Keywords: deformation, prediction, regression analysis, sewer pipelines

Procedia PDF Downloads 188
2739 Rural Livelihood under a Changing Climate Pattern in the Zio District of Togo, West Africa

Authors: Martial Amou

Abstract:

This study was carried out to assess the situation of households’ livelihood under a changing climate pattern in the Zio district of Togo, West Africa. The study examined three important aspects: (i) assessment of households’ livelihood situation under a changing climate pattern, (ii) farmers’ perception and understanding of local climate change, (iii) determinants of adaptation strategies undertaken in cropping pattern to climate change. To this end, secondary sources of data, and survey data collected from 235 farmers in four villages in the study area were used. Adapted conceptual framework from Sustainable Livelihood Framework of DFID, two steps Binary Logistic Regression Model and descriptive statistics were used in this study as methodological approaches. Based on Sustainable Livelihood Approach (SLA), various factors revolving around the livelihoods of the rural community were grouped into social, natural, physical, human, and financial capital. Thus, the study came up that households’ livelihood situation represented by the overall livelihood index in the study area (34%) is below the standard average households’ livelihood security index (50%). The natural capital was found as the poorest asset (13%) and this will severely affect the sustainability of livelihood in the long run. The result from descriptive statistics and the first step regression (selection model) indicated that most of the farmers in the study area have clear understanding of climate change even though they do not have any idea about greenhouse gases as the main cause behind the issue. From the second step regression (output model) result, education, farming experience, access to credit, access to extension services, cropland size, membership of a social group, distance to the nearest input market, were found to be the significant determinants of adaptation measures undertaken in cropping pattern by farmers in the study area. Based on the result of this study, recommendations are made to farmers, policy makers, institutions, and development service providers in order to better target interventions which build, promote or facilitate the adoption of adaptation measures with potential to build resilience to climate change and then improve rural livelihood.

Keywords: climate change, rural livelihood, cropping pattern, adaptation, Zio District

Procedia PDF Downloads 325
2738 Study on the Factors Influencing the Built Environment of Residential Areas on the Lifestyle Walking Trips of the Elderly

Authors: Daming Xu, Yuanyuan Wang

Abstract:

Abstract: Under the trend of rapid expansion of urbanization, the motorized urban characteristics become more and more obvious, and the walkability of urban space is seriously affected. The construction of walkability of space, as the main mode of travel for the elderly in their daily lives, has become more and more important in the current social context of serious aging. Settlement is the most basic living unit of residents, and daily shopping, medical care, and other daily trips are closely related to the daily life of the elderly. Therefore, it is of great practical significance to explore the impact of built environment on elderly people's daily walking trips at the settlement level for the construction of pedestrian-friendly settlements for the elderly. The study takes three typical settlements in Harbin Daoli District in three different periods as examples and obtains data on elderly people's walking trips and built environment characteristics through field research, questionnaire distribution, and internet data acquisition. Finally, correlation analysis and multinomial logistic regression model were applied to analyze the influence mechanism of built environment on elderly people's walkability based on the control of personal attribute variables in order to provide reference and guidance for the construction of walkability for elderly people in built environment in the future.

Keywords: built environment, elderly, walkability, multinomial logistic regression model

Procedia PDF Downloads 76
2737 Gender-Specific Association between Obstructive Sleep Apnea and Cognitive Impairment among Adults: A Population-based UK Biobank Study

Authors: Ke Qiu, Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Although much has been done to investigate the influence of obstructive sleep apnea (OSA) on cognitive function, little attention has been paid to the role which gender differences play in this association. In the present study, we aim to explore the gender-specific association between OSA and cognitive impairment. Participants from UK biobank who have completed at least one of the five baseline cognitive tests (visuospatial memory, prospective memory, fluid intelligence, short numeric memory and reaction time) were included and were further categorized into three groups: (1) OSA, (2) self-reported snoring but without OSA, and (3) healthy controls (without OSA or snoring). Multivariable regression analysis was performed to examine the associations among snoring, OSA and performance of each of the five cognitive domains. A total of 267,889 participants (47% male, mean age: 57 years old) were included in our study. In the multivariable regression analysis, female participants in the OSA group had a higher risk of having poor prospective memory (OR: 1.24, 95% CI: 1.02~1.50, p = 0.03). Meanwhile, among female participants, OSA were inversely associated with the performances of fluid intelligence (β: -0.29, 95% CI: -0.46~-0.13, p < 0.001) and short-numeric memory (β: -0.14, 95% CI: -0.35~0.08, p = 0.02). In contrast, among male participants, no significant association was observed between OSA and impairment of the five cognitive domains. Overall, OSA was significantly associated with cognitive impairment in female participants rather than in male participants, indicating that more special attention and timely interventions should be given to female OSA patients to prevent further cognitive impairment.

Keywords: obstructive sleep apnea (OSA), cognitive impairment, gender-specific association, UK biobank

Procedia PDF Downloads 151
2736 Patient Reported Outcome Measures Post Implant Based Reconstruction Basildon Hospital

Authors: Danny Fraser, James Zhang

Abstract:

Aim of the study: Our study aims to identify any statistically significant evidence as it relates to PROMs for mastectomy and implant-based reconstruction to guide future surgical management. Method: The demographic, pre and post-operative treatment and implant characteristics were collected of all patients at Basildon hospital who underwent breast reconstruction from 2017-2023. We used the Breast-Q psychosocial well-being, physical well-being, and satisfaction with breasts scales. An Independent t-test was conducted for each group, and linear regression of age and implant size. Results: 69 patients were contacted, and 39 PROMs returned. The mean age of patients was 57.6. 40% had smoked before, and 40.8% had BMI>30. 29 had pre-pectoral placement, and 40 had subpectoral placement. 17 had smooth implants, and 52 textured. Sub pectoral placement was associated with higher (75.7 vs. 61.9 p=0.046) psychosocial scores than pre pectoral, and textured implants were associated with a lower physical score than the smooth surface (34.7 VS 50.2 P=0.046). On linear regression, age was positively associated (p=0.007) with psychosocial score. Conclusion: We present a large cohort of patients who underwent breast reconstruction. Understanding the PROMs of these procedures can guide clinicians, patients and policy makers to be more informed of the course of rehabilitation of these operations. Significance: We have found that from a patient perspective subpectoral implant placement was associated with a statistically significant improvement in psychosocial scores.

Keywords: breast surgery, mastectomy, breast implants, oncology

Procedia PDF Downloads 61
2735 Hospital Malnutrition and its Impact on 30-day Mortality in Hospitalized General Medicine Patients in a Tertiary Hospital in South India

Authors: Vineet Agrawal, Deepanjali S., Medha R., Subitha L.

Abstract:

Background. Hospital malnutrition is a highly prevalent issue and is known to increase the morbidity, mortality, length of hospital stay, and cost of care. In India, studies on hospital malnutrition have been restricted to ICU, post-surgical, and cancer patients. We designed this study to assess the impact of hospital malnutrition on 30-day post-discharge and in-hospital mortality in patients admitted in the general medicine department, irrespective of diagnosis. Methodology. All patients aged above 18 years admitted in the medicine wards, excluding medico-legal cases, were enrolled in the study. Nutritional assessment was done within 72 h of admission, using Subjective Global Assessment (SGA), which classifies patients into three categories: Severely malnourished, Mildly/moderately malnourished, and Normal/well-nourished. Anthropometric measurements like Body Mass Index (BMI), Triceps skin-fold thickness (TSF), and Mid-upper arm circumference (MUAC) were also performed. Patients were followed-up during hospital stay and 30 days after discharge through telephonic interview, and their final diagnosis, comorbidities, and cause of death were noted. Multivariate logistic regression and cox regression model were used to determine if the nutritional status at admission independently impacted mortality at one month. Results. The prevalence of malnourishment by SGA in our study was 67.3% among 395 hospitalized patients, of which 155 patients (39.2%) were moderately malnourished, and 111 (28.1%) were severely malnourished. Of 395 patients, 61 patients (15.4%) expired, of which 30 died in the hospital, and 31 died within 1 month of discharge from hospital. On univariate analysis, malnourished patients had significantly higher morality (24.3% in 111 Cat C patients) than well-nourished patients (10.1% in 129 Cat A patients), with OR 9.17, p-value 0.007. On multivariate logistic regression, age and higher Charlson Comorbidity Index (CCI) were independently associated with mortality. Higher CCI indicates higher burden of comorbidities on admission, and the CCI in the expired patient group (mean=4.38) was significantly higher than that of the alive cohort (mean=2.85). Though malnutrition significantly contributed to higher mortality on univariate analysis, it was not an independent predictor of outcome on multivariate logistic regression. Length of hospitalisation was also longer in the malnourished group (mean= 9.4 d) compared to the well-nourished group (mean= 8.03 d) with a trend towards significance (p=0.061). None of the anthropometric measurements like BMI, MUAC, or TSF showed any association with mortality or length of hospitalisation. Inference. The results of our study highlight the issue of hospital malnutrition in medicine wards and reiterate that malnutrition contributes significantly to patient outcomes. We found that SGA performs better than anthropometric measurements in assessing under-nutrition. We are of the opinion that the heterogeneity of the study population by diagnosis was probably the primary reason why malnutrition by SGA was not found to be an independent risk factor for mortality. Strategies to identify high-risk patients at admission and treat malnutrition in the hospital and post-discharge are needed.

Keywords: hospitalization outcome, length of hospital stay, mortality, malnutrition, subjective global assessment (SGA)

Procedia PDF Downloads 149
2734 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria

Authors: Justin Orimisan Ijigbade

Abstract:

The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.

Keywords: climate variability, honeybees production, humidity, rainfall and temperature

Procedia PDF Downloads 272
2733 Examining How Teachers’ Backgrounds and Perceptions for Technology Use Influence on Students’ Achievements

Authors: Zhidong Zhang, Amanda Resendez

Abstract:

This study is to examine how teachers’ perspective on education technology use in their class influence their students’ achievement. The authors hypothesized that teachers’ perspective can directly or indirectly influence students’ learning, performance, and achievements. In this study, a questionnaire entitled, Teacher’s Perspective on Educational Technology, was delivered to 63 teachers and 1268 students’ mathematics and reading achievement records were collected. The questionnaire consists of four parts: a) demographic variables, b) attitudes on technology integration, c) outside factor affecting technology integration, and d) technology use in the classroom. Kruskal-Wallis and hierarchical regression analysis techniques were used to examine: 1) the relationship between the demographic variables and teachers’ perspectives on educational technology, and 2) how the demographic variables were causally related to students’ mathematics and reading achievements. The study found that teacher demographics were significantly related to the teachers’ perspective on educational technology with p < 0.05 and p < 0.01 separately. These teacher demographical variables included the school district, age, gender, the grade currently teach, teaching experience, and proficiency using new technology. Further, these variables significantly predicted students’ mathematics and reading achievements with p < 0.05 and p < 0.01 separately. The variations of R² are between 0.176 and 0.467. That means 46.7% of the variance of a given analysis can be explained by the model.

Keywords: teacher's perception of technology use, mathematics achievement, reading achievement, Kruskal-Wallis test, hierarchical regression analysis

Procedia PDF Downloads 131
2732 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 277
2731 Study on Brick Aggregate Made Pervious Concrete at Zero Fine Level

Authors: Monjurul Hasan, Golam Kibria, Abdus Salam

Abstract:

Pervious concrete is a form of lightweight porous concrete, obtained by eliminating the fine aggregate from the normal concrete mix. The advantages of this type of concrete are lower density, lower cost due to lower cement content, lower thermal conductivity, relatively low drying shrinkage, no segregation and capillary movement of water. In this paper an investigation is made on the mechanical response of the pervious concrete at zero fine level (zero fine concrete) made with local brick aggregate. Effect of aggregate size variation on the strength, void ratio and permeability of the zero fine concrete is studied. Finally, a comparison is also presented between the stone aggregate made pervious concrete and brick aggregate made pervious concrete. In total 75 concrete cylinder were tested for compressive strength, 15 cylinder were tested for void ratio and 15 cylinder were tested for permeability test. Mix proportion (cement: Coarse aggregate) was kept fixed at 1:6 (by weights), where water cement ratio was valued 0.35 for preparing the sample specimens. The brick aggregate size varied among 25mm, 19mm, 12mm. It has been found that the compressive strength decreased with the increment of aggregate size but permeability increases and concrete made with 19mm maximum aggregate size yields the optimum value. No significant differences on the strength and permeability test are observed between the brick aggregate made zero fine concrete and stone aggregate made zero fine concrete.

Keywords: pervious concrete, brick aggregate concrete, zero fine concrete, permeability, porosity

Procedia PDF Downloads 555
2730 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times

Authors: Nagham Ismail, Djamel Ouahrani

Abstract:

Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.

Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather

Procedia PDF Downloads 75
2729 The Comparative Analysis of International Financial Reporting Standart Adoption through Earnings Response Coefficient and Conservatism Principle: Case Study in Jakarta Islamic Index 2010 – 2014

Authors: Dwi Wijiastutik, Tarjo, Yuni Rimawati

Abstract:

The purpose of this empirical study is to analyse how to the market reaction and the conservative degree changes on the adoption of International Financial Reporting Standart (IFRS) through Jakarta Islamic Index. The study also has given others additional analysis on the profitability, capital structure and size company toward IFRS adoption. The data collection methods used in this study reveals as secondary data and deep analysis to the company’s annual report and daily price stock at yahoo finance. We analyse 40 companies listed on Jakarta Islamic Index from 2010 to 2014. The result of the study concluded that IFRS has given a different on the depth analysis to the two of variance analysis: Moderated Regression Analysis and Wilcoxon Signed Rank to test developed hypotheses. Our result on the regression analysis shows that market response and conservatism principle is not significantly after IFRS Adoption in Jakarta Islamic Index. Furthermore, in addition, analysis on profitability, capital structure, and company size show that significantly after IFRS adoption. The findings of our study help investor by showing the impact of IFRS for making decided investment.

Keywords: IFRS, earnings response coefficient, conservatism principle

Procedia PDF Downloads 273
2728 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 109
2727 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo

Abstract:

Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 376
2726 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 295
2725 Modelling the Effect of Physical Environment Factors on Child Pedestrian Severity Collisions in Malaysia: A Multinomial Logistic Regression Analysis

Authors: Muhamad N. Borhan, Nur S. Darus, Siti Z. Ishak, Rozmi Ismail, Siti F. M. Razali

Abstract:

Children are at the greater risk to be involved in road traffic collisions due to the complex interaction of various elements in our transportation system. It encompasses interactions between the elements of children and driver behavior along with physical and social environment factors. The present study examined the effect between the collisions severity and physical environment factors on child pedestrian collisions. The severity of collisions is categorized into four injury outcomes: fatal, serious injury, slight injury, and damage. The sample size comprised of 2487 cases of child pedestrian-vehicle collisions in which children aged 7 to 12 years old was involved in Malaysia for the years 2006-2015. A multinomial logistic regression was applied to establish the effect between severity levels and physical environment factors. The results showed that eight contributing factors influence the probability of an injury road surface material, traffic system, road marking, control type, lighting condition, type of location, land use and road surface condition. Understanding the effect of physical environment factors may contribute to the improvement of physical environment design and decrease the collision involvement.

Keywords: child pedestrian, collisions, primary school, road injuries

Procedia PDF Downloads 164
2724 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 324
2723 Poverty Dynamics in Thailand: Evidence from Household Panel Data

Authors: Nattabhorn Leamcharaskul

Abstract:

This study aims to examine determining factors of the dynamics of poverty in Thailand by using panel data of 3,567 households in 2007-2017. Four techniques of estimation are employed to analyze the situation of poverty across households and time periods: the multinomial logit model, the sequential logit model, the quantile regression model, and the difference in difference model. Households are categorized based on their experiences into 5 groups, namely chronically poor, falling into poverty, re-entering into poverty, exiting from poverty and never poor households. Estimation results emphasize the effects of demographic and socioeconomic factors as well as unexpected events on the economic status of a household. It is found that remittances have positive impact on household’s economic status in that they are likely to lower the probability of falling into poverty or trapping in poverty while they tend to increase the probability of exiting from poverty. In addition, not only receiving a secondary source of household income can raise the probability of being a never poor household, but it also significantly increases household income per capita of the chronically poor and falling into poverty households. Public work programs are recommended as an important tool to relieve household financial burden and uncertainty and thus consequently increase a chance for households to escape from poverty.

Keywords: difference in difference, dynamic, multinomial logit model, panel data, poverty, quantile regression, remittance, sequential logit model, Thailand, transfer

Procedia PDF Downloads 112