Search results for: service networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6192

Search results for: service networks

5532 One-Step Time Series Predictions with Recurrent Neural Networks

Authors: Vaidehi Iyer, Konstantin Borozdin

Abstract:

Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.

Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning

Procedia PDF Downloads 228
5531 Probabilistic Approach to Contrast Theoretical Predictions from a Public Corruption Game Using Bayesian Networks

Authors: Jaime E. Fernandez, Pablo J. Valverde

Abstract:

This paper presents a methodological approach that aims to contrast/validate theoretical results from a corruption network game through probabilistic analysis of simulated microdata using Bayesian Networks (BNs). The research develops a public corruption model in a game theory framework. Theoretical results suggest a series of 'optimal settings' of model's exogenous parameters that boost the emergence of corruption. The paper contrasts these outcomes with probabilistic inference results based on BNs adjusted over simulated microdata. Principal findings indicate that probabilistic reasoning based on BNs significantly improves parameter specification and causal analysis in a public corruption game.

Keywords: Bayesian networks, probabilistic reasoning, public corruption, theoretical games

Procedia PDF Downloads 210
5530 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks

Authors: Ameen Jameel Alawneh

Abstract:

A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.

Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets

Procedia PDF Downloads 391
5529 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 272
5528 A Case Study of Determining the Times of Overhauls and the Number of Spare Parts for Repairable Items in Rolling Stocks with Simulation

Authors: Ji Young Lee, Jong Woon Kim

Abstract:

It is essential to secure high availability of railway vehicles to realize high quality and efficiency of railway service. Once the availability decreased, planned railway service could not be provided or more cars need to be reserved. additional cars need to be purchased or the frequency of railway service could be decreased. Such situation would be a big loss in terms of quality and cost related to railway service. Therefore, we make various efforts to get high availability of railway vehicles. Because it is a big loss to operators, we make various efforts to get high availability of railway vehicles. To secure high availability, the idle time of the vehicle needs to be reduced and the following methods are applied to railway vehicles. First, through modularization design, exchange time for line replaceable units is reduced which makes railway vehicles could be put into the service quickly. Second, to reduce periodic preventive maintenance time, preventive maintenance with short period would be proceeded test oriented to minimize the maintenance time, and reliability is secured through overhauls for each main component. With such design changes for railway vehicles, modularized components are exchanged first at the time of vehicle failure or overhaul so that vehicles could be put into the service quickly and exchanged components are repaired or overhauled. Therefore, spare components are required for any future failures or overhauls. And, as components are modularized and costs for components are high, it is considerably important to get reasonable quantities of spare components. Especially, when a number of railway vehicles were put into the service simultaneously, the time of overhauls come almost at the same time. Thus, for some vehicles, components need to be exchanged and overhauled before appointed overhaul period so that these components could be secured as spare parts for the next vehicle’s component overhaul. For this reason, components overhaul time and spare parts quantities should be decided at the same time. This study deals with the time of overhauls for repairable components of railway vehicles and the calculation of spare parts quantities in consideration of future failure/overhauls. However, as railway vehicles are used according to the service schedule, maintenance work cannot be proceeded after the service was closed thus it is quite difficult to resolve this situation mathematically. In this study, Simulation software system is used in this study for analyzing the time of overhauls for repairable components of railway vehicles and the spare parts for the railway systems.

Keywords: overhaul time, rolling stocks, simulation, spare parts

Procedia PDF Downloads 337
5527 A State-Of-The-Art Review on Web Services Adaptation

Authors: M. Velasco, D. While, P. Raju, J. Krasniewicz, A. Amini, L. Hernandez-Munoz

Abstract:

Web service adaptation involves the creation of adapters that solve Web services incompatibilities known as mismatches. Since the importance of Web services adaptation is increasing because of the frequent implementation and use of online Web services, this paper presents a literature review of web services to investigate the main methods of adaptation, their theoretical underpinnings and the metrics used to measure adapters performance. Eighteen publications were reviewed independently by two researchers. We found that adaptation techniques are needed to solve different types of problems that may arise due to incompatibilities in Web service interfaces, including protocols, messages, data and semantics that affect the interoperability of the services. Although adapters are non-invasive methods that can improve Web services interoperability and there are current approaches for service adaptation; there is, however, not yet one solution that fits all types of mismatches. Our results also show that only a few research projects incorporate theoretical frameworks and that metrics to measure adapters’ performance are very limited. We conclude that further research on software adaptation should improve current adaptation methods in different layers of the service interoperability and that an adaptation theoretical framework that incorporates a theoretical underpinning and measures of qualitative and quantitative performance needs to be created.

Keywords: Web Services Adapters, software adaptation, web services mismatches, web services interoperability

Procedia PDF Downloads 293
5526 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization

Procedia PDF Downloads 278
5525 Design of Middleware for Mobile Group Control in Physical Proximity

Authors: Moon-Tak Oh, Kyung-Min Park, Tae-Eun Yoon, Hoon Choi, Chil-Woo Lee

Abstract:

This paper is about middle-ware which enables group-user applications on mobile devices in physical proximity to interact with other devices without intervention of a central server. Requirements of the middle-ware are identified from service usage scenarios, and the functional architecture of the middle-ware is specified. These requirements include group management, synchronization, and resource management. Group Management needs to provide various capabilities to such applications with respect to managing multiple users (e.g., creation of groups, discovery of group or individual users, member join/leave, election of a group manager and service-group association) using D2D communication technology. We designed the middle-ware for the above requirements on the Android platform.

Keywords: group user, middleware, mobile service, physical proximity

Procedia PDF Downloads 506
5524 Designing and Implementing a Tourist-Guide Web Service Based on Volunteer Geographic Information Using Open-Source Technologies

Authors: Javad Sadidi, Ehsan Babaei, Hani Rezayan

Abstract:

The advent of web 2.0 gives a possibility to scale down the costs of data collection and mapping, specifically if the process is done by volunteers. Every volunteer can be thought of as a free and ubiquitous sensor to collect spatial, descriptive as well as multimedia data for tourist services. The lack of large-scale information, such as real-time climate and weather conditions, population density, and other related data, can be considered one of the important challenges in developing countries for tourists to make the best decision in terms of time and place of travel. The current research aims to design and implement a spatiotemporal web map service using volunteer-submitted data. The service acts as a tourist-guide service in which tourists can search interested places based on their requested time for travel. To design the service, three tiers of architecture, including data, logical processing, and presentation tiers, have been utilized. For implementing the service, open-source software programs, client and server-side programming languages (such as OpenLayers2, AJAX, and PHP), Geoserver as a map server, and Web Feature Service (WFS) standards have been used. The result is two distinct browser-based services, one for sending spatial, descriptive, and multimedia volunteer data and another one for tourists and local officials. Local official confirms the veracity of the volunteer-submitted information. In the tourist interface, a spatiotemporal search engine has been designed to enable tourists to find a tourist place based on province, city, and location at a specific time of interest. Implementing the tourist-guide service by this methodology causes the following: the current tourists participate in a free data collection and sharing process for future tourists, a real-time data sharing and accessing for all, avoiding a blind selection of travel destination and significantly, decreases the cost of providing such services.

Keywords: VGI, tourism, spatiotemporal, browser-based, web mapping

Procedia PDF Downloads 98
5523 Artificial Neural Networks with Decision Trees for Diagnosis Issues

Authors: Y. Kourd, D. Lefebvre, N. Guersi

Abstract:

This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.

Keywords: neural networks, decision trees, diagnosis, behaviors

Procedia PDF Downloads 505
5522 Application of Fourier Series Based Learning Control on Mechatronic Systems

Authors: Sandra Baßler, Peter Dünow, Mathias Marquardt

Abstract:

A Fourier series based learning control (FSBLC) algorithm for tracking trajectories of mechanical systems with unknown nonlinearities is presented. Two processes are introduced to which the FSBLC with PD controller is applied. One is a simplified service robot capable of climbing stairs due to special wheels and the other is a propeller driven pendulum with nearly the same requirements on control. Additionally to the investigation of learning the feed forward for the desired trajectories some considerations on the implementation of such an algorithm on low cost microcontroller hardware are made. Simulations of the service robot as well as practical experiments on the pendulum show the capability of the used FSBLC algorithm to perform the task of improving control behavior for repetitive task of such mechanical systems.

Keywords: climbing stairs, FSBLC, ILC, service robot

Procedia PDF Downloads 313
5521 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks

Authors: Riyadh Alsultani, Ali Majdi

Abstract:

It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.

Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design

Procedia PDF Downloads 93
5520 Growth and Development of Autorickshaws in Kolkata Municipal Corporation Area: Enigma to Planners

Authors: Lopamudra Bakshi Basu

Abstract:

Transport is one of the most important characteristic features of Indian cities. The physical and societal requirements determine the selection of a particular transport system along with the uniqueness of road networks. Kolkata has a mixed traffic of which Paratransit system plays a crucial role. It is an indispensable transport system in Kolkata mainly because of its size and service flexibility which has led to a unique network character. The paratransit system, mainly the autorickshaws, is the most favoured mode of transport in the city. Its fast movement and comfortability make it a vital transport system of the city. Since the inception of the autorickshaws in Kolkata in 1981, this mode has gained popularity and presently serves nearly 80 to 90 percent of the total passenger trips. This employment generating mode of transport has increased its number rapidly affecting the city’s traffic. Minimal check on their growth by the authority has led to traffic snarls along many streets of Kolkata. Indiscipline behavior, violation of traffic rules and rash driving make situations even worse. The rise in the number and increasing popularity of the autorickshaws make it an interesting study area. Autorickshaws as a paratransit mode play its role as a leader or a follower. However, it is informal in its planning and operations, which makes it a problem area for the city. The entire research work deals with the growth and expansion of the number of vehicles and the routes within the city. The development of transport system has been interesting in the city, which has been studied. The growth of the paratransit modes in the city has been rapid. The network pattern of the paratransit mode within Kolkata has been analysed.

Keywords: growth, informal, network characteristics, paratransit, service flexibility

Procedia PDF Downloads 238
5519 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks

Authors: Juan Sebastián Hernández

Abstract:

The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.

Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR

Procedia PDF Downloads 102
5518 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method

Authors: Shiyin He, Zheng Huang

Abstract:

In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.

Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet

Procedia PDF Downloads 189
5517 A Qualitative Evidence of the Markedness of Code Switching during Commercial Bank Service Encounters in Ìbàdàn Metropolis

Authors: A. Robbin

Abstract:

In a multilingual setting like Nigeria, the success of service encounters is enhanced by the use of a language that ensures the linguistic and persuasive demands of the interlocutors. This study examined motivations for code switching as a negotiation strategy in bank-hall desk service encounters in Ìbàdàn metropolis using Myers-Scotton’s exploration on markedness in language use. The data consisted of transcribed audio recording of bank-hall service encounters, and direct observation of bank interactions in two purposively sampled commercial banks in Ìbàdàn metropolis. The data was subjected to descriptive linguistic analysis using Myers Scotton’s Markedness Model.  Findings reveal that code switching is frequently employed during different stages of service encounter: greeting, transaction and closing to fulfil relational, bargaining and referential functions. Bank staff and customers code switch to make unmarked, marked and explanatory choices. A strategy used to identify with customer’s cultural affiliation, close status gap, and appeal to begrudged customer; or as an explanatory choice with non-literate customers for ease of communication. Bankers select English to maintain customers’ perceptions of prestige which is retained or diverged from depending on their linguistic preference or ability.  Yoruba is seen as an efficient negotiation strategy with both bankers and their customers, making choices within conversation to achieve desired conversational and functional aims.

Keywords: banking, bilingualism, code-switching, markedness, service encounter

Procedia PDF Downloads 206
5516 Desired Flow of Radioactive Materials from Logistics Service Quality Perspective

Authors: Tuğçe Yavaş Akış

Abstract:

In recent years, due to an increased use of radioactive materials, radioactive sources are constantly being transported via air, road and ocean ways for medical, industrial, research etc. purposes throughout the world. The quantity of radioactive materials transported all around the world varies from negligible quantities in shipments of consumer products to very large quantities in shipments of irradiated nuclear fuel. Radioactive materials have been less attractive for social science researchers in literature. In this study, it is aimed to discover desired flow of radioactive materials from logistics service quality (LSQ) perspective. In doing so, case study approach will be employed by using secondary data collected from one of the world’s leading transportation companies’ customer care system reports. Movement of radioactive cargoes containing IR-192 and logistics process will be analyzed with the help of logistics service quality dimensions. Based on the case study that will be conducted, interaction between dimensions, the importance of each dimension in desired flow, and their relevance with desired flow of radioactive materials will be explained. This study will bring out the desired flow of radioactive materials transportation and be a guide for all other companies, employees and researchers.

Keywords: logistics service quality, LSQ dimension , radioactive material, transportation

Procedia PDF Downloads 239
5515 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges

Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat

Abstract:

Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.

Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing

Procedia PDF Downloads 445
5514 Automatic Calibration of Agent-Based Models Using Deep Neural Networks

Authors: Sima Najafzadehkhoei, George Vega Yon

Abstract:

This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.

Keywords: ABM, calibration, CNN, LSTM, epidemiology

Procedia PDF Downloads 24
5513 Marketing in Post-Pandemic Environment

Authors: Mohammad Mehdizadeh

Abstract:

COVID-19 forced marketers to change their marketing strategies, focusing less on reactive approaches and more on proactive approaches, primarily social media. The next few years will be dominated by employee engagement and customer experience, leading to businesses focusing more on "long-term customer relationships." A large number of marketing strategies need to be employed in an ever-evolving online environment, which is both filled with opportunities and dangers, as well as being an intimidating platform to use, incorporating new and exciting opportunities for businesses and organizations as it constantly evolves. In this article, we examine the effect of social networks on marketing in post-pandemic environments. A descriptive survey is used as the research method. The results show that social networks have a positive and significant impact on marketing in a post-pandemic environment. Among the social networks studied, Instagram, Facebook, and Twitter have the most positive effect on marketing advancement.

Keywords: COVID-19, customers, marketing, post-pandemic

Procedia PDF Downloads 86
5512 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.

Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data

Procedia PDF Downloads 180
5511 Using Peer Instruction in Physics of Waves for Pre-Service Science Teacher

Authors: Sumalee Tientongdee

Abstract:

In this study, it was aimed to investigate Physics achievement of the pre-service science teacher studying in general science program at Suan Sunandha Rajabhat University, Bangkok, Thailand. The program has provided the new curriculum that focuses on 21st-century skills development. Active learning approaches are used to teach in all subjects. One of the active learning approaches Peer Instruction, or PI was used in this study to teach physics of waves as a compulsory course. It was conducted in the second semester from January to May of 2017. The concept test was given to evaluate pre-service science teachers’ understanding in concept of waves. Problem-solving assessment form was used to evaluate their problem-solving skill. The results indicated that after they had learned through Peer Instruction in physics of waves course, their concepts in physics of waves was significantly higher at 0.05 confident levels. Their problem-solving skill from the whole class was at the highest level. Based on the group interview on the opinions of using Peer Instruction in Physics class, they mostly felt that it was very useful and helping them understand more about physics, especially for female students.

Keywords: peer instruction, physics of waves, pre-service science teacher, Suan Sunandha Rajabhat university

Procedia PDF Downloads 346
5510 Impact of Mathematical Modeling on Mathematics Achievement, Attitude, and Interest of Pre-Service Teachers in Niger State, Nigeria

Authors: Mohammed Abubakar Ndanusa, A. A. Hassan, R. W. Gimba, A. M. Alfa, M. T. Abari

Abstract:

This study investigated the Impact of Mathematical Modeling on Mathematics Achievement, Attitude and Interest of Pre-Service Teachers in Niger States, Nigeria. It was an attempt to ease students’ difficulties in comprehending mathematics. The study used randomized pretest, posttest control group design. Two Colleges of Education were purposively selected from Niger State with a sample size of eighty-four 84 students. Three research instruments used are Mathematical Modeling Achievement Test (MMAT), Attitudes Towards Mathematical Modeling Questionnaire (ATMMQ) and Mathematical Modeling Students Interest Questionnaire (MMSIQ). Pearson Product Moment Correlation (PPMC) formula was used for MMAT and Alpha Cronbach was used for ATMMQ and MMSIQ to determine their reliability coefficient and the values the following values were obtained respectively 0.76, 0.75 and 0.73. Independent t-test statistics was used to test hypothesis One while Mann Whitney U-test was used to test hypothesis Two and Three. Findings revealed that students taught Mathematics using Mathematical Modeling performed better than their counterparts taught using lecture method. However, there was a significant difference in the attitude and interest of pre-service mathematics teachers after being exposed to mathematical modeling. The strategy, therefore, was recommended to be used by Mathematics teachers with a view to improving students’ attitude and interest towards Mathematics. Also, modeling should be taught at NCE level in order to prepare pre-service teachers towards real task in the field of Mathematics.

Keywords: achievement, attitude, interest, mathematical modeling, pre-service teachers

Procedia PDF Downloads 304
5509 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 149
5508 Examining Customer Acceptance of Chatbots in B2B Customer Service: A Factorial Survey

Authors: Kathrin Endres, Daniela Greven

Abstract:

Although chatbots are a widely known and established communication instrument in B2C customer services, B2B industries still hesitate to implement chatbots due to the incertitude of customer acceptance. While many studies examine the chatbot acceptance of B2C consumers, few studies are focusing on the B2B sector, where the customer is represented by a buying center consisting of several stakeholders. This study investigates the challenges of chatbot acceptance in B2B industries compared to challenges of chatbot acceptance from current B2C literature by interviewing experts from German chatbot vendors. The results show many similarities between the customer requirements of B2B customers and B2C consumers. Still, due to several stakeholders involved in the buying center, the features of the chatbot users are more diverse but obfuscated at the same time. Using a factorial survey, this study further examines the customer acceptance of varying situations of B2B chatbot designs based on the chatbot variables transparency, fault tolerance, complexity of products, value of products, as well as transfer to live chat service employees. The findings show that all variables influence the propensity to use the chatbot. The results contribute to a better understanding of how firms in B2B industries can design chatbots to advance their customer service and enhance customer satisfaction.

Keywords: chatbots, technology acceptance, B2B customer service, customer satisfaction

Procedia PDF Downloads 124
5507 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
5506 A Study on Pre-Service English Language Teacher's Language Self-Efficacy and Goal Orientation

Authors: Ertekin Kotbas

Abstract:

Teaching English as a Foreign Language (EFL) is on the front burner of many countries in the world, in particular for English Language Teaching departments that train EFL teachers. Under the head of motivational theories in foreign language education, there are numerous researches in literature. However; researches comprising English Language Self-Efficacy and Teachers’ Learning Goal Orientation which has a positive impact on learning teachings skills are scarce. Examination of these English Language self-efficacy beliefs and Learning Goal Orientations of Pre-Service EFL Teachers may broaden the horizons, in consideration the importance of self-efficacy and goal orientation on learning and teaching activities. At this juncture, the present study aims to investigate the relationship between English Language Self-Efficacy and Teachers’ Learning Goal Orientation from Turkish context.

Keywords: English language, learning goal orientation, self-efficacy, pre-service teachers

Procedia PDF Downloads 492
5505 Customers’ Priority to Implement SSTs Using AHP Analysis

Authors: Mohammad Jafariahangari, Marjan Habibi, Miresmaeil Mirnabibaboli, Mirza Hassan Hosseini

Abstract:

Self-service technologies (SSTs) make an important contribution to the daily life of people nowadays. However, the introduction of SST does not lead to its usage. Thereby, this paper was an attempt on discovery of the most preferred SST in the customers’ point of view. To fulfill this aim, the Analytical Hierarchy Process (AHP) was applied based on Saaty’s questionnaire which was administered to the customers of e-banking services located in Golestan providence, north of Iran. This study used qualitative factors in association with the intention of consumers’ usage of SSTs to rank three SSTs: ATM, mobile banking, and internet banking. The results showed that mobile banking get the highest weight in consumers’ point of view. This research can be useful both for managers and service providers and also for customers who intend to use e-banking.

Keywords: analytical hierarchy process, decision-making, e-banking, self-service technologies, Iran

Procedia PDF Downloads 318
5504 Modelling a Hospital as a Queueing Network: Analysis for Improving Performance

Authors: Emad Alenany, M. Adel El-Baz

Abstract:

In this paper, the flow of different classes of patients into a hospital is modelled and analyzed by using the queueing network analyzer (QNA) algorithm and discrete event simulation. Input data for QNA are the rate and variability parameters of the arrival and service times in addition to the number of servers in each facility. Patient flows mostly match real flow for a hospital in Egypt. Based on the analysis of the waiting times, two approaches are suggested for improving performance: Separating patients into service groups, and adopting different service policies for sequencing patients through hospital units. The separation of a specific group of patients, with higher performance target, to be served separately from the rest of patients requiring lower performance target, requires the same capacity while improves performance for the selected group of patients with higher target. Besides, it is shown that adopting the shortest processing time and shortest remaining processing time service policies among other tested policies would results in, respectively, 11.47% and 13.75% reduction in average waiting time relative to first come first served policy.

Keywords: queueing network, discrete-event simulation, health applications, SPT

Procedia PDF Downloads 187
5503 Load Balancing Technique for Energy - Efficiency in Cloud Computing

Authors: Rani Danavath, V. B. Narsimha

Abstract:

Cloud computing is emerging as a new paradigm of large scale distributed computing. Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., three service models, and four deployment networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model is composed of five essential characteristics models. Load balancing is one of the main challenges in cloud computing, which is required to distribute the dynamic workload across multiple nodes, to ensure that no single node is overloaded. It helps in optimal utilization of resources, enhancing the performance of the system. The goal of the load balancing is to minimize the resource consumption and carbon emission rate, that is the direct need of cloud computing. This determined the need of new metrics energy consumption and carbon emission for energy-efficiency load balancing techniques in cloud computing. Existing load balancing techniques mainly focuses on reducing overhead, services, response time and improving performance etc. In this paper we introduced a Technique for energy-efficiency, but none of the techniques have considered the energy consumption and carbon emission. Therefore, our proposed work will go towards energy – efficiency. So this energy-efficiency load balancing technique can be used to improve the performance of cloud computing by balancing the workload across all the nodes in the cloud with the minimum resource utilization, in turn, reducing energy consumption, and carbon emission to an extent, which will help to achieve green computing.

Keywords: cloud computing, distributed computing, energy efficiency, green computing, load balancing, energy consumption, carbon emission

Procedia PDF Downloads 449