Search results for: machine resistance training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9518

Search results for: machine resistance training

8858 Design Approach for the Development of Format-Flexible Packaging Machines

Authors: G. Götz, P. Stich, J. Backhaus, G. Reinhart

Abstract:

The rising demand for format-flexible packaging machines is caused by current market changes. Increasing the formatflexibility is a new goal for the packaging machine manufacturers’ product development process. There are no methodical or designorientated tools for a comprehensive consideration of this target. This paper defines the term format-flexibility in the context of packaging machines and shows the state-of-the-art for improving the changeover of production machines. The requirements for a new approach and the concept itself will be introduced, and the method elements will be explained. Finally, the use of the concept and the result of the development of a format-flexible packaging machine will be shown.

Keywords: packaging machine, format-flexibility, changeover, design method

Procedia PDF Downloads 434
8857 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 61
8856 Lateral Torsional Buckling Resistance of Trapezoidally Corrugated Web Girders

Authors: Annamária Käferné Rácz, Bence Jáger, Balázs Kövesdi, László Dunai

Abstract:

Due to the numerous advantages of steel corrugated web girders, its application field is growing for bridges as well as for buildings. The global stability behavior of such girders is significantly larger than those of conventional I-girders with flat web, thus the application of the structural steel material can be significantly reduced. Design codes and specifications do not provide clear and complete rules or recommendations for the determination of the lateral torsional buckling (LTB) resistance of corrugated web girders. Therefore, the authors made a thorough investigation regarding the LTB resistance of the corrugated web girders. Finite element (FE) simulations have been performed to develop new design formulas for the determination of the LTB resistance of trapezoidally corrugated web girders. FE model is developed considering geometrical and material nonlinear analysis using equivalent geometric imperfections (GMNI analysis). The equivalent geometric imperfections involve the initial geometric imperfections and residual stresses coming from rolling, welding and flame cutting. Imperfection sensitivity analysis was performed to determine the necessary magnitudes regarding only the first eigenmodes shape imperfections. By the help of the validated FE model, an extended parametric study is carried out to investigate the LTB resistance for different trapezoidal corrugation profiles. First, the critical moment of a specific girder was calculated by FE model. The critical moments from the FE calculations are compared to the previous analytical calculation proposals. Then, nonlinear analysis was carried out to determine the ultimate resistance. Due to the numerical investigations, new proposals are developed for the determination of the LTB resistance of trapezoidally corrugated web girders through a modification factor on the design method related to the conventional flat web girders.

Keywords: corrugated web, lateral torsional buckling, critical moment, FE modeling

Procedia PDF Downloads 283
8855 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 76
8854 The Use of Computer Simulation as Technological Education for Crisis Management Staff

Authors: Jiří Barta, Josef Krahulec, Jiří F. Urbánek

Abstract:

Education and practical training crisis management members are a topical issue nowadays. The paper deals with the perspectives and possibilities of ‘smart solutions’ to education for crisis management staff. Currently, there are a large number of simulation tools, which notes that they are suitable for practical training of crisis management staff. The first part of the paper is focused on the introduction of the technology simulation tools. The simulators aim is to create a realistic environment for the practical training of extending units of crisis staff. The second part of the paper concerns the possibilities of using the simulation technology to the education process. The aim of this section is to introduce the practical capabilities and potential of the simulation programs for practical training of crisis management staff.

Keywords: crisis management staff, computer simulation, software, technological education

Procedia PDF Downloads 355
8853 Study on the Contributions and Social Validity of an Online Autism Training for School Staff

Authors: Myriam Rousseau, Suzie McKinnon, Mathieu Mireault, Anaïs V. Berthiaume, Marie-Hélène Poulin, Jacinthe Bourassa, Louis-Simon Maltais

Abstract:

The increasing presence of young people with autism is forcing schools to adapt to this new situation and to offer services that meet the needs of this clientele. However, school staff often feels unqualified to support these students, lacking the preparation, skills and training to meet their needs. Continuing education for these staff is therefore essential to ensure that they can meet the needs of these students. As a result, the Government of Quebec has developed a bilingual (French and English) online training on autism specific to the needs of school staff. Therefore, adequate training for all school staff is likely to provide quality learning opportunities for these students. The research project focuses on the participants' appreciation, contributions, and social validity of the training. More specifically, it aims to: 1) evaluate the knowledge and self-efficacy of the participants, 2) evaluate the social validity and 3) document the evaluation of the ergonomics of the platform hosting the training. The evaluation carried out as part of this descriptive study uses a quantitative method. Data are collected using questionnaires completed online. The analysis of preliminary data reveals that participants' knowledge of autism and their sense of self-efficacy increased significantly. They value the training positively and consider it to be acceptable, appropriate, and suitable. The participants find it important for school staff to take this training. Almost all the items measuring the ergonomics of the platform have averages above 4.57/5. In general, the study shows that the training allows participating of the trainee school staff to improve their knowledge of autism and their sense of self-efficacy with young people with autism. In addition, participants recognize that the training has good social validity and appreciate the online modality. However, these results should be interpreted with caution given the limited number of participants who completed the research project. It is therefore important to continue the research with a larger number of participants to allow an adequate and general representativeness of the social validity, the feeling of competence and the appreciation of the platform.

Keywords: autism, online training, school staff, social validity

Procedia PDF Downloads 37
8852 Modern Proteomics and the Application of Machine Learning Analyses in Proteomic Studies of Chronic Kidney Disease of Unknown Etiology

Authors: Dulanjali Ranasinghe, Isuru Supasan, Kaushalya Premachandra, Ranjan Dissanayake, Ajith Rajapaksha, Eustace Fernando

Abstract:

Proteomics studies of organisms are considered to be significantly information-rich compared to their genomic counterparts because proteomes of organisms represent the expressed state of all proteins of an organism at a given time. In modern top-down and bottom-up proteomics workflows, the primary analysis methods employed are gel–based methods such as two-dimensional (2D) electrophoresis and mass spectrometry based methods. Machine learning (ML) and artificial intelligence (AI) have been used increasingly in modern biological data analyses. In particular, the fields of genomics, DNA sequencing, and bioinformatics have seen an incremental trend in the usage of ML and AI techniques in recent years. The use of aforesaid techniques in the field of proteomics studies is only beginning to be materialised now. Although there is a wealth of information available in the scientific literature pertaining to proteomics workflows, no comprehensive review addresses various aspects of the combined use of proteomics and machine learning. The objective of this review is to provide a comprehensive outlook on the application of machine learning into the known proteomics workflows in order to extract more meaningful information that could be useful in a plethora of applications such as medicine, agriculture, and biotechnology.

Keywords: proteomics, machine learning, gel-based proteomics, mass spectrometry

Procedia PDF Downloads 151
8851 Universe at Zero Second and the Creation Process of the First Particle from the Absolute Void

Authors: Shivan Sirdy

Abstract:

In this study, we discuss the properties of absolute void space or the universe at zero seconds, and how these properties play a vital role in creating a mechanism in which the very first particle gets created simultaneously everywhere. We find the limit in which when the absolute void volume reaches will lead to the collapse that leads to the creation of the first particle. This discussion is made following the elementary dimensions theory study that was peer-reviewed at the end of 2020; everything in the universe is made from four elementary dimensions, these dimensions are the three spatial dimensions (X, Y, and Z) and the Void resistance as the factor of change among the four. Time itself was not considered as the fourth dimension. Rather time corresponds to a factor of change, and during the research, it was found out that the Void resistance is the factor of change in the absolute Void space, where time is a hypothetical concept that represents changes during certain events compared to a constant change rate event. Therefore, time does exist, but as a factor of change as the Void resistance: Time= factor of change= Void resistance.

Keywords: elementary dimensions, absolute void, time alternative, early universe, universe at zero second, Void resistant, Hydrogen atom, Hadron field, Lepton field

Procedia PDF Downloads 202
8850 Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting

Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey

Abstract:

Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.

Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method

Procedia PDF Downloads 78
8849 Investigation of Azol Resistance in Aspergillosis Caused by Gradient Test and Agar Plaque Methods

Authors: Zeynep Yazgan, Gökhan Aygün, Reyhan Çalışkan

Abstract:

Objective: Invasive fungal infections are a serious threat in terms of morbidity and mortality, especially in immunocompromised patients. The most frequently isolated agents are Aspergillus genus fungi, and sensitivity to azoles, which are the first choice in treatment, decreases. In our study, we aimed to investigate the use of the agar plate screening method as a fast, easy, and practical method in determining azole resistance in Aspergillus spp. species. Methods: Our study was conducted with 125 Aspergillus spp. isolates produced from various clinical samples. Aspergillus spp. isolates were identified by conventional methods and azole resistance was determined by gradient test and agar plate screening method. Broth microdilution method was applied to resistant isolates, and CypA-L98H and CypA-M220 mutations in the cyp51A gene were investigated. Results: In our study, 55 A. fumigatus complex (44%), 42 A. flavus (33.6%), 6 A. terreus (5%), 4 A. niger (3%) and 18 Aspergillus spp. (14%) were identified. With the gradient test method, resistance to VOR and POS was detected in 1 (1.8%) of A.fumigatus isolates, and resistance to ITR was detected in 3 (5.45%). With the agar plate method, 1 of the A.fumigatus isolates (1.8%) had VOR, ITR, POS, 1 of the A.terreus isolates (16.7%) had VOR, 1 of the A.niger isolates (25%) had ITR. Resistance to VOR and POS was detected in 2 Aspergillus spp. isolates (11%), and resistance to ITR was detected in 1 (5.6%). Sensitivity and specificity were determined as 100% for VOR and POS in A. fumigatus species, 33.3% and 100% for ITR, respectively, 100% for ITR in A. flavus species, and 100% for ITR and POS in A. terreus species. By broth microdilution method in 7 isolates in which resistance was detected by gradient test and/or agar plate screening method; 1 A.fumigatus resistant to ITR, VOR, POS, 2 A.fumigatus resistant to ITR, 2 Aspergillus spp. ITR, VOR, POS MICs were determined as 2µg/ml and 8µg/ml, 8µg/ml and >32µg/ml, 0.5µg/ml and 4µg/ml, respectively. CypA-L98H mutations were detected in 5 of these isolates, CypA-M220 mutations were detected in 6, and no mutation was detected in 1. CypA-L98H and CypA-M220 mutations were detected in 1 isolate for which resistance was not detected. Conclusion: The need for rapid antifungal susceptibility screening tests is increasing in the treatment of aspergillosis. Although the sensitivity of the agar plate method was determined to be 33.3% for A.fumigatus ITR in our study, its sensitivity and specificity were determined to be 100% for ITR, VOR, and POS in other species. The low sensitivity value detected for A.fumigatus showed that agar plate drug concentrations should be updated in accordance with the latest regulations of EUCAST guidelines. The CypA-L98H and CypA-M220 mutations detected in our study suggested that the distribution of azole resistance-related mutations in different regions in our country should be investigated. In conclusion, it is thought that the agar plate method, which can be easily applied to detect azole resistance, is a fast and practical method in routine use and can contribute to both the determination of effective treatment strategies and the generation of epidemiological data.

Keywords: Aspergillus, agar plate, azole resistance, cyp51A, cypA-L98H, cypA-M220

Procedia PDF Downloads 71
8848 Diversities, Antibiogram and Antibiotic Resistance Genes in Staphylococcus Species in Raw Meat from a Research Farm

Authors: Anthony Ayodeji Adegoke, Olayinka Ayobami Aiyegoro, Thor Axel Stenstrom

Abstract:

A study to investigate the species diversities, antibiogram and antibiotic resistance genes in Staphylococcus species from raw meat and dairy products collected from an abattoir and a farm shop of a research institute in Irene, South Africa over a six-month period was conducted. Polymerase Chain Reaction was used to speciate the bacteria and to detect the presence and otherwise of resistance genes. Antibiotic susceptibility testing was performed by disk diffusion method on Mueller-Hinton agar according to the Clinical Laboratory Standards Institute standards. A total of twenty-six (26) antibiotics were used to determine the antibiotic susceptibility. S. xylosus was the predominant isolate with 30% total occurrence, followed by S. epidermis, S. aureus, S. saprophyticus and S. haemolyticus with 25%, 15%, 15%, and 10% abundance respectively. The isolates were resistant to ceftezidime, gentamycin, nalidixic acid, nortrafuration, ampicillin, penicillin, oxytetracycline, tetracycline, doxycycline, clindamycin and lincomycin. mecA genes was detected among the methicillin resistant Staphylococcus species (MRSS) but no vancomycin resistance genes (van A and van B) were detected in these isolates. The presence of MRSS and multidrug resistant Staphylococcus species in meat affirms the need to avoid consumption of partially cooked meat currently rampant in South Africa, to avoid the spread of difficult to control pathogens in epidemiological proportion.

Keywords: Staphylococcus species, antibiotics, antibiotic resistance genes, food products, methicillin resistance, mecA gene

Procedia PDF Downloads 299
8847 The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath

Authors: Chun-Ying Lee, Mei-Wen Wu, Li-Yi Cheng, Chiang-Ho Cheng

Abstract:

This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating.

Keywords: supercritical CO2, zinc-electroplating, sodium fluoride, electroplating

Procedia PDF Downloads 565
8846 Multidisciplinary Training of Social Work and Applied Drama: From the Perspective of the Third Space

Authors: Yen Yi Huang

Abstract:

This paper aims to explore the application of strategies in applied drama to the social work education arena in order to enhance students' creativity, curiosity, and aesthetic sensitivity. Also, applied drama is used as a means to facilitate students' reflection-in-action and improve their understanding of issues on creative aging, gender equality, human rights, bullying, and prejudice. This paper mainly uses the perspective of Homi K. Bhabha's third space to explore the impact of applied drama and social work training on students. First, it focuses on how students create new understandings and insights in the third space of multidisciplinary training studies. Second, it analyzes how the hybridity and negotiation of ideas between applied drama and social work were created. Finally, it discusses the follow-up effects of the training and the factors that promote or hinder the hybridity and generation of the third space. This paper uses students' reflection papers for analysis. It is not focused on a discussion of the effectiveness of the teaching but attempts to bring new insights into the applications of applied drama to the social work education arena. The hybridity and generation of the third space require handling power strategically and looking after the emotional space of the students. Taking part in the training allows students in the third space of multidisciplinary training to reexamine the traditional framework of social work knowledge to create new ideas and possibilities.

Keywords: multidisciplinary, applied drama, social work education, third space

Procedia PDF Downloads 164
8845 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks

Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez

Abstract:

Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.

Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning

Procedia PDF Downloads 339
8844 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 116
8843 Evaluation of a Mindfulness and Self-Care-Based Intervention for Teachers to Enhance Mental Health

Authors: T. Noichl, M. Cramer, G. E. Dlugosch, I. Hosenfeld

Abstract:

Teachers are exposed to a variety of stresses in their work context. These can have a negative impact on physical and psychological well-being. The online training ‘Better Living! Self-care for teachers’ is based on the training ‘Better Living! Self-care for mental health professionals’, which has been proven to be effective over a period of 3 years. The training for teachers is being evaluated for its effectiveness between October 2021 and March 2023 in a study funded by the German Federal Ministry of Education and Research. The aim of the training is to promote self-care and mindfulness among participants and thereby to foster well-being. The concept of self-care was already mentioned in antiquity and was also named as an imperative by philosophers such as Socrates and Epictetus. In the absence of a universal understanding of self-care today, the following definition was developed within the research group: Self-care is 1) facing oneself in a loving and appreciative way, 2) taking one's own needs seriously, and 3) actively contributing to one's own well-being. The study is designed as a randomized wait-control group repeated-measures design with 4 (treatment group) resp. 6 (wait-control group) measurement points. Central dependent variables are self-care, mindfulness, stress, and well-being. To assess the long-term effectiveness of training participation, these constructs are surveyed at the beginning and the end of the training as well as five weeks and one year later. Based on the results of the evaluation with mental health professionals, it is expected that participation will lead to an increase in subjective well-being, self-care, and mindfulness. The first results of the evaluation study are presented and discussed with regard to the effectiveness of the training among teachers.

Keywords: longitudinal intervention study, mindfulness, self-care, teachers’ mental health, well-being

Procedia PDF Downloads 101
8842 The Pile Group Efficiency for Different Embedment Lengths in Dry Sand

Authors: Mohamed M. Shahin

Abstract:

This study investigated the design of the pile foundation to support heavy structures-especially bridges for highways-in the Sahara, which contains many dunes of medium dense sand in different levels, where the foundation is supposed to be piles. The base resistance of smooth model pile groups in sand under static loading is investigated experimentally in a pile soil test apparatus. Improvement were made to the sand around the piles in order to increase the shaft resistance of the single pile and the pile groups, and also base resistance especially for the central pile in pile groups. The study outlines the behaviour of a single-pile, 4-, 5-, and 9- pile groups arranged in a doubly symmetric [square] layout with different embedment lengths and pile spacing in loose dry sand [normal] and dense dry sand [compacted] around the piles. This study evaluate the variation of the magnitude and the proportion of end bearing capacity of individual piles in different pile groups. Also to investigate the magnitude of the efficiency coefficient in the case of different pile groups.

Keywords: pile group, base resistance, efficiency coefficient, pile spacing, pile-soil interaction

Procedia PDF Downloads 363
8841 Modelling and Simulation of Milk Fouling

Authors: Harche Rima, Laoufi Nadia Aicha

Abstract:

This work focuses on the study and modeling of the fouling phenomenon in a vertical pipe. In the first step, milk is one of the fluids obeying the phenomenon of fouling because of the denaturation of these proteins, especially lactoglobulin, which is the active element of milk, and to facilitate its use, we chose to study milk as a fouling fluid. In another step, we consider the test section of our installation as a tubular-type heat exchanger that works against the current and in a closed circuit. A simple mathematical model of Kern & Seaton, based on the kinetics of the fouling resistance, was used to evaluate the influence of the operating parameters (fluid flow velocity and exchange wall temperature) on the fouling resistance. The influence of the variation of the fouling resistance with the operating conditions on the efficiency of the heat exchanger and the importance of the dirty state exchange coefficient as an exchange quality control parameter were discussed and examined. On the other hand, an electronic scanning microscope analysis was performed on the milk deposit in order to obtain its actual image and composition, which allowed us to calculate the thickness of this deposit.

Keywords: fouling, milk, tubular heat exchanger, fouling resistance

Procedia PDF Downloads 52
8840 The Reflection on Pre-Service Teacher Training Program in Science Education

Authors: Sumalee Tientongdee

Abstract:

The pre-service teacher training program at Suan Sunandha Rajabhat University, Bankgok Thailand has been provided for undergraduate students for more than 80 years. It was established as the first teacher college in the country. The pre-service teacher program in science education is considered as one of the new training programs to prepare pre-service teacher to teach science in secondary school level. The need of program assessment is strongly important. Therefore, this study was conducted to gain the opinions and recommendations from the principals, in-service teachers, and mentoring teachers from the partnership schools of Bangkok. The invited 120 participants for the annual meeting was hold in May 2017. The focus group discussion and questionnaires were used to collect the data during the reflection session. The content analysis was used to analyze the qualitative data. The results showed that the pre-service teacher training program in science education should improve students’ creative thinking skill, service mind, personality, and attitudes toward teaching science career. Also, the future science teachers must be able to teach in English to have more opportunities to teach science in Southeast Asian countries.

Keywords: pre-service teacher training program, reflection, science education, Suan Sunandha Rajabhat university

Procedia PDF Downloads 216
8839 Optimization of Double-Layered Microchannel Heat Sinks

Authors: Tu-Chieh Hung, Wei-Mon Yan, Xiao-Dong Wang, Yu-Xian Huang

Abstract:

This work employs a combined optimization procedure including a simplified conjugate-gradient method and a three-dimensional fluid flow and heat transfer model to study the optimal geometric parameter design of double-layered microchannel heat sinks. The overall thermal resistance RT is the objective function to be minimized with number of channels, N, the channel width ratio, β, the bottom channel aspect ratio, αb, and upper channel aspect ratio, αu, as the search variables. It is shown that, for the given bottom area (10 mm×10 mm) and heat flux (100 W cm-2), the optimal (minimum) thermal resistance of double-layered microchannel heat sinks is about RT=0.12 ℃/m2W with the corresponding optimal geometric parameters N=73, β=0.50, αb=3.52, and, αu= 7.21 under a constant pumping power of 0.05 W. The optimization process produces a maximum reduction by 52.8% in the overall thermal resistance compared with an initial guess (N=112, β=0.37, αb=10.32 and, αu=10.93). The results also show that the optimal thermal resistance decreases rapidly with the pumping power and tends to be a saturated value afterward. The corresponding optimal values of parameters N, αb, and αu increase while that of β decrease as the pumping power increases. However, further increasing pumping power is not always cost-effective for the application of heat sink designs.

Keywords: optimization, double-layered microchannel heat sink, simplified conjugate-gradient method, thermal resistance

Procedia PDF Downloads 490
8838 Development of Agricultural Robotic Platform for Inter-Row Plant: An Autonomous Navigation Based on Machine Vision

Authors: Alaa El-Din Rezk

Abstract:

In Egypt, management of crops still away from what is being used today by utilizing the advances of mechanical design capabilities, sensing and electronics technology. These technologies have been introduced in many places and recorm, for Straight Path, Curved Path, Sine Wave ded high accuracy in different field operations. So, an autonomous robotic platform based on machine vision has been developed and constructed to be implemented in Egyptian conditions as self-propelled mobile vehicle for carrying tools for inter/intra-row crop management based on different control modules. The experiments were carried out at plant protection research institute (PPRI) during 2014-2015 to optimize the accuracy of agricultural robotic platform control using machine vision in term of the autonomous navigation and performance of the robot’s guidance system. Results showed that the robotic platform' guidance system with machine vision was able to adequately distinguish the path and resisted image noise and did better than human operators for getting less lateral offset error. The average error of autonomous was 2.75, 19.33, 21.22, 34.18, and 16.69 mm. while the human operator was 32.70, 4.85, 7.85, 38.35 and 14.75 mm Path, Offset Discontinuity and Angle Discontinuity respectively.

Keywords: autonomous robotic, Hough transform, image processing, machine vision

Procedia PDF Downloads 315
8837 Rehabilitative Walking: The Development of a Robotic Walking Training Device Using Functional Electrical Stimulation for Treating Spinal Cord Injuries and Lower-Limb Paralysis

Authors: Chung Hyun Goh, Armin Yazdanshenas, X. Neil Dong, Yong Tai Wang

Abstract:

Physical rehabilitation is a necessary step in regaining lower body function after a partial paralysis caused by a spinal cord injury or a stroke. The purpose of this paper is to present the development and optimization of a training device that accurately recreates the motions in a gait cycle with the goal of rehabilitation for individuals with incomplete spinal cord injuries or who are victims of a stroke. A functional electrical stimulator was used in conjunction with the training device to stimulate muscle groups pertaining to rehabilitative walking. The feasibility and reliability of the design are presented. To validate the design functionality, motion analyses of the knee and ankle gait paths were made using motion capture systems. Key results indicate that the robotic walking training device provides a viable mode of physical rehabilitation.

Keywords: functional electrical stimulation, rehabilitative walking, robotic walking training device, spinal cord injuries

Procedia PDF Downloads 144
8836 Thai Student Ability on Speexx Language Training Program

Authors: Toby Gibbs, Glen Craigie, Suwaree Yordchim

Abstract:

Using the Speexx Online Language Training Program with Thai students has allowed us to evaluate their learning comprehension and track their progression through the English language program. Speexx sets the standard for excellence and innovation in web-based language training and online coaching services. The program is designed to improve the business communication skills of language learners for Thai students. Speexx consists of English lessons, exercises, tests, web boards, and supplementary lessons to help students practice English. The sample groups are 191 Thai sophomores studying Business English with the department of Humanities and Social Science. The data was received by standard deviation (S.D.) value from questionnaires and samples provided from the Speexx training program. The results found that most Thai sophomores fail the Speexx training program due to their learning comprehension of the English language is below average. With persisted efforts on new training methods, the success of the Speexx Language Training Program can break through the cultural barriers and help future students adopt English as a second language. The Speexx results revealed four main factors affecting the success as follows: 1) Future English training should be pursued in applied Speexx development. 2) Thai students didn’t see the benefit of having an Online Language Training Program. 3) There is a great need to educate the next generation of learners on the benefits of Speexx within the community. 4) A great majority of Thai Sophomores didn't know what Speexx was. A guideline for self-reliance planning consisted of four aspects: 1) Development planning: by arranging groups to further improve English abilities with the Speexx Language Training program and encourage using Speexx every day. Local communities need to develop awareness of the usefulness of Speexx and share the value of using the program among family and friends. 2) Humanities and Social Science staff should develop skills using this Online Language Training Program to expand on the benefits of Speexx within their departments. 3) Further research should be pursued on the Thai Students progression with Speexx and how it helps them improve their language skills with Business English. 4) University’s and Language centers should focus on using Speexx to encourage learning for any language, not just English.

Keywords: ability, comprehension, sophomore, speexx

Procedia PDF Downloads 369
8835 Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine

Authors: Jian Wang, Lu Yang, Jiong Peng

Abstract:

Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption.

Keywords: AMESim, energy-saving, injection molding machine, internal circulation

Procedia PDF Downloads 550
8834 Effects of Handgrip Isometric Training in Blood Pressure of Patients with Peripheral Artery Disease

Authors: Raphael M. Ritti-Dias, Marilia A. Correia, Wagner J. R. Domingues, Aline C. Palmeira, Paulo Longano, Nelson Wolosker, Lauro C. Vianna, Gabriel G. Cucato

Abstract:

Patients with peripheral arterial disease (PAD) have a high prevalence of hypertension, which contributes to a high risk of acute cardiovascular events and cardiovascular mortality. Strategies to reduce cardiovascular risk of these patients are needed. Meta-analysis studies have shown that isometric handgrip training promotes reductions in clinical blood pressure in normotensive, pre-hypertensive and hypertensive individuals. However, the effect of this exercise training on other cardiovascular function indicators in PAD patients remains unknown. Thus, the aim of this study was to analyze the effects of isometric handgrip training on blood pressure in patients with PAD. In this clinical trial, 28 patients were randomly allocated into two groups: isometric handgrip training (HG) and control (CG). The HG conducted the unilateral handgrip training three days per week (four sets of two minutes, with 30% of maximum voluntary contraction with an interval of four minutes between sets). CG was encouraged to increase their physical activity levels. At baseline and after eight weeks blood pressure and heart rate were obtained. ANOVA two-way for repeated measures with the group (GH and GC) and time (pre- and post-intervention) as factors was performed. After 8 weeks of training there were no significant changes in systolic blood pressure (HG pre 141 ± 24.0 mmHg vs. HG post 142 ± 22.0 mmHg; CG pre 140 ± 22.1 mmHg vs. CG post 146 ± 16.2 mmHg; P=0.18), diastolic blood pressure (HG pre 74 ± 10.4 mmHg vs. HG post 74 ± 11.9 mmHg; CG pre 72 ± 6.9 mmHg vs. CG post 74 ± 8.0 mmHg; P=0.22) and heart rate (HG pre 61 ± 10.5 bpm vs. HG post 62 ± 8.0 bpm; CG pre 64 ± 11.8 bpm vs. CG post 65 ± 13.6 bpm; P=0.81). In conclusion, our preliminary data indicate that isometric handgrip training did not modify blood pressure and heart rate in patients with PAD.

Keywords: blood pressure, exercise, isometric, peripheral artery disease

Procedia PDF Downloads 332
8833 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity

Authors: Mehrak Zargaryaeghoubi, Masood Hajali

Abstract:

Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.

Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element

Procedia PDF Downloads 379
8832 The Biology of Persister Cells and Antibiotic Resistance

Authors: Zikora K. G. Anyaegbunam, Annabel A. Nnawuihe, Ngozi J. Anyaegbunam, Emmanuel A. Eze

Abstract:

The discovery and production of new antibiotics is unavoidable in the fight against drug-resistant bacteria. However, this is only part of the problem; we have never really had medications that could completely eradicate an infection. All pathogens create a limited number of dormant persister cells that are resistant to antibiotic treatment. When the concentration of antibiotics decreases, surviving persisters repopulate the population, resulting in a recurrent chronic infection. Bacterial populations have an alternative survival strategy to withstand harsh conditions or antibiotic exposure, in addition to the well-known methods of antibiotic resistance and biofilm formation. Persister cells are a limited subset of transiently antibiotic-tolerant phenotypic variations capable of surviving high-dose antibiotic therapy. Persisters that flip back to a normal phenotype can restart growth when antibiotic pressure drops, assuring the bacterial population's survival. Persister cells have been found in every major pathogen, and they play a role in antibiotic tolerance in biofilms as well as the recalcitrance of chronic infections. Persister cells has been implicated to play a role in the establishment of antibiotic resistance, according to growing research. Thusthe need to basically elucidate the biology of persisters and how they are linked to antibiotic resistance, and as well it's link to diseases.

Keywords: persister cells, phenotypic variations, repopulation, mobile genetic transfers, antibiotic resistance

Procedia PDF Downloads 210
8831 Impact of an Eight-Week High-Intensity Interval Training with Sodium Nitrite Supplementation on TNF-α, MURF1, and PI3K in Type 2 Diabetic Rats

Authors: Samane Eftekhari Ranjbar

Abstract:

Diabetes mellitus, a metabolic disorder characterized by elevated blood glucose levels, ranks among the leading causes of adult mortality. This study investigates the impact of an eight-week high-intensity interval training (HIIT) program combined with sodium nitrite supplementation on TNF- α, MURF1, and PI3K in a type 2 diabetes rodent model. Elevated TNF-α levels have been associated with insulin resistance, while MURF1 and PI3K play roles in muscle atrophy and insulin signaling pathways, respectively. In this experimental study, 15 eight-week-old rats from the Sara Laboratory Center in Tabriz were assigned to one of five groups: healthy control, diabetic control, diabetic with sodium nitrite supplementation, diabetic with eight weeks of intermittent exercise, and diabetic with eight weeks of interval training plus sodium nitrite supplementation. The HIIT protocol was designed to span eight weeks, with five weekly sessions at specified intensities and durations. Sodium nitrite, known for its vasodilatory and cytoprotective properties, was administered via injection. The findings revealed that the HIIT program and sodium nitrite supplementation influenced the examined biomarkers. ANOVA test outcomes indicated statistically significant differences in TNF- α (P=0.001), MURF1 (P=0.001), and PI3K (P=0.001) concentrations among the various groups. The healthy control group exhibited substantially decreased TNF- α, and MURF1 levels, as well as elevated PI3K levels compared to the diabetic control group. The exercise group, in conjunction with sodium nitrite supplementation, demonstrated a significant rise in PI3K levels (P=0.001) and a decline in TNF- α levels (P=0.018) relative to the diabetic control group. These results suggest that the combined intervention may help improve insulin sensitivity and reduce inflammation. However, MURF1 levels, which are related to muscle atrophy, showed no significant difference (P=0.24). In conclusion, in type 2 diabetic rats, an eight-week high-intensity interval training program with sodium nitrite supplementation does not affect MURF1 levels but does influence PI3K and TNF- α levels. This combination may hold potential for improving insulin sensitivity and reducing inflammation in type 2 diabetes patients, warranting further investigation and potential translation to human clinical trials.

Keywords: high-intensity interval training, sodium nitrate supplementation, type 2 diabetes, tumor necrosis factor-alpha, phosphatidylinositol-3-kinase, muscle RING-finger protein-1

Procedia PDF Downloads 89
8830 Effect of Prior Heat Treatment on the Microstructure Evolution and Creep Resistance of ZK60 Mg Alloy Under Tensile Creep Loading Along Normal Direction

Authors: Sijia Hu

Abstract:

Tensile creep tests were performed along the normal direction on the as-solutioned (AS) and as-aged (AA) samples of a commercial ZK60 alloy in this work. The results showed that the AA sample obtained a stronger 0.2% proof stress but a poorer creep resistance in comparison to the AS sample. It was revealed that the creep deformation in the AS sample was attributed to basal slip and twinning, while the creep behavior of the AA sample was controlled by basal slip, pyramidal slip and twinning. Besides, the reasons for the poorer creep resistance of the AA sample were unveiled. Pyramidal dislocations towards various moving directions were found to accelerate the creep deformation, and basal dislocations kinking at twin boundaries were found to induce heavy stress concentration. Furthermore, massive dynamic precipitates, including beta 1 prime and beta 2 prime types, were formed in the AS sample during the creep exposure, contributing to the superior creep resistance. But in the AA sample, plentiful beta 1 prime and beta 2 prime phases generated during the prior peak-aging treatment dissolved into the matrix fast and only beta 1 prime re-precipitated during the creep process. With the decreased area fractions of precipitates, the age-hardening effect slacked off and failed to enhance the creep resistance.

Keywords: Mg alloy, creep, precipitation, microstructure

Procedia PDF Downloads 38
8829 Effect of vr Based Wii Fit Training on Muscle Strength, Sensory Integration Ability and Walking Abilities in Patients with Parkinson's Disease: A Randomized Control Trial

Authors: Ying-Yi Laio, Yea-Ru Yang, Yih-Ru Wu, Ray-Yau Wang

Abstract:

Background: Virtual reality (VR) systems are proved to increase motor performance in stroke and elderly. However, the effects have not been established in patients with Parkinson’s disease (PD). Purpose: To examine the effects of VR based training in improving muscle strength, sensory integration ability and walking abilities in patients with PD by a randomized controlled trial. Method: Thirty six participants with diagnosis of PD were randomly assigned to one of the three groups (n=12 for each group). Participants received VR-based Wii Fit exercise (VRWii group) or traditional exercise (TE group) for 45 minutes, followed by treadmill training for another 15 minutes for 12 sessions in 6 weeks. Participants in the control group received no structured exercise program but fall-prevention education. Outcomes included lower extremity muscle strength, sensory integration ability, walking velocity, stride length, and functional gait assessment (FGA). All outcomes were assessed at baseline, after training and at 1-month follow-up. Results: Both VRWii and TE groups showed more improvement in level walking velocity, stride length, FGA, muscle strength and vestibular system integration than control group after training and at 1-month follow-up. The VRWii training, but not the TE training, resulted in more improvement in visual system integration than the control. Conclusions: VRWii training is as beneficial as traditional exercise in improving walking abilities, sensory integration ability and muscle strength in patients with PD, and such improvements persisted at least for 1 month. The VRWii training is then suggested to be implemented in patients with PD.

Keywords: virtual reality, walking, sensory integration, muscle strength, Parkinson’s disease

Procedia PDF Downloads 329