Search results for: in vitro cell line study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 52894

Search results for: in vitro cell line study

52234 Fuel Inventory/ Depletion Analysis for a Thorium-Uranium Dioxide (Th-U) O2 Pin Cell Benchmark Using Monte Carlo and Deterministic Codes with New Version VIII.0 of the Evaluated Nuclear Data File (ENDF/B) Nuclear Data Library

Authors: Jamal Al-Zain, O. El Hajjaji, T. El Bardouni

Abstract:

A (Th-U) O2 fuel pin benchmark made up of 25 w/o U and 75 w/o Th was used. In order to analyze the depletion and inventory of the fuel for the pressurized water reactor pin-cell model. The new version VIII.0 of the ENDF/B nuclear data library was used to create a data set in ACE format at various temperatures and process the data using the MAKXSF6.2 and NJOY2016 programs to process the data at the various temperatures in order to conduct this study and analyze cross-section data. The infinite multiplication factor, the concentrations and activities of the main fission products, the actinide radionuclides accumulated in the pin cell, and the total radioactivity were all estimated and compared in this study using the Monte Carlo N-Particle 6 (MCNP6.2) and DRAGON5 programs. Additionally, the behavior of the Pressurized Water Reactor (PWR) thorium pin cell that is dependent on burn-up (BU) was validated and compared with the reference data obtained using the Massachusetts Institute of Technology (MIT-MOCUP), Idaho National Engineering and Environmental Laboratory (INEEL-MOCUP), and CASMO-4 codes. The results of this study indicate that all of the codes examined have good agreements.

Keywords: PWR thorium pin cell, ENDF/B-VIII.0, MAKXSF6.2, NJOY2016, MCNP6.2, DRAGON5, fuel burn-up.

Procedia PDF Downloads 103
52233 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects

Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad

Abstract:

Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.

Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell

Procedia PDF Downloads 413
52232 Silica Nanofibres – Promising Material for Regenerative Medicine

Authors: Miroslava Rysová, Zdena Syrová, Tomáš Zajíc, Petr Exnar

Abstract:

Currently, attention of tissue engineers has been attracted to novel nanofibrous materials having advanced properties and ability to mimic extracellular matrix (ECM) by structure which makes them interesting candidates for application in regenerative medicine as scaffolding and/or drug delivering material. Throughout the last decade, more than 200 synthetic and natural polymers have been successfully electrospun leading to the formation of nanofibres with a wide range of chemical, mechanical and degradation properties. In this family, inorganic nanofibres represent very specific group offering an opportunity to manufacture inert to body, well degradable and in properties tunable material. Aim of this work, was to reveal unique properties of silica (SiO2, CAS 7631-86-9) nanofibres and their potential in field of regenerative medicine. Silica nanofibres were prepared by sol-gel method from tetraethyl orthosilicate (TEOS, CAS 78-10-4) as a precursor and subsequently manufactured by needleless electrospinning on NanospiderTM device. Silica nanofibres thermally stabilized under 200°C were confirmed to be fully biodegradable and soluble in several simulated body fluids. In vitro cytotoxicity tests of eluate (ES ISO 10993-5:1999) and in direct contact (ES ISO 10993-5:2009) showed no toxicity - e.g. cell viabilities reached values exceeding 80%. Those results were obtained equally from two different cell lines (Vero, 3T3). Non-toxicity of silaca nanofibres´ eluate was additionally confirmed in real time by testing on xCelligence (ACEA Biosciences, Inc.) device. Both cell types also showed good adhesion to material. To conclude, all mentioned results lead to resumption that silica nanofibres have a potential as material for regenerative medicine which opens door to further research.

Keywords: cytotoxicity, electrospinning, nanofibres, silica, tissue engineering

Procedia PDF Downloads 429
52231 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 84
52230 Providing Energy Management of a Fuel Cell-Battery Hybrid Electric Vehicle

Authors: Fatma Keskin Arabul, Ibrahim Senol, Ahmet Yigit Arabul, Ali Rifat Boynuegri

Abstract:

On account of the concern of the fossil fuel is depleting and its negative effects on the environment, interest in alternative energy sources is increasing day by day. However, considering the importance of transportation in human life, instead of oil and its derivatives fueled vehicles with internal combustion engines, electric vehicles which are sensitive to the environment and working with electrical energy has begun to develop. In this study, simulation was carried out for providing energy management and recovering regenerative braking in fuel cell-battery hybrid electric vehicle. The main power supply of the vehicle is fuel cell on the other hand not only instantaneous power is supplied by the battery but also the energy generated due to regenerative breaking is stored in the battery. Obtained results of the simulation is analyzed and discussed.

Keywords: electric vehicles, fuel cell, battery, regenerative braking, energy management

Procedia PDF Downloads 714
52229 Analysis of the Level of Production Failures by Implementing New Assembly Line

Authors: Joanna Kochanska, Dagmara Gornicka, Anna Burduk

Abstract:

The article examines the process of implementing a new assembly line in a manufacturing enterprise of the household appliances industry area. At the initial stages of the project, a decision was made that one of its foundations should be the concept of lean management. Because of that, eliminating as many errors as possible in the first phases of its functioning was emphasized. During the start-up of the line, there were identified and documented all production losses (from serious machine failures, through any unplanned downtime, to micro-stops and quality defects). During 6 weeks (line start-up period), all errors resulting from problems in various areas were analyzed. These areas were, among the others, production, logistics, quality, and organization. The aim of the work was to analyze the occurrence of production failures during the initial phase of starting up the line and to propose a method for determining their critical level during its full functionality. There was examined the repeatability of the production losses in various areas and at different levels at such an early stage of implementation, by using the methods of statistical process control. Based on the Pareto analysis, there were identified the weakest points in order to focus improvement actions on them. The next step was to examine the effectiveness of the actions undertaken to reduce the level of recorded losses. Based on the obtained results, there was proposed a method for determining the critical failures level in the studied areas. The developed coefficient can be used as an alarm in case of imbalance of the production, which is caused by the increased failures level in production and production support processes in the period of the standardized functioning of the line.

Keywords: production failures, level of production losses, new production line implementation, assembly line, statistical process control

Procedia PDF Downloads 128
52228 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective

Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin

Abstract:

Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.

Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis

Procedia PDF Downloads 263
52227 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 503
52226 Recent Advances of Isolated Microspore Culture Response in Durum Wheat

Authors: Zelikha Labbani

Abstract:

Many biotechnology methods have been used in plant breeding programs. The in vitro isolated microspore culture is the one of these methods. For durum wheat, the use of this technology has been limited for a long time due to the low number of embryos produced and also most regeneration plants are albina. The objective of this paper is to show that using isolated microspores culture on durum wheat is possible due to the development of the new methods using the new pretreatment of the microspores before their isolation and cultivation.

Keywords: isolated microspore culture, pretreatments, in vitro embryogenesis, plant breeding program

Procedia PDF Downloads 532
52225 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering

Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei

Abstract:

Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.

Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation

Procedia PDF Downloads 252
52224 Teaching Entrepreneurship in Light of the Triple Bottom Line

Authors: Sherry Robinson, Hans Anton Stubberud

Abstract:

Entrepreneurship can take many forms. Traditional entrepreneurs seek profits and growth for the businesses they start themselves. Intrapreneurs act entrepreneurially within a business they do not own. Social entrepreneurs have goals other than (but not excluding) profit and growth as they seek to solve social problems or protect the environment. This type of entrepreneur often focuses on the triple bottom line, which includes a concern for people and the planet as well as profit. Ecopreneurs in particular are driven by their desire to create and promote environmentally sustainable products and processes. All of these entrepreneurs need an entrepreneurial orientation in order to survive and thrive. The three most common elements of an entrepreneurial orientation are (1) creativity and innovation, (2) the willingness to take risks and (3) the proactiveness to put ideas into action. This study describes an interdisciplinary entrepreneurship course integrating topics regarding the triple bottom line with those relevant to an entrepreneurial orientation. The results show that students significantly increased their skill levels in many areas, including soft skills such as communicating and working in teams, as well as designing innovative products and taking calculated risk.

Keywords: creativity, entrepreneurship education, sustainability, triple bottom line

Procedia PDF Downloads 475
52223 Bioactivity Evaluation of Cucurbitin Derived Enzymatic Hydrolysates

Authors: Ž. Vaštag, Lj. Popović, S. Popović

Abstract:

After cold pressing of pumpkin oil, the defatted oil cake (PUOC) was utilized as raw material for processing of bio-functional hydrolysates. In this study, the in vitro bioactivity of an alcalase (AH) and a pepsin hydrolysate (PH) prepared from the major pumpkin 12S globulin (cucurbitin) are compared. The hydrolysates were produced at optimum reaction conditions (temperature, pH) for the enzymes, during 60min. The bioactivity testing included antioxidant and angiotensin I converting enzyme inhibitory activity assays. The hydrolysates showed high potential as natural antioxidants and possibly antihypertensive agents in functional food or nutraceuticals. Additionally, preliminary studies have shown that both hydrolysates could exhibit modest α-amylase inhibitory activity, which indicates on their hypoglycemic potential.

Keywords: cucurbitin, alcalase, pepsin, protein hydrolysates, in vitro bioactivity

Procedia PDF Downloads 311
52222 Establishment and Aging Process Analysis in Dermal Fibroblast Cell Culture of Green Turtle (Chelonia mydas)

Authors: Yemima Dani Riani, Anggraini Barlian

Abstract:

Green turtle (Chelonia mydas) is one of well known long-lived turtle. Its age can reach 100 years old. Senescence in green turtle is an interesting process to study because until now no clear explanation has been established about senescence at cellular or molecular level in this species. Since 1999, green turtle announced as an endangered species. Hence, establishment of fibroblast skin cell culture of green turtle may be material for future study of senescence. One common marker used for detecting senescence is telomere shortening. Reduced telomerase activity, the reverse transcriptase enzyme which adds TTAGGG DNA sequence to telomere end, may also cause senescence. The purpose of this research are establish and identify green turtle fibroblast skin cell culture and also compare telomere length and telomerase activity from passage 5 and 14. Primary cell culture made with primary explant method then cultured in Leibovitz-15 (Sigma) supplemented by 10% Fetal Bovine Serum (Sigma) and 100 U/mL Penicillin/Streptomycin (Sigma) at 30 ± 1oC. Cells identified with Rabbit Anti-Vimentin Polyclonal Antibody (Abcam) and Goat Polyclonal Antibody (Abcam) using confocal microscope (Zeiss LSM 170). Telomere length obtained using TeloTAGGG Telomere Length Assay (Roche) while telomerase activity obtained using TeloTAGGG Telomerase PCR ElisaPlus (Roche). Primary cell culture from green turtle skin had fibroblastic morphology and immunocytochemistry test with vimentin antibody proved the culture was fibroblast cell. Measurement of telomere length and telomerase activity showed that telomere length and telomerase activity of passage 14 was greater than passage 5. However, based on morphology, green turtle fibroblast skin cell culture showed senescent morphology. Based on the analysis of telomere length and telomerase activity, suspected fibroblast skin cell culture of green turtles is not undergo aging through telomere shortening.

Keywords: cell culture, chelonia mydas, telomerase, telomere, senescence

Procedia PDF Downloads 425
52221 Morphology Study of Inverted Planar Heterojunction Perovskite Solar Cells in Sequential Deposition

Authors: Asmat Nawaz, Ali Koray Erdinc, Burak Gultekin, Muhammad Tayyib, Ceylan Zafer, Kaiying Wang, M. Nadeem Akram

Abstract:

In this study, a sequential deposition process is used for the fabrication of PEDOT: PSS based inverted planar perovskite solar cell. A small amount of additive deionized water (DI-H2O) was added into PbI2 + Dimethyl formamide (DMF) precursor solution in order to increase the solubility of PbI2 in DMF, and finally to manipulate the surface morphology of the perovskite films. A morphology transition from needle like structure to hexagonal plates, and then needle-like again has been observed as the DI-H2O was added continuously (0.0 wt% to 3.0wt%). The latter one leads to full surface coverage of the perovskite, which is essential for high performance solar cell.

Keywords: charge carrier diffusion lengths, Methylamonium lead iodide, precursor composition, perovskite solar cell, sequential deposition

Procedia PDF Downloads 459
52220 An Ab Initio Study of Delafossite Transparent Conductive Oxides Cu(In, Ga)O2 and Absorbers Films Cu(In, Ga)S2 in Solar-Cell

Authors: Mokdad Sakhri, Youcef Bouhadda

Abstract:

Thin film chalcopyrite technology is thus nowadays a solid candidate for photovoltaic cells. The currently used window layer for the solar cell Cu(In,Ga)S2 is our interest point in this work. For this purpose, we have performed a first-principles study of structural, electronic and optical properties for both delafossite transparent conductive oxides Cu (In, Ga)O2 and absorbers films Cu(In,Ga)S2. The calculations have been carried out within the local density functional (LDA) and generalized gradient approximations (GGA) combined with the hubbard potential using norm-conserving pseudopotentials and a plane-wave basis with ABINIT code. We have found the energy gap is :1.6, 2.53, 3.6, 3.8 eV for CuInS2, CuGaS2, CuInO2 and CuGaO2 respectively. The results are in good agreement with experimental results.

Keywords: ABINIT code, DFT, electronic and optical properties, solar-cell absorbers, delafossite transparent conductive oxides

Procedia PDF Downloads 568
52219 Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering

Authors: Jerman Madonsela, Wallace Matizamhuka, Akiko Yamamoto, Ronald Machaka, Brendon Shongwe

Abstract:

In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed.

Keywords: biocompatibility, osteoblast, corrosion, surface wettability, protein adsorption

Procedia PDF Downloads 222
52218 Skin Substitutes for Wound Healing: An Advanced Formulation

Authors: Pennisi Stefania, Giuffrida Graziella, Coppa Federica, Iannello Giulia, Cartelli Simone, Lo Faro Riccardo, Ferruggia Greta, Brundo Maria Violetta

Abstract:

Tissue engineering aims to develop advanced medical devices to restore normal functions of damaged tissue. These devices, even more effective than conventional methods, are called skin substitutes and are configured as drugs to be applied to the damaged area, to heal extensive and deep wounds which could otherwise lead to chronic wounds lasting over time. Among the variety of commercially available skin substitutes, those that have proven to be most effective are those consisting of a bilayer scaffold. The aim of our research was to design a skin substitute which can promote cell proliferation, cell migration and angiogenesis, and which can guarantee timely closure of the wound with satisfactory aesthetic results, in order to avoid the patient excessive pain, risk of contracting infections and long-term hospitalization. The product was tested in vitro using the Scratch Assay. The assay was carried out both on the matrix modified with hyaluronic acid and on the matrix based only on collagen. In both cases, after 48 hours of exposure the wound scratch was almost completely closed in treated cells compared to untreated control.

Keywords: collagen, hyaluronic acid, scratch- wound-healing assay, tissue regeneration

Procedia PDF Downloads 25
52217 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study

Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.

Abstract:

Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.

Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET

Procedia PDF Downloads 104
52216 Phorbol 12-Myristate 13-Acetate (PMA)-Differentiated THP-1 Monocytes as a Validated Microglial-Like Model in Vitro

Authors: Amelia J. McFarland, Andrew K. Davey, Shailendra Anoopkumar-Dukie

Abstract:

Microglia are the resident macrophage population of the central nervous system (CNS), contributing to both innate and adaptive immune response, and brain homeostasis. Activation of microglia occurs in response to a multitude of pathogenic stimuli in their microenvironment; this induces morphological and functional changes, resulting in a state of acute neuroinflammation which facilitates injury resolution. Adequate microglial function is essential for the health of the neuroparenchyma, with microglial dysfunction implicated in numerous CNS pathologies. Given the critical role that these macrophage-derived cells play in CNS homeostasis, there is a high demand for microglial models suitable for use in neuroscience research. The isolation of primary human microglia, however, is both difficult and costly, with microglial activation an unwanted but inevitable result of the extraction process. Consequently, there is a need for the development of alternative experimental models which exhibit morphological, biochemical and functional characteristics of human microglia without the difficulties associated with primary cell lines. In this study, our aim was to evaluate whether THP-1 human peripheral blood monocytes would display microglial-like qualities following an induced differentiation, and, therefore, be suitable for use as surrogate microglia. To achieve this aim, THP-1 human peripheral blood monocytes from acute monocytic leukaemia were differentiated with a range of phorbol 12-myristate 13-acetate (PMA) concentrations (50-200 nM) using two different protocols: a 5-day continuous PMA exposure or a 3-day continuous PMA exposure followed by a 5-day rest in normal media. In each protocol and at each PMA concentration, microglial-like cell morphology was assessed through crystal violet staining and the presence of CD-14 microglial / macrophage cell surface marker. Lipopolysaccharide (LPS) from Escherichia coli (055: B5) was then added at a range of concentrations from 0-10 mcg/mL to activate the PMA-differentiated THP-1 cells. Functional microglial-like behavior was evaluated by quantifying the release of prostaglandin (PG)-E2 and pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α using mediator-specific ELISAs. Furthermore, production of global reactive oxygen species (ROS) and nitric oxide (NO) were determined fluorometrically using dichlorodihydrofluorescein diacetate (DCFH-DA) and diaminofluorescein diacetate (DAF-2-DA) respectively. Following PMA-treatment, it was observed both differentiation protocols resulted in cells displaying distinct microglial morphology from 10 nM PMA. Activation of differentiated cells using LPS significantly augmented IL-1β, TNF-α and PGE2 release at all LPS concentrations under both differentiation protocols. Similarly, a significant increase in DCFH-DA and DAF-2-DA fluorescence was observed, indicative of increases in ROS and NO production. For all endpoints, the 5-day continuous PMA treatment protocol yielded significantly higher mediator levels than the 3-day treatment and 5-day rest protocol. Our data, therefore, suggests that the differentiation of THP-1 human monocyte cells with PMA yields a homogenous microglial-like population which, following stimulation with LPS, undergo activation to release a range of pro-inflammatory mediators associated with microglial activation. Thus, the use of PMA-differentiated THP-1 cells represents a suitable microglial model for in vitro research.

Keywords: differentiation, lipopolysaccharide, microglia, monocyte, neuroscience, THP-1

Procedia PDF Downloads 388
52215 Multi-Channel Charge-Coupled Device Sensors Real-Time Cell Growth Monitor System

Authors: Han-Wei Shih, Yao-Nan Wang, Ko-Tung Chang, Lung-Ming Fu

Abstract:

A multi-channel cell growth real-time monitor and evaluation system using charge-coupled device (CCD) sensors with 40X lens integrating a NI LabVIEW image processing program is proposed and demonstrated. The LED light source control of monitor system is utilizing 8051 microprocessor integrated with NI LabVIEW software. In this study, the same concentration RAW264.7 cells growth rate and morphology in four different culture conditions (DMEM, LPS, G1, G2) were demonstrated. The real-time cells growth image was captured and analyzed by NI Vision Assistant every 10 minutes in the incubator. The image binarization technique was applied for calculating cell doubling time and cell division index. The cells doubling time and cells division index of four group with DMEM, LPS, LPS+G1, LPS+G2 are 12.3 hr,10.8 hr,14.0 hr,15.2 hr and 74.20%, 78.63%, 69.53%, 66.49%. The image magnification of multi-channel CCDs cell real-time monitoring system is about 100X~200X which compares with the traditional microscope.

Keywords: charge-coupled device (CCD), RAW264.7, doubling time, division index

Procedia PDF Downloads 358
52214 The Inhibitory Effect of Weissella koreensis 521 Isolated from Kimchi on 3T3-L1 Adipocyte Differentiation

Authors: Kyungbae Pi, Kibeom Lee, Yongil Kim, Eun-Jung Lee

Abstract:

Abnormal adipocyte growth, in terms of increased cell numbers and increased cell differentiation, is considered to be a major pathological feature of obesity. Thus, the inhibition of preadipocyte mitogenesis and differentiation could help prevent and suppress obesity. The aim of this study was to assess whether extracts from Weissella koreensis 521 cells isolated from kimchi could exert anti-adipogenic effects in 3T3-L1 cells (fat cells). Differentiating 3T3-L1 cells were treated with W. koreensis 521 cell extracts (W. koreensis 521_CE), and cell viability was assessed by MTT assays. At concentrations below 0.2 mg/ml, W. koreensis 521_CE did not exert any cytotoxic effect in 3T3-L1 cells. However, treatment with W. koreensis 521_CE significantly inhibited adipocyte differentiation, as assessed by morphological analysis and Oil Red O staining of fat. W. koreensis 521_CE treatment (0.2 mg/ml) also reduced lipid accumulation by 24% in fully differentiated 3T3-L1 adipocytes. These findings collectively indicate that Weissella koreensis 521 may help prevent obesity.

Keywords: Weissella koreensis 521, 3T3-L1 cells, adipocyte differentiation, obesity

Procedia PDF Downloads 252
52213 All Solution-Processed Organic Light Emitting Diode with Low Melting Point Alloy Encapsulation

Authors: Geon Bae, Cheol Hee Moon

Abstract:

Organic Light Emitting Diodes (OLEDs) are being developed rapidly as next-generation displays due to their self-luminous and flexible characteristics. OLEDs are highly susceptible to moisture and oxygen due to their structural properties. Thus, requiring a high level of encapsulation technology. Recently, encapsulation technology such as Thin Film Encapsulation (TFE) has been developed for OLED, but it is not perfect to prevent moisture permeation on the side. In this study, we propose OLED encapsulation method using Low melting Point Alloy (LMPA). The LMPA line was designed in square box shape on the outer edge of the device and was formed by screen printing method. To determine if LMPA has an effect on OLED, we fabricated solution processed OLEDs with a square-shaped LMPA line and evaluate the I-V-L characteristics of the OLEDs. Also, the resistance characteristic of the LMPA line was observed by repeatedly bending the LMPA line. It is expected that LMPA encapsulation will have a great advantage in shortening the process time and cost reduction.

Keywords: OLED, encapsulation, LMPA, solution process

Procedia PDF Downloads 246
52212 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 139
52211 Effect of Yeast Selenium on CD4 T Cell and WAZ of HIV1 Positive Children in Nyamasaria in Kisumu Kenya

Authors: S. B. Otieno1, F. Were, A. Afullo, K. Waza

Abstract:

Background: Multi drug resistance HIV has emerged rendering the current conventional treatment of HIV ineffective. There is a need for new treatment regime which is cheap, effective and not prone to resistance development by HIV. Methods: In randomized clinical study of 68 HIV positive children 3 – 15 years to asses the efficacy of yeast selenium in HIV/AIDS patients, 50μ yeast selenium was administered to 34 children while in matched control of 34 were put on placebo. Blood samples and weight of the both groups which were taken every 3 months intervals up to 6 months, were analyzed by ELIZA for CD4T cells, the data was analyzed by SPSS version 16, WAZ scores were analyzed by Epi Info version 6. Results: No significant difference in age { χ2 (1, 62) =0.03, p =0.853}, cause of morbidity between test and controls {χ2 (1, 65) = 5.87, p= 0.015} and on condition of foster parents {χ2 ( 1,63) = 5.57, p= 0.0172} was observed. Children on selenium showed progressive improvement of WAZ and significant difference at six months {F (5,12) = =5.758, P=0.006}, and weight gain of up to 4.1 kilograms in six months, and significant CD4 T cell count increase t= -2.943, p<0.05 compared to matched controls t = -1.258 p> 0.05. CD4 T cell count increased among all age groups on test 3-5 years (+ 267.1),5-8 years (+200.3) 9-15 years (+71.2) cells/mm3 and in matched controls a decrease 3-5 years (-71), 5-8 years (-125) and 9-13 years (-10.1) cells/mm3 . No significant difference inCD4 T cell count between boys {F (2, 32) = 1.531 p= 0.232} and between boys {F (2, 49) = 1.040, p= 0.361} on test and between boys and girls {F (5, 81) = 1.379, p= 0.241} on test. Similarly no significant difference between boys and girls were observed {F (5, 86) = 1.168, p= 0.332}.In the test group there was significant positive correlation β =252.23 between weight for age (WAZ), and CD4 T Cell Count p=0.007, R2= 0.252, F< 0.05. In matched controls no significant correlation between weight gain and CD4 T cell count change was observed at six months p > 0.05. No positive correlation β =-138.23 was observed between CD4T Cell count, WAZ, p=0.934, R2 =0.0337 F >0.05. Majority (96.78%) of children on test either remained or progressed to WHO immunological stage I. Conclusion: From this study it can be concluded that yeast Selenium is effective in slowing the progress of HIV 1 in children from WHO clinical stage I by improving CD4 T cell count and hence the immunity.

Keywords: selenium, HIV, AIDS, WAZ

Procedia PDF Downloads 476
52210 In Vitro Propagation in Barleria prionitis L. Via Callus Organogenesis

Authors: Rashmi Ranade, Neelu Joshi

Abstract:

Barleria prionitis L. is a well explored Indian medicinal plant valued for its stem and leaf which forms an important ingredient of many Ayurvedic formulations. It is used for the treatment of various disorders like toothache, bleeding gums, strengthening gums, whooping cough, inflammation, arthritis, enlargement of scrotum and sciatica etc. The plant is propagated vegetatively through stem cuttings. Frequent harvesting of this plant has led to the shortage of planting material, and it has acquired the status of vulnerable plant species. Plant tissue culture technology offers a very good alternative for propagation and conservation of such plant species. The present investigation was undertaken to develop in vitro regeneration protocol for B. prionitis L. via callus organogenesis pathway. Stem and leaf explants were used for this purpose. Different media and plant growth regulators were optimized to develop the protocol. The problem of phenol secretion and browning and in vitro cultures at the establishment phase was successfully curbed with the usage of antibrowning agents such as ascorbic acid and activated charcoal. Optimum shoot multiplication was achieved by the use of liquid media and incorporation of silver nitrate and TIBA (triiodobenzoic acid) into the media. High percent rooting (76%) was observed on WPM media supplemented with IBA (2.0 mg/l), IAA (0.5 mg/l), GA3(0.5) and activated charcoal(500 mg/l). The rooted plantlets were subjected to in vitro hardening on sterile potting mix (soil:farmyard manure:compost; 1:2:1) and acclimatized under greenhouse conditions. Around 85% survival of plantlets was recorded upon acclimatization. This lab scale protocol would be tested for in vitro scaling up production of B. prionitis L.

Keywords: explant browning, liquid culture, micropropagation, shoot multiplication, phenolic secretion

Procedia PDF Downloads 284
52209 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures

Authors: Amir Ali, Laura Yael Mendoza

Abstract:

The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.

Keywords: cell culture, stevia, iron nanoparticles, antioxidants

Procedia PDF Downloads 96
52208 Environmental and Toxicological Impacts of Glyphosate with Its Formulating Adjuvant

Authors: I. Székács, Á. Fejes, S. Klátyik, E. Takács, D. Patkó, J. Pomóthy, M. Mörtl, R. Horváth, E. Madarász, B. Darvas, A. Székács

Abstract:

Environmental and toxicological characteristics of formulated pesticides may substantially differ from those of their active ingredients or other components alone. This phenomenon is demonstrated in the case of the herbicide active ingredient glyphosate. Due to its extensive application, this active ingredient was found in surface and ground water samples collected in Békés County, Hungary, in the concentration range of 0.54–0.98 ng/ml. The occurrence of glyphosate appeared to be somewhat higher at areas under intensive agriculture, industrial activities and public road services, but the compound was detected at areas under organic (ecological) farming or natural grasslands, indicating environmental mobility. Increased toxicity of the formulated herbicide product Roundup, compared to that of glyphosate was observed on the indicator aquatic organism Daphnia magna Straus. Acute LC50 values of Roundup and its formulating adjuvant Polyethoxylated Tallowamine (POEA) exceeded 20 and 3.1 mg/ml, respectively, while that of glyphosate (as isopropyl salt) was found to be substantially lower (690-900 mg/ml) showing good agreement with literature data. Cytotoxicity of Roundup, POEA and glyphosate has been determined on the neuroectodermal cell line, NE-4C measured both by cell viability test and holographic microscopy. Acute toxicity (LC50) of Roundup, POEA and glyphosate on NE-4C cells was found to be 0.013±0.002%, 0.017±0.009% and 6.46±2.25%, respectively (in equivalents of diluted Roundup solution), corresponding to 0.022±0.003 and 53.1±18.5 mg/ml for POEA and glyphosate, respectively, indicating no statistical difference between Roundup and POEA and 2.5 orders of magnitude difference between these and glyphosate. The same order of cellular toxicity seen in average cell area has been indicated under quantitative cell visualization. The results indicate that toxicity of the formulated herbicide is caused by the formulating agent, but in some parameters toxicological synergy occurs between POEA and glyphosate.

Keywords: glyphosate, polyethoxylated tallowamine, Roundup, combined aquatic and cellular toxicity, synergy

Procedia PDF Downloads 318
52207 Prenatal Paraben Exposure Impacts Infant Overweight Development and in vitro Adipogenesis

Authors: Beate Englich, Linda Schlittenbauer, Christiane Pfeifer, Isabel Kratochvil, Michael Borte, Gabriele I. Stangl, Martin von Bergen, Thorsten Reemtsma, Irina Lehmann, Kristin M. Junge

Abstract:

The worldwide production of endocrine disrupting compounds (EDC) has risen dramatically over the last decades, as so has the prevalence for obesity. Many EDCs are believed to contribute to this obesity epidemic, by enhancing adipogenesis or disrupting relevant metabolism. This effect is most tremendous in the early prenatal period when priming effects find a highly vulnerable time window. Therefore, we investigate the impact of parabens on childhood overweight development and adipogenesis in general. Parabens are ester of 4-hydroxy-benzoic acid and part of many cosmetic products or food packing. Therefore, ubiquitous exposure can be found in the westernized world, with exposure already starting during the sensitive prenatal period. We assessed maternal cosmetic product consumption, prenatal paraben exposure and infant BMI z-scores in the prospective German LINA cohort. In detail, maternal urinary concentrations (34 weeks of gestation) of methyl paraben (MeP), ethyl paraben (EtP), n-propyl paraben (PrP) and n-butyl paraben (BuP) were quantified using UPLC-MS/MS. Body weight and height of their children was assessed during annual clinical visits. Further, we investigated the direct influence of those parabens on adipogenesis in-vitro using a human mesenchymal stem cell (MSC) differentiation assay to mimic a prenatal exposure scenario. MSC were exposed to 0.1 – 50 µM paraben during the entire differentiation period. Differentiation outcome was monitored by impedance spectrometry, real-time PCR and triglyceride staining. We found that maternal cosmetic product consumption was highly correlated with urinary paraben concentrations at pregnancy. Further, prenatal paraben exposure was linked to higher BMI Z-scores in children. Our in-vitro analysis revealed that especially the long chained paraben BuP stimulates adipogenesis by increasing the expression of adipocyte specific genes (PPARγ, ADIPOQ, LPL, etc.) and triglyceride storage. Moreover, we found that adiponectin secretion is increased whereas leptin secretion is reduced under BuP exposure in-vitro. Further mechanistic analysis for receptor binding and activation of PPARγ and other key players in adipogenesis are currently in process. We conclude that maternal cosmetic product consumption is linked to prenatal paraben exposure of children and contributes to the development of infant overweight development by triggering key pathways of adipogenesis.

Keywords: adipogenesis, endocrine disruptors, paraben, prenatal exposure

Procedia PDF Downloads 273
52206 Evaluating Therapeutic Efficacy of Intravesical Xenogeneic Urothelial Cell Treatment Alone and in Combination with Chemotherapy or Immune Checkpoint Inhibitors in a Mouse Non-Muscle-Invasive Bladder Cancer Model

Authors: Chih-Rong Shyr, Chi-Ping Huang

Abstract:

Intravesical BCG is the gold-standard therapy for high risk non-muscle invasive bladder cancer (NMIBC) after TURBT, but if not responsive to BCG, these BCG unresponsive patients face cystectomy that causes morbidity and comes with a morality risk. To provide the bladder sparing options for patients with BCG-unresponsive NMIBC, several new treatments have been developed to salvage the bladders and prevent progression to muscle invasive or metastatic, but however, most approved or developed treatments still fail in a significant proportion of patients without long term success. Thus more treatment options and the combination of different therapeutic modalities are urgently needed to change the outcomes. Xenogeneic rejection has been proposed to a mechanism of action to induce anti-tumor immunity for the treatment of cancers due to the similarities between rejection mechanism to xenoantigens (proteins, glycans and lipids) and anti-tumor immunities to tumor specific antigens (neoantigens, tumor associated carbohydrates and lipids). Xenogeneic urothelial cells (XUC) of porcine origin have been shown to induce anti-tumor immune responses to inhibit bladder tumor progression in mouse bladder cancer models. To further demonstrate the efficacy of the distinct intravesical XUC treatment in NMIBC, and the combined effects with chemotherapy and immune checkpoint inhibitors (ICIs) as a alternate therapeutic option, this study investigated the therapeutic effects and mechanisms of intravesical XUC immunotherapy in an orthotopic mouse immune competent model of NMIBC, generated from a mouse bladder cancer cell line. We found that the tumor progression was inhibited by intravescial XUC treatment and there was a synergy between intravesical XUC with intravesical chemotherapeutic agent, gemcitabine or systemic ICI, anti-PD1 antibody treatment. The cancer cell proliferation was decreased but the cell death was increased by the intravecisal XUC treatment. Most importantly, the mechanisms of action of intravesical XUC immunotherapy were found to be linked to enhanced infiltration of CD4+ and CD8+ T-cell as well as NK cells, but decreased presence of myeloid immunosuppressive cells in XUC treated tumors. The increased stimulation of immune cells of XUC treated mice to xenogeneic urothelial cells and mouse bladder cancer cells in immune cell proliferation and cytokine secretion were observed both as a monotherapy and in combination with intravesical gemcitabine or systemic anti PD-L1 treatment. In sum, we identified the effects of intravesical XUC treatment in monotherapy and combined therapy on tumor progression and its cellular and molecular events related to immune activation to understand the anti-tumoral mechanisms behind intravesical XUC immunotherapy for NMIBC. These results contribute to the understanding of the mechanisms behind successful xenogeneic cell immunotherapy against NMIBC and characterize a novel therapeutic approach with a new xenogeneic cell modality for BCG-unresponsive NMIBC.

Keywords: xenoantigen, neoantigen, rejection, immunity

Procedia PDF Downloads 7
52205 Screening Active Components in YPFS for Regulating Initiative Key Factors in Allergic Inflammation

Authors: Dandan Shen, Hui-zhu Wang, Xi Yu, LiLi Gui, Xiao Wei, Xiao-yan Jiang, Da-wei Wang, Min Hong

Abstract:

Yu-ping-feng-san (YPFS) is a clinical medicine for asthma and other allergic diseases, but the mechanism of YPFS on relapse of allergy is unclear. Currently, people come to realize the epithelial cells(EC) play a key role in stimulating and regulating local immune response. The study of thymic stromal lymphopoietin(TSLP derived from EC provides an important evidence that the EC can regulate immune response to stimulate allergic response. In this study, we observed the effect of YPFS on TSLP in vivo and in vitro. We established a method by using bronchial epithelial cells (16HBE) for screening potential bioactive components by HPLC-MS in YPFS and then analyzed the components in serum containing YPFS by UPLC-MS. The results showed that YPFS could decrease TSLP protein level in OVA-sensitized mice and 16HBE cells. Five components combing with the 16HBE cells were both detected in the serum.

Keywords: TSLP, bronchial epithelial cells, cell-binding, drug-containing serum

Procedia PDF Downloads 512