Search results for: heavy metal oxides
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3695

Search results for: heavy metal oxides

3035 Quest for an Efficient Green Multifunctional Agent for the Synthesis of Metal Nanoparticles with Highly Specified Structural Properties

Authors: Niharul Alam

Abstract:

The development of energy efficient, economic and eco-friendly synthetic protocols for metal nanoparticles (NPs) with tailor-made structural properties and biocompatibility is a highly cherished goal for researchers working in the field of nanoscience and nanotechnology. In this context, green chemistry is highly relevant and the 12 principles of Green Chemistry can be explored to develop such synthetic protocols which are practically implementable. One of the most promising green chemical synthetic methods which can serve the purpose is biogenic synthetic protocol, which utilizes non-toxic multifunctional reactants derived from natural, biological sources ranging from unicellular organisms to higher plants that are often characterized as “medicinal plants”. Over the past few years, a plethora of medicinal plants have been explored as the source of this kind of multifunctional green chemical agents. In this presentation, we focus on the syntheses of stable monometallic Au and Ag NPs and also bimetallic Au/Ag alloy NPs with highly efficient catalytic property using aqueous extract of leaves of Indian Curry leaf plat (Murraya koenigii Spreng.; Fam. Rutaceae) as green multifunctional agents which is extensively used in Indian traditional medicine and cuisine. We have also studied the interaction between the synthesized metal NPs and surface-adsorbed fluorescent moieties, quercetin and quercetin glycoside which are its chemical constituents. This helped us to understand the surface property of the metal NPs synthesized by this plant based biogenic route and to predict a plausible mechanistic pathway which may help in fine-tuning green chemical methods for the controlled synthesis of various metal NPs in future. We observed that simple experimental parameters e.g. pH and temperature of the reaction medium, concentration of multifunctional agent and precursor metal ions play important role in the biogenic synthesis of Au NPs with finely tuned structures.

Keywords: green multifunctional agent, metal nanoparticles, biogenic synthesis

Procedia PDF Downloads 415
3034 Comparison of Johnson-Cook and Barlat Material Model for 316L Stainless Steel

Authors: Yiğit Gürler, İbrahim Şimşek, Müge Savaştaer, Ayberk Karakuş, Alper Taşdemirci

Abstract:

316L steel is frequently used in the industry due to its easy formability and accessibility in sheet metal forming processes. Numerical and experimental studies are frequently encountered in the literature to examine the mechanical behavior of 316L stainless steel during the forming process. 316L stainless steel is the most common material used in the production of plate heat exchangers and plate heat exchangers are produced by plastic deformation of the stainless steel. The motivation in this study is to determine the appropriate material model during the simulation of the sheet metal forming process. For this reason, two different material models were examined and Ls-Dyna material cards were created using material test data. These are MAT133_BARLAT_YLD2000 and MAT093_SIMPLIFIED_JOHNSON_COOK. In order to compare results of the tensile test & hydraulic bulge test performed both numerically and experimentally. The obtained results were evaluated comparatively and the most suitable material model was selected for the forming simulation. In future studies, this material model will be used in the numerical modeling of the sheet metal forming process.

Keywords: 316L, mechanical characterization, metal forming, Ls-Dyna

Procedia PDF Downloads 303
3033 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan

Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf

Abstract:

Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.

Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor

Procedia PDF Downloads 561
3032 Methylene Blue Removal Using NiO nanoparticles-Sand Adsorption Packed Bed

Authors: Nedal N. Marei, Nashaat Nassar

Abstract:

Many treatment techniques have been used to remove the soluble pollutants from wastewater as; dyes and metal ions which could be found in rich amount in the used water of the textile and tanneries industry. The effluents from these industries are complex, containing a wide variety of dyes and other contaminants, such as dispersants, acids, bases, salts, detergents, humectants, oxidants, and others. These techniques can be divided into physical, chemical, and biological methods. Adsorption has been developed as an efficient method for the removal of heavy metals from contaminated water and soil. It is now recognized as an effective method for the removal of both organic and inorganic pollutants from wastewaters. Nanosize materials are new functional materials, which offer high surface area and have come up as effective adsorbents. Nano alumina is one of the most important ceramic materials widely used as an electrical insulator, presenting exceptionally high resistance to chemical agents, as well as giving excellent performance as a catalyst for many chemical reactions, in microelectronic, membrane applications, and water and wastewater treatment. In this study, methylene blue (MB) dye has been used as model dye of textile wastewater in order to synthesize a synthetic MB wastewater. NiO nanoparticles were added in small percentage in the sand packed bed adsorption columns to remove the MB from the synthetic textile wastewater. Moreover, different parameters have been evaluated; flow of the synthetic wastewater, pH, height of the bed, percentage of the NiO to the sand in the packed material. Different mathematical models where employed to find the proper model which describe the experimental data and help to analyze the mechanism of the MB adsorption. This study will provide good understanding of the dyes adsorption using metal oxide nanoparticles in the classical sand bed.

Keywords: adsorption, column, nanoparticles, methylene

Procedia PDF Downloads 248
3031 Comparison of the Thermal Behavior of Different Crystal Forms of Manganese(II) Oxalate

Authors: B. Donkova, M. Nedyalkova, D. Mehandjiev

Abstract:

Sparingly soluble manganese oxalate is an appropriate precursor for the preparation of nanosized manganese oxides, which have a wide range of technological application. During the precipitation of manganese oxalate, three crystal forms could be obtained – α-MnC₂O₄.2H₂O (SG C2/c), γ-MnC₂O₄.2H₂O (SG P212121) and orthorhombic MnC₂O₄.3H₂O (SG Pcca). The thermolysis of α-MnC₂O₄.2H₂O has been extensively studied during the years, while the literature data for the other two forms has been quite scarce. The aim of the present communication is to highlight the influence of the initial crystal structure on the decomposition mechanism of these three forms, their magnetic properties, the structure of the anhydrous oxalates, as well as the nature of the obtained oxides. For the characterization of the samples XRD, SEM, DTA, TG, DSC, nitrogen adsorption, and in situ magnetic measurements were used. The dehydration proceeds in one step with α-MnC₂O₄.2H2O and γ-MnC₂O₄.2H₂O, and in three steps with MnC₂O₄.3H2O. The values of dehydration enthalpy are 97, 149 and 132 kJ/mol, respectively, and the last two were reported for the first time, best to our knowledge. The magnetic measurements show that at room temperature all samples are antiferomagnetic, however during the dehydration of α-MnC₂O₄.2H₂O the exchange interaction is preserved, for MnC₂O₄.3H₂O it changes to ferromagnetic above 35°C, and for γ-MnC₂O₄.2H₂O it changes twice from antiferomagnetic to ferromagnetic above 70°C. The experimental results for magnetic properties are in accordance with the computational results obtained with Wien2k code. The difference in the initial crystal structure of the forms used determines different changes in the specific surface area during dehydration and different extent of Mn(II) oxidation during decomposition in the air; both being highest at α-MnC₂O₄.2H₂O. The isothermal decomposition of the different oxalate forms shows that the type and physicochemical properties of the oxides, obtained at the same annealing temperature depend on the precursor used. Based on the results from the non-isothermal and isothermal experiments, and from different methods used for characterization of the sample, a comparison of the nature, mechanism and peculiarities of the thermolysis of the different crystal forms of manganese oxalate was made, which clearly reveals the influence of the initial crystal structure. Acknowledgment: 'Science and Education for Smart Growth', project BG05M2OP001-2.009-0028, COST Action MP1306 'Modern Tools for Spectroscopy on Advanced Materials', and project DCOST-01/18 (Bulgarian Science Fund).

Keywords: crystal structure, magnetic properties, manganese oxalate, thermal behavior

Procedia PDF Downloads 157
3030 In Silico Design of Organometallic Complexes as Potential Antibacterial Agents

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The complexes of transition metals with various organic ligands have been extensively studied as models of some important pharmaceutical molecules. It was found that biological properties of different substituted organic molecules are improved when they are complexed by different metals. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In the present work, we have bioassayed the antibacterial potency of benzimidazoles and their metal salts (Cu or Zn) against yeast Sarcina lutea. In order to validate our in vitro study, we performed in silico studies using molecular docking software. The investigated compounds and their metal complexes (Cu, Zn) showed good to moderate inhibitory activity against Sarcina lutea. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and improved antibacterial activity in comparison with non-complexed ligands. These results are part of the CMST COST Action No. 1105 "Functional metal complexes that bind to biomolecules".

Keywords: organometallic complexes, benzimidazoles, chemometric design, Sarcina lutea

Procedia PDF Downloads 325
3029 Managing of Cobalt and Chromium Ions by Patients with Metal-on-Metal Hip Prosthesis

Authors: Alina Beraudi, Simona Catalani, Dalila De Pasquale, Eva Bianconi, Umberto Santoro, Susanna Stea, Pietro Apostoli

Abstract:

Recently the European Community, in line with the international scientific community such as with the Consensus Statement, has determined to stop the use of metal-on-metal big head stemmed hip prosthesis. Among the factors accounted as responsible for the high failure rates of these hip implants are the release and accumulation of metal ions. Many studies have correlated the presence of these ions, besides other factors, with the induction of oxidative stress response. In our study on 12 subjects, we observed the patient specific capability to eliminate metal ions after revision surgery. While for cobalt all the patients were able to completely excrete cobalt ions within 5-7 months after metal-on-metal bearing removal, for chromium ions it didn’t happen. If on the one hand the toxicokinetic differences between the two types of ions are confirmed by toxicological and occupational studies, on the other hand, this peculiar way of exposition represents a novel and important point of view. Thus, two different approaches were performed to better understand the subject specific capability to transport metal ions (albumin study) and to manage the response to them (heme-oxygenase-1 study): - a mutational screening of ALBUMIN gene was conducted in 30 MoM prosthetic patients resulting in the absence of nucleotidic changes compared with the ALB reference sequence. To this study was also added the analysis of expression of modified albumin protein; - a gene and protein expression study on 44 patients of heme-oxygenase-1, that is one of the most important antioxidant enzyme induced by metallic ions, was performed. This study resulted in no statistically significant differences in the expression of the gene and protein heme-oxygenase-1 between prosthetic and non-prosthetic patients, as well as between patients with high and low ions levels. Our results show that the protein studied (albumin and heme-oxygenase-1) seem to be not involved in determining chromium and cobalt ions level. On the other hand, achromium and cobalt elimination rates are different, but similar in all patients analyzed, suggesting that this process could be not patient-related. We support the importance of researching more about ions transport within the organism once released by hip prosthesis, about the chemical species involved, the districts where they are contained and the mechanisms of elimination, not excluding the existence of a subjective susceptibility to these metals ions.

Keywords: chromium, cobalt, hip prosthesis, individual susceptibility

Procedia PDF Downloads 369
3028 Efficient Mercury Sorbent: Activated Carbon and Metal Organic Framework Hybrid

Authors: Yongseok Hong, Kurt Louis Solis

Abstract:

In the present study, a hybrid sorbent using the metal organic framework (MOF), UiO-66, and powdered activated carbon (pAC) is synthesized to remove cationic and anionic metals simultaneously. UiO-66 is an octahedron-shaped MOF with a Zr₆O₄(OH)₄ metal node and 1,4-benzene dicarboxylic acid (BDC) organic linker. Zr-based MOFs are attractive for trace element remediation in wastewaters, because Zr is relatively non-toxic as compared to other classes of MOF and, therefore, it will not cause secondary pollution. Most remediation studies with UiO-66 target anions such as fluoride, but trace element oxyanions such as arsenic, selenium, and antimony have also been investigated. There have also been studies involving mercury removal by UiO-66 derivatives, however these require post-synthetic modifications or have lower effective surface areas. Activated carbon is known for being a readily available, well-studied, effective adsorbent for metal contaminants. Solvothermal method was employed to prepare hybrid sorbent from UiO66 and activated carbon, which could be used to remove mercury and selenium simultaneously. The hybrid sorbent was characterized using FSEM-EDS, FT-IR, XRD, and TGA. The results showed that UiO66 and activated carbon are successfully composited. From BET studies, the hybrid sorbent has a SBET of 1051 m² g⁻¹. Adsorption studies were performed, where the hybrid showed maximum adsorption of 204.63 mg g⁻¹ and 168 mg g⁻¹ for Hg (II) and selenite, respectively, and follows the Langmuir model for both species. Kinetics studies have revealed that the Hg uptake of the hybrid is pseudo-2nd order and has rate constant of 5.6E-05 g mg⁻¹ min⁻¹ and the selenite uptake follows the simplified Elovich model with α = 2.99 mg g⁻¹ min⁻¹, β = 0.032 g mg⁻¹.

Keywords: adsorption, flue gas wastewater, mercury, selenite, metal organic framework

Procedia PDF Downloads 161
3027 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method

Authors: Samera Salimpour Abkenar

Abstract:

In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.

Keywords: eco-friendly, natural dyes, silk, traditional dyeing

Procedia PDF Downloads 172
3026 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing

Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani

Abstract:

The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.

Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis

Procedia PDF Downloads 327
3025 Synthesis, Characterization and Catalytic Applications of Divalent Schiff Base Metal Complexes Derived from Amino Coumarins and Substituted Benzaldehydes and Acetophenones

Authors: Srinivas Nerella

Abstract:

A series of new heterodentate N, O-donor ligands derived from condensing 3-amino Coumarins with hydroxy benzaldehydes and acetophenones were used to afford new mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) coordination compounds. All the complexes were characterized by IR, 1H-NMR, 13C-NMR, Mass, ESR, Electronic spectra, Conductance, Magnetic and Thermal studies. The ligands show hexa coordination in Mn(II), Co(II), Ni(II), and Pd(II) complexes resulting octahedral geometries, while the ligands in Zn(II) and Cu(II) complexes show tetra coordination resulting tetrahedral and square planar geometries respectively. These mononuclear complexes were investigated as catalysts in the hydrothiolation of aromatic and aliphatic alkynes with thiols. These metal complexes were acted as versatile catalysts and gave good yields.

Keywords: schiff bases, divalent metal complexes of schiff bases, Catalytic activity, hydrothiolation

Procedia PDF Downloads 404
3024 Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency

Authors: Amey Kulkarni, Paavan Shetty, Amol Patil, B. Rajiv

Abstract:

Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor.

Keywords: differential fuel flow meter, engine RPM, fuel efficiency, heavy construction compaction machine

Procedia PDF Downloads 272
3023 Influence of Cation Substitution on Magnetic Transitions and Ordering in La2NixCo1-xMnO6 Compounds (x = 0.2 - 0.8)

Authors: Amine.Harbia, Hicham. Moutaabbidb, Yann. Le Godecb, Said. Benmokhtara, Mouhammed. Moutaabbida

Abstract:

This study explores the structural and magnetic characteristics of newly synthesized double perovskite oxides, La₂NiₓCo1-xMnO₆, with x ranging from 0.2 to 0.8. Utilizing X-ray powder diffraction and SQUID magnetometry, we analyzed the compounds that consistently exhibit a monoclinic structure with the P21/n space group at ambient temperature. it findings reveal that as Ni2+ is progressively substituted by Co2+, there is a corresponding decrease in cell parameters, attributable to the smaller ionic radius of Ni2+ (0.69 Å) compared to Co2+ (0.74 Å). The crystal structure features octahedrally coordinated (Co/Ni)2+ and Mn4+ cations with oxygen, forming (Co/Ni)O6 and MnO6 octahedra linked via oxygen atoms along different crystallographic axes. Magnetic characterization conducted over a temperature range of 2 to 300 K in both DC and AC magnetic fields, showed a predominant paramagnetic to ferromagnetic transition between 232 K and 260 K, with the Curie temperature notably increasing with higher x values. Samples with x=0.2, 0.25, and 0.5 exhibited a secondary PM-FM transition between 200 K and 208 K. Cation ordering was quantitatively assessed, indicating a higher ordering in Ni2+-rich samples (x=0.75 and 0.8) at over 96%, whereas the sample with x=0.25 showed minimal ordering. Furthermore, the out-of-phase component of the AC susceptibility displayed frequency-dependent transitions between 65 K and 110 K, suggesting the presence of superparamagnetic domains across all samples.

Keywords: double perovskite oxides, magnetic transitions, cation ordering, squid magnetometry

Procedia PDF Downloads 27
3022 Study on the Effects of Indigenous Biological Face Treatment

Authors: Saron Adisu Gezahegn

Abstract:

Commercial cosmetic has been affecting human health due to their contents and dosage composition. Chemical base cosmetics exposes users to unnecessary health problems and financial cost. Some of the cosmetics' interaction with the environment has negative impacts on health such as burning, cracking, coloring, and so on. The users are looking for a temporary service without evaluating the side effects of cosmetics that contain chemical compositions that result in irritation, burning, allergies, cracking, and the nature of the face. Every cosmetic contains a heavy metal such as lead, zinc, cadmium, silicon, and other heavy cosmetics materials. The users may expose at the end of the day to untreatable diseases like cancer. The objective of the research is to study the effects of indigenous biological face treatment without any additives like chemicals. In ancient times this thought was highly tremendous in the world but things were changing bit by bit and reached chemical base cosmetics to maintain the beauty of hair, skin, and faces. The side effects of the treatment on the face were minimum and the side effects with the interaction of the environment were almost nil. But this thought is changed and replaces the indigenous substances with chemical substances by adding additives like heavy chemical lead and cadmium in the sense of preservation, pigments, dye, and shining. Various studies indicated that cosmetics have dangerous side effects that expose users to health problems and expensive financial loss. This study focuses on a local indigenous plant called Kulkual. Kulkual is available everywhere in a study area and sustainable products can harvest to use as indigenous face treatment materials.25 men and 25 women were selected as a sample population randomly to conduct the study effectively.The plant is harvested from the guard in the productive season. The plant was exposed to the sun dry for a week. Then the peel was removed from the plant fruit and the peels were taken to a bath filled with water to soak for three days. Then the flesh of the peel was avoided from the fruit and ready to use as a face treatment. The fleshy peel was smeared on each sample for almost a week and continued for a week. The result indicated that the effects of the treatment were a positive response with minimum cost and minimum side effects due to the environment. The beauty shines, smoothness, and color are better than chemical base cosmetics. Finally, the study is recommended that all users prefer a biological method of treatment with minimum cost and minimums side effects on health with the interaction of the environment.

Keywords: cosmetic, indigneous, heavymetals, toxic

Procedia PDF Downloads 85
3021 Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material

Authors: Qingtao Yu, Guojia Ma

Abstract:

Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly.

Keywords: frequency selective surface, infrared-radar compatible, low infrared emissivity, radar-absorbing material, patterns, structures

Procedia PDF Downloads 115
3020 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: artificial neural networks, fuel consumption, friedman test, machine learning, statistical hypothesis testing

Procedia PDF Downloads 162
3019 Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area

Authors: Makara Rith, Young Kyu Kim, Seung Woo Lee

Abstract:

In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer.

Keywords: composite pavement, ports, cracking, rutting

Procedia PDF Downloads 187
3018 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment

Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon

Abstract:

The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.

Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature

Procedia PDF Downloads 507
3017 Wear Behaviors of B4C and SiC Particle Reinforced AZ91 Magnesium Matrix Metal Composites

Authors: M. E. Turan, H. Zengin, E. Cevik, Y. Sun, Y. Turen, H. Ahlatci

Abstract:

In this study, the effects of B4C and SiC particle reinforcements on wear properties of magnesium matrix metal composites produced by pressure infiltration method were investigated. AZ91 (9%Al-1%Zn) magnesium alloy was used as a matrix. AZ91 magnesium alloy was melted under an argon atmosphere. The melt was infiltrated to the particles with an appropriate pressure. Wear tests, hardness tests were performed respectively. Microstructure characterizations were examined by light optical (LOM) and scanning electron microscope (SEM). The results showed that uniform particle distributions were achieved in both B4C and SiC reinforced composites. Wear behaviors of magnesium matrix metal composites changed as a function of type of particles. SiC reinforced composite has better wear performance and higher hardness than B4C reinforced composite.

Keywords: magnesium matrix composite, pressure infiltration, SEM, wear

Procedia PDF Downloads 346
3016 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 104
3015 Resilience Perspective on Response Strategies for Super-Standard Rain and Flood Disasters: A Case Study of the “Zhengzhou 7.20 Heavy Rain” Event

Authors: Luojie Tang

Abstract:

The article takes the "7.20 Heavy Rainstorm in Zhengzhou" as a starting point, collects relevant disaster data, reproduces the entire process of the disaster, and identifies the main problems exposed by the city in responding to super-standard rain and flood disasters. Based on the review of resilience theory, the article proposes a shift in thinking about the response to super-standard rain and flood disasters from the perspective of resilience, clarifies the differences in the emphasis on resilience at different stages of disasters, and preliminarily constructs a response system for super-standard rain and flood disasters based on the guidance of resilience theory. Finally, combined with the highlighted problems in the 7.20 Heavy Rainstorm in Zhengzhou, the article proposes targeted response strategies from three perspectives: institutional management, technological support, and infrastructure, under the perspective of resilience.

Keywords: resilient city, exceedance-based stormwater management, disaster risk reduction, megalopolis

Procedia PDF Downloads 92
3014 Understanding the Excited State Dynamics of a Phase Transformable Photo-Active Metal-Organic Framework MIP 177 through Time-Resolved Infrared Spectroscopy

Authors: Aneek Kuila, Yaron Paz

Abstract:

MIP 177 LT and HT are two-phase transformable metal organic frameworks consisting of a Ti12O15 oxocluster and a tetracarboxylate ligand that exhibits robust chemical stability and improved photoactivity. LT to HT only shows the changes in dimensionality from 0D to 1D without any change in the overall chemical structure. In terms of chemical and photoactivity MIP 177 LT is found to perform better than the MIP 177HT. Step-scan Fourier transform absorption difference time-resolved spectroscopy has been used to collect mid-IR time-resolved infrared spectra of the transient electronic excited states of a nano-porous metal–organic framework MIP 177-LT and HT with 2.5 ns time resolution. Analyzing the time-resolved vibrational data after 355nm LASER excitation reveals the presence of the temporal changes of ν (O-Ti-O) of Ti-O metal cluster and ν (-COO) of the ligand concluding the fact that these moieties are the ultimate acceptors of the excited charges which are localized over those regions on the nanosecond timescale. A direct negative correlation between the differential absorbance (Δ Absorbance) reveals the charge transfer relation among these two moieties. A longer-lived transient signal up to 180ns for MIP 177 LT compared to the 100 ns of MIP 177 HT shows the extended lifetime of the reactive charges over the surface that exerts in their effectivity. An ultrafast change of bidentate to monodentate bridging in the -COO-Ti-O ligand-metal coordination environment was observed after the photoexcitation of MIP 177 LT which remains and lives with for seconds after photoexcitation is halted. This phenomenon is very unique to MIP 177 LT but not observed with HT. This in-situ change in the coordination denticity during the photoexcitation was not observed previously which can rationalize the reason behind the ability of MIP 177 LT to accumulate electrons during continuous photoexcitation leading to a superior photocatalytic activity.

Keywords: time resolved FTIR, metal organic framework, denticity, photoacatalysis

Procedia PDF Downloads 41
3013 Studies of Reduction Metal Impurity in Residual Melt by Czochralski Method

Authors: Jaemin Kim, Ilsun Pang, Yongrae Cho, Kwanghun Kim, Sungsun Baik

Abstract:

Manufacturing cost reduction is becoming more important due to excessive oversupply of Single crystalline ingot in recent solar market. Many companies are carrying out extensive research to grow more than one Single crystalline ingot in one batch to reduce manufacturing cost. However what most companies are finding difficult in this process is the effect on ingot due to increasing levels of impurities. Every ingot leaves a certain amount of melt after it is fully grown. This is the impurity that lowers the ingot quality. This impurity increase in the batch after second, third and more are grown subsequently in one batch. In order to solve this problem, the experiment to remove the residual melt in high temperature of hot zone was performed and succeeded. Theoretical average metal concentration of second ingot by new method was calculated and compared to it by conventional method.

Keywords: single crystal, solar cell, metal impurity, Ingot

Procedia PDF Downloads 373
3012 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution

Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón

Abstract:

Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).

Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)

Procedia PDF Downloads 201
3011 Laboratory Scale Purification of Water from Copper Waste

Authors: Mumtaz Khan, Adeel Shahid, Waqas Khan

Abstract:

Heavy metals presence in water streams is a big danger for aquatic life and ultimately effects human health. Removal of copper (Cu) by ispaghula husk, maize fibre, and maize oil cake from synthetic solution in batch conditions was studied. Different experimental parameters such as contact time, initial solution pH, agitation rate, initial Cu concentration, biosorbent concentration, and biosorbent particle size has been studied to quantify the Cu biosorption. The rate of adsorption of metal ions was very fast at the beginning and became slow after reaching the saturation point, followed by a slower active metabolic uptake of metal ions into the cells. Up to a certain point, (pH=4, concentration of Cu = ~ 640 mg/l, agitation rate = ~ 400 rpm, biosorbent concentration = ~ 0.5g, 3g, 3g for ispaghula husk, maize fiber and maize oil cake, respectively) increasing the pH, concentration of Cu, agitation rate, and biosorbent concentration, increased the biosorption rate; however the sorption capacity increased by decreasing the particle size. At optimized experimental parameters, the maximum Cu biosorption by ispaghula husk, maize fibre and maize oil cake were 86.7%, 59.6% and 71.3%, respectively. Moreover, the results of the kinetics studies demonstrated that the biosorption of copper on ispaghula husk, maize fibre, and maize oil cake followed pseudo-second order kinetics. The results of adsorption were fitted to both the Langmuir and Freundlich models. The Langmuir model represented the sorption process better than Freundlich, and R² value ~ 0.978. Optimizations of physical and environmental parameters revealed, ispaghula husk as more potent copper biosorbent than maize fibre, and maize oil cake. The sorbent is cheap and available easily, so this study can be applied to remove Cu impurities on pilot and industrial scale after certain modifications.

Keywords: biosorption, copper, ispaghula husk, maize fibre, maize oil cake, purification

Procedia PDF Downloads 392
3010 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste

Authors: L. Rozumová, J. Seidlerová

Abstract:

The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.

Keywords: blast furnace sludge, lead, zinc, sorption

Procedia PDF Downloads 285
3009 Understanding the Thermal Transformation of Random Access Memory Cards: A Pathway to Their Efficient Recycling

Authors: Khushalini N. Ulman, Samane Maroufi, Veena H. Sahajwalla

Abstract:

Globally, electronic waste (e-waste) continues to grow at an alarming rate. Several technologies have been developed to recover valuable materials from e-waste, however, their efficiency can be increased with a better knowledge of the e-waste components. Random access memory cards (RAMs) are considered as high value scrap for the e-waste recyclers. Despite their high precious metal content, RAMs are still recycled in a conventional manner resulting in huge loss of resources. Our research work highlights the precious metal rich components of a RAM. Inductively coupled plasma (ICP) analysis of RAMs of six different generations have been carried out and the trends in their metal content have been investigated. Over the past decade, the copper content of RAMs has halved and their tin content has increased by 70 %. The stricter environmental laws have facilitated ~96 % drop in the lead content of RAMs. To comprehend the fundamentals of thermal transformation of RAMs, our research provides their detailed kinetic study. This can assist the e-waste recyclers in optimising their metal recovery processes. Thus, understanding the chemical and thermal behaviour of RAMs can open new avenues for efficient e-waste recycling.

Keywords: electronic waste, kinetic study, recycling, thermal transformation

Procedia PDF Downloads 133
3008 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil

Authors: M. A. Stoian, D. M. Cocarta, A. Badea

Abstract:

The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6

Keywords: carcinogenic risk, heavy metals, human health risk assessment, soil pollution

Procedia PDF Downloads 409
3007 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles

Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan

Abstract:

We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.

Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques

Procedia PDF Downloads 382
3006 The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models

Authors: Marc Evenst Jn Jacques, Sophie Bernard

Abstract:

Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel.

Keywords: recycling, circular economy, price volatility, GARCH, mixed data sampling

Procedia PDF Downloads 39