Search results for: genetic resource
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4066

Search results for: genetic resource

3406 Optimizing Glycemic Control with AI-Guided Dietary Supplements: A Randomized Trial in Type 2 Diabetes

Authors: Evgeny Pokushalov, Claire Garcia, Andrey Ponomarenko, John Smith, Michael Johnson, Inessa Pak, Evgenya Shrainer, Dmitry Kudlay, Leila Kasimova, Richard Miller

Abstract:

This study evaluated the efficacy of an AI-guided dietary supplement regimen compared to a standard physician-guided regimen in managing Type 2 diabetes (T2D). A total of 160 patients were randomly assigned to either the AI-guided group (n=80) or the physician-guided group (n=80) and followed over 90 days. The AI-guided group received 5.3 ± 1.2 supplements per patient, while the physician-guided group received 2.7 ± 0.6 supplements per patient. The AI system personalized supplement types and dosages based on individual genetic and metabolic profiles. The AI-guided group showed a significant reduction in HbA1c levels from 7.5 ± 0.8% to 7.1 ± 0.7%, compared to a reduction from 7.6 ± 0.9% to 7.4 ± 0.8% in the physician-guided group (mean difference: -0.3%, 95% CI: -0.5% to -0.1%; p < 0.01). Secondary outcomes, including fasting plasma glucose, HOMA-IR, and insulin levels, also improved more in the AI-guided group. Subgroup analyses revealed that the AI-guided regimen was particularly effective in patients with specific genetic polymorphisms and elevated metabolic markers. Safety profiles were comparable between both groups, with no serious adverse events reported. In conclusion, the AI-guided dietary supplement regimen significantly improved glycemic control and metabolic health in T2D patients compared to the standard physician-guided approach, demonstrating the potential of personalized AI-driven interventions in diabetes management.

Keywords: Type 2 diabetes, AI-guided supplementation, personalized medicine, glycemic control, metabolic health, genetic polymorphisms, dietary supplements, HbA1c, fasting plasma glucose, HOMA-IR, personalized nutrition

Procedia PDF Downloads 9
3405 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 ≦ ≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: microchannel heat sinks, conjugate heat transfer, optimization, genetic algorithm method

Procedia PDF Downloads 319
3404 Use of RAPD and ISSR Markers in Detection of Genetic Variation among Colletotrichum falcatum Went Isolates from South Gujarat India

Authors: Prittesh Patel, Rushabh Shah, Krishnamurthy Ramar, Vakulbhushan Bhaskar

Abstract:

The present research work aims at finding genetic differences in the genomes of sugarcane red rot isolates Colletotrichum falcatum Went using Random Amplified Polymorphic DNA (RAPD) and interspersed simple sequence repeat (ISSR) molecular markers. Ten isolates of C. falcatum isolated from different red rot infected sugarcane cultivars stalk were used in present study. The amplified bands were scored across the lanes obtained in 15 RAPD primes and 21 ISSR primes successfully. The data were analysed using NTSYSpc 2.2 software. The results showed 80.6% and 68.07% polymorphism in RPAD and ISSR analysis respectively. Based on the RAPD analysis, ten genotypes were grouped into two major clusters at a cut-off value of 0.75. Geographically distant C. falcatum isolate cfGAN from south Gujarat had a level of similarity with Coimbatore isolate cf8436 presented on separate clade of bootstrapped dendrograms. First and second cluster consisted of five and three isolates respectively, indicating the close relation among them. The 21 ISSR primers produced 119 distinct and scorable loci in that 38 were monomorphic. The number of scorable loci for each primer varied from 2 (ISSR822) to 8 (ISSR807, ISSR823 and ISSR15) with an average of 5.66 loci per primer. Primer ISSR835 amplified the highest number of bands (57), while only 16 bands were obtained by primers ISSR822. Four primers namely ISSR830, ISSR845, ISSR4 and ISSR15 showed the highest value of percentage of polymorphism (100%). The results indicated that both of the marker systems RAPD and ISSR, individually can be effectively used in determination of genetic relationship among C falcatum accessions collected from different parts of south Gujarat.

Keywords: Colletotrichum falcatum, ISSR, RAPD, Red Rot

Procedia PDF Downloads 361
3403 Resource Leveling Optimization in Construction Projects of High Voltage Substations Using Nature-Inspired Intelligent Evolutionary Algorithms

Authors: Dimitrios Ntardas, Alexandros Tzanetos, Georgios Dounias

Abstract:

High Voltage Substations (HVS) are the intermediate step between production of power and successfully transmitting it to clients, making them one of the most important checkpoints in power grids. Nowadays - renewable resources and consequently distributed generation are growing fast, the construction of HVS is of high importance both in terms of quality and time completion so that new energy producers can quickly and safely intergrade in power grids. The resources needed, such as machines and workers, should be carefully allocated so that the construction of a HVS is completed on time, with the lowest possible cost (e.g. not spending additional cost that were not taken into consideration, because of project delays), but in the highest quality. In addition, there are milestones and several checkpoints to be precisely achieved during construction to ensure the cost and timeline control and to ensure that the percentage of governmental funding will be granted. The management of such a demanding project is a NP-hard problem that consists of prerequisite constraints and resource limits for each task of the project. In this work, a hybrid meta-heuristic method is implemented to solve this problem. Meta-heuristics have been proven to be quite useful when dealing with high-dimensional constraint optimization problems. Hybridization of them results in boost of their performance.

Keywords: hybrid meta-heuristic methods, substation construction, resource allocation, time-cost efficiency

Procedia PDF Downloads 152
3402 Pattern Synthesis of Nonuniform Linear Arrays Including Mutual Coupling Effects Based on Gaussian Process Regression and Genetic Algorithm

Authors: Ming Su, Ziqiang Mu

Abstract:

This paper proposes a synthesis method for nonuniform linear antenna arrays that combine Gaussian process regression (GPR) and genetic algorithm (GA). In this method, the GPR model can be used to calculate the array radiation pattern in the presence of mutual coupling effects, and then the GA is used to optimize the excitations and locations of the elements so as to generate the desired radiation pattern. In this paper, taking a 9-element nonuniform linear array as an example and the desired radiation pattern corresponding to a Chebyshev distribution as the optimization objective, optimize the excitations and locations of the elements. Finally, the optimization results are verified by electromagnetic simulation software CST, which shows that the method is effective.

Keywords: nonuniform linear antenna arrays, GPR, GA, mutual coupling effects, active element pattern

Procedia PDF Downloads 109
3401 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling

Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar

Abstract:

Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that Fair-Share Scheduling ensures fair allocation of resources but needs to improve with an imbalanced system load, and Priority-Driven Preemptive Scheduling prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.

Keywords: energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints

Procedia PDF Downloads 119
3400 Impact of Islamic Hr Practices on Job Satisfaction: An Empirical Study of Banking Sector in Pakistan

Authors: Naheed Malik, Waheed Akhtar

Abstract:

An introduction to the Islamic move towards the managing human resource is a preliminary attempt to provide managers with a useful way of managing and accepting employees. This knowledge would be helpful to even non-Muslim managers. Muslim managers are required not to know only the Islamic HR but also it is expected from them to apply the Islamic approach in managing the employees. Human resource is considered the most substantial asset of organizations. Studies have recommended that successful human resource management (HRM) leads to positive attitudes and behaviors at the workplace. On the contrary, unproductive use of human resources results in negative penalty in the form of lower job satisfaction, lower commitment, or even high employee turnover and even poor workforce quality.The study examined the Impact of Islamic HR practices on job satisfaction. Islamic HR variables encompass the aspects of performance appraisal, training and development, selection and recruitment. Data was obtained via self –administered questionnaires distributed among the employees of Banks in Pakistan which are practicing Islamic Banking. The sampling method employed was purposive sampling.Based on 240 responses obtained ,the study revealed that Islamic HRM deliberates the 40per cent of the variances in Job satisfaction .All variables excluding recruitment were found to be substantially pertinent to the dependent variable. The study also meditated the implications for future studies.

Keywords: islamic HRM, job satisfaction, islamic and conventional banks, Pakistan

Procedia PDF Downloads 296
3399 Functional Analysis of Thyroid Peroxidase (TPO) Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das

Abstract:

Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection

Procedia PDF Downloads 345
3398 Functional Analysis of Thyroid Peroxidase Gene Mutations Detected in Patients with Thyroid Dyshormonogenesis

Authors: Biswabandhu Bankura, Srikanta Guria, Madhusudan Das

Abstract:

Purpose: Thyroid peroxidase (TPO) is the key enzyme in the biosynthesis of thyroid hormones. We aimed to identify the spectrum of mutations in the TPO gene leading to hypothyroidism in the population of West Bengal to establish the genetic etiology of the disease. Methods: 200 hypothyroid patients (case) and their corresponding sex and age matched 200 normal individuals (control) were screened depending on their clinical manifestations. Genomic DNA was isolated from peripheral blood samples and TPO gene (Exon 7 to Exon 14) was amplified by PCR. The PCR products were subjected to sequencing to identify mutations. Results: Single nucleotide changes such as Glu 641 Lys, Asp 668 Asn, Thr 725 Pro, Asp 620 Asn, Ser 398 Thr, and Ala 373 Ser were found. Changes in the TPO were assayed in vitro to compare mutant and wild-type activities. Five mutants were enzymatically inactive in the guaiacol and iodide assays. This is a strong indication that the mutations are present at crucial positions of the TPO gene, resulting in inactivated TPO. Key Findings: The results of this study may help to develop a genetic screening protocol for goiter and hypothyroidism in the population of West Bengal.

Keywords: thyroid peroxidase, hypothyroidism, mutation, in vitro assay, transfection

Procedia PDF Downloads 334
3397 ScRNA-Seq RNA Sequencing-Based Program-Polygenic Risk Scores Associated with Pancreatic Cancer Risks in the UK Biobank Cohort

Authors: Yelin Zhao, Xinxiu Li, Martin Smelik, Oleg Sysoev, Firoj Mahmud, Dina Mansour Aly, Mikael Benson

Abstract:

Background: Early diagnosis of pancreatic cancer is clinically challenging due to vague, or no symptoms, and lack of biomarkers. Polygenic risk score (PRS) scores may provide a valuable tool to assess increased or decreased risk of PC. This study aimed to develop such PRS by filtering genetic variants identified by GWAS using transcriptional programs identified by single-cell RNA sequencing (scRNA-seq). Methods: ScRNA-seq data from 24 pancreatic ductal adenocarcinoma (PDAC) tumor samples and 11 normal pancreases were analyzed to identify differentially expressed genes (DEGs) in in tumor and microenvironment cell types compared to healthy tissues. Pathway analysis showed that the DEGs were enriched for hundreds of significant pathways. These were clustered into 40 “programs” based on gene similarity, using the Jaccard index. Published genetic variants associated with PDAC were mapped to each program to generate program PRSs (pPRSs). These pPRSs, along with five previously published PRSs (PGS000083, PGS000725, PGS000663, PGS000159, and PGS002264), were evaluated in a European-origin population from the UK Biobank, consisting of 1,310 PDAC participants and 407,473 non-pancreatic cancer participants. Stepwise Cox regression analysis was performed to determine associations between pPRSs with the development of PC, with adjustments of sex and principal components of genetic ancestry. Results: The PDAC genetic variants were mapped to 23 programs and were used to generate pPRSs for these programs. Four distinct pPRSs (P1, P6, P11, and P16) and two published PRSs (PGS000663 and PGS002264) were significantly associated with an increased risk of developing PC. Among these, P6 exhibited the greatest hazard ratio (adjusted HR[95% CI] = 1.67[1.14-2.45], p = 0.008). In contrast, P10 and P4 were associated with lower risk of developing PC (adjusted HR[95% CI] = 0.58[0.42-0.81], p = 0.001, and adjusted HR[95% CI] = 0.75[0.59-0.96], p = 0.019). By comparison, two of the five published PRS exhibited an association with PDAC onset with HR (PGS000663: adjusted HR[95% CI] = 1.24[1.14-1.35], p < 0.001 and PGS002264: adjusted HR[95% CI] = 1.14[1.07-1.22], p < 0.001). Conclusion: Compared to published PRSs, scRNA-seq-based pPRSs may be used not only to assess increased but also decreased risk of PDAC.

Keywords: cox regression, pancreatic cancer, polygenic risk score, scRNA-seq, UK biobank

Procedia PDF Downloads 101
3396 Sustainability of Offshore Petroleum Resources Extraction and Management of Bangladesh: International and Regional Frameworks

Authors: Muhammad Farhad Hosen

Abstract:

This article examines the sustainability of offshore petroleum resource extraction and management in Bangladesh, focusing on international and regional frameworks. The analysis includes international conventions such as UNCLOS, IMO regulations, and SDGs, as well as regional cooperation through organizations like BIMSTEC and SAARC. The objective is to highlight the impact of these frameworks on sustainable extraction practices, address challenges, and offer recommendations for enhancing Bangladesh's legal and regulatory approaches to offshore resource management. The article underscores the need for harmonizing national laws with international standards, enhancing enforcement mechanisms, and promoting regional cooperation to ensure sustainable development.

Keywords: Bangladesh, international frameworks, offshore petroleum, regional framework, sustainability

Procedia PDF Downloads 28
3395 Utilizing Radio as a Resource Alternative for Disseminating Information to University Students in Ibadan, Nigeria: A Study of Lead City FM and Diamond FM Radio Stations

Authors: Olufemi Sunday Onabajo

Abstract:

Radio according to communication scholars is a veritable instrument of mass education. However, its full potentials in boosting higher education have not been realized because of the commercial nature of radio stations in Nigeria. The licensing of campus radio for disseminating information on university curricular is aimed at reinforcing information shared during face to face teaching. This study anchored on Agenda Setting and Technology determinism theories seeks to find out the extent to which university students in Lead City University and University of Ibadan, Nigeria have keyed-in to the philosophy of their campus radio – Lead City FM and Diamond FM in making information dissemination in their domiciled universities less cumbersome. The study employs both qualitative and quantitative methods though the use of depth interview for ten (10) academic staff and five (5) radio personnel of both radio stations; and a questionnaire addressed to 200 students of both institutions using the systematic random sampling technique. The data collected was analyzed using simple percentage and chi-square one tail test, and it was discovered that students of both universities and their radio personnel are yet to realize the potentials of campus radio as a resource alternative to effective learning, and recommends the coming together of all stakeholders to articulate the way forward.

Keywords: disseminating information, effective learning, resource alternative, utilizing radio

Procedia PDF Downloads 298
3394 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks

Authors: Adrian Ionita, Ana-Maria Ghimes

Abstract:

The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.

Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling

Procedia PDF Downloads 163
3393 Genodata: The Human Genome Variation Using BigData

Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta

Abstract:

Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.

Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop

Procedia PDF Downloads 259
3392 Cochlear Implants and the Emerging Therapies for Managing Hearing Loss

Authors: Hesham Kozou

Abstract:

Sensorineural hearing loss (SNHL) poses a significant challenge due to limited access to the inner ear for therapies. Emerging treatments such as regenerative, genetic, and pharmacotherapies offer hope for addressing this condition. This study aims to highlight the potential of cochlear implants and emerging therapies in managing sensorineural hearing loss by improving access to the inner ear. The study is conducted through a review of relevant literature and research articles in the field of cochlear implants and emerging therapies for hearing loss. It outlines how advancements in cochlear implant technologies, electrodes, and surgical techniques can facilitate the delivery of therapies to the inner ear, potentially revolutionizing the treatment of sensorineural hearing loss. The study underscores the potential of cochlear implants and emerging therapies in revolutionizing the treatment landscape for sensorineural hearing loss, emphasizing the feasibility of curing this condition by leveraging technological advancements.

Keywords: therapies for hearing loss management, future of CI as a cochlear delivery channel, regenerative, genetic and pharmacotherapeutic management of hearing loss

Procedia PDF Downloads 48
3391 Groundwater Contamination Assessment and Mitigation Strategies for Water Resource Sustainability: A Concise Review

Authors: Khawar Naeem, Adel Elomri, Adel Zghibi

Abstract:

Contamination leakage from municipal solid waste (MSW) landfills is a serious environmental challenge that poses a threat to interconnected ecosystems. It not only contaminates the soil of the saturated zone, but it also percolates down the earth and contaminates the groundwater (GW). In this concise literature review, an effort is made to understand the environmental hazards posed by this contamination to the soil and groundwater, the type of contamination, and possible solutions proposed in the literature. In the study’s second phase, the MSW management practices are explored as the landfill site dump rate and type of MSW into the landfill site directly depend on the MSW management strategies. Case studies from multiple developed and underdeveloped countries are presented, and the complex MSW management system is investigated from an operational perspective to minimize the contamination of GW. One of the significant tools used in the literature was found to be Systems Dynamic Modeling (SDM), which is a simulation-based approach to study the stakeholder’s approach. By employing the SDM approach, the risk of GW contamination can be reduced by devising effective MSW management policies, ultimately resulting in water resource sustainability and regional sustainable development.

Keywords: groundwater contamination, environmental risk, municipal solid waste management, system dynamic modeling, water resource sustainability, sustainable development

Procedia PDF Downloads 76
3390 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 147
3389 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
3388 Valorization of Mining Waste (Sand of Djemi Djema) from the Djbel Onk Mine (Eastern Algeria)

Authors: Rachida Malaoui, Leila Arabet , Asma Benbouza

Abstract:

The use of mining waste rock as a material for construction is one of the biggest concerns grabbing the attention of many mining countries. As these materials are abandoned, more effective solutions have been made to offset some of the building materials, and to avoid environmental pollution. The sands of the Djemi Djema deposit mines of the Djebel Onk mines are sedimentary materials of several varieties of layers with varying thicknesses and are worth far more than 300m deep. The sands from the Djemi Djema business area are medium to coarse and are discharged and accumulated, generating a huge estimated quantity of more than 77424250 tonnes. This state of "resource" is of great importance so as to be oriented towards the fields of public works and civil engineering after having reached the acceptable properties of this resource

Keywords: reuse, sands, shear tests, waste rock

Procedia PDF Downloads 146
3387 Automatic Aggregation and Embedding of Microservices for Optimized Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservices are a software development methodology in which applications are built by composing a set of independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in one or more machines (we assume that different microservices are deployed into different machines). Microservices are becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle, the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: - Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances, a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1 and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair (a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack surface between microservices can be larger. Luckily, container technology allows to run several processes on the same machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a formal method that receives a declarative definition of a microservice architecture and proposes different optimized deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance, resource usage, resource costs and failure tolerance.

Keywords: aggregation, deployment, embedding, resource allocation

Procedia PDF Downloads 203
3386 The Gasification of Acetone via Partial Oxidation in Supercritical Water

Authors: Shyh-Ming Chern, Kai-Ting Hsieh

Abstract:

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Keywords: acetone, gasification, SCW, supercritical water

Procedia PDF Downloads 386
3385 Genetics of Birth and Weaning Weight of Holstein, Friesians in Sudan

Authors: Safa A. Mohammed Ali, Ammar S. Ahamed, Mohammed Khair Abdalla

Abstract:

The objectives of this study were to estimate the means and genetic parameters of birth and weaning weight of calves of pure Holstein-Friesian cows raised in Sudan. The traits studied were:*Weight at birth *Weight at weaning. The study also included some of the important factors that affected these traits. The data were analyzed using Harvey’s Least Squares and Maximum Likelihood programme. The results obtained showed that the overall mean weight at birth of the calves under study was 34.36±0.94kg. Male calves were found to be heavier than females; the difference between the sexes was highly significant (P<0.001). The mean weight at birth of male calves was 34.27±1.17 kg while that of females was 32.51±1.14kg. The effect of sex of calves, sire and parity of dam were highly significant (P<0.001). The overall mean of weight at weaning was 67.10 ± 5.05 kg, weight at weaning was significantly (p<0.001) effected by sex of calves, sire, year and season of birth have highly significant (P<0.001) effect on either trait. Also estimates heritabilities of birth weight was (0.033±0.015) lower than heritabilities of weaning weight (0.224±0.039), and genetic correlation was 0.563, the phenotypic correlation 0.281, and the environmental correlation 0.268.

Keywords: birth, weaning, weight, friesian

Procedia PDF Downloads 665
3384 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm

Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi

Abstract:

To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.

Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm

Procedia PDF Downloads 237
3383 Thoughts on the Degree of Openness for Opening Residential District from the Perspective of Landscape Design

Authors: Yajing Jiang, Jing Wu, Siyu Bu

Abstract:

The development of opening residential district is the inevitable trend in China. The landscape resources in opening districts are the main resource for their sharing. However, there is a certain contradiction between the ideal of urban development and the reality of constraints. How to find a balance, to ensure a reasonable open ‘degree’ is particularly important. The opening residential district landscape design should reflect the relative independence of living space, taking into account the basic needs of residents; but also the integration of space, resource sharing, to ensure that the order of daily life on the basis of social interaction and adapt to the dynamic development of the city changes. And ultimately to achieve a reasonable degree of openness to settlements.

Keywords: degree of openness, landscape design, opening residential district, urban design

Procedia PDF Downloads 257
3382 Analysing Perceptions of Online Games-Based Learning: Case Study of the University of Northampton

Authors: Alison Power

Abstract:

Games-based learning aims to enhance students’ engagement with and enjoyment of learning opportunities using games-related principles to create a fun yet productive learning environment. Motivating students to learn in an online setting can be particularly challenging, so a cross-Faculty synchronous online session provided students with the opportunity to engage with ‘GAMING’: an interactive, flexible and scalable e-resource for students to work synchronously in groups to complete a series of e-tivities designed to enhance their skills of leadership, collaboration and negotiation. Findings from a post-session online survey found the majority of students had a positive learning experience, finding 'GAMING' to be an innovative and engaging e-resource which motivated their group to learn.

Keywords: collaboration, games-based learning, groupwork, synchronous online learning, teamwork

Procedia PDF Downloads 126
3381 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 408
3380 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 112
3379 Investigation of Soil Slopes Stability

Authors: Nima Farshidfar, Navid Daryasafar

Abstract:

In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.

Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface

Procedia PDF Downloads 339
3378 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 560
3377 Supply Chain Resource Optimization Model for E-Commerce Pure Players

Authors: Zair Firdaous, Fourka Mohamed, Elfelsoufi Zoubir

Abstract:

The arrival of e-commerce has changed the supply chain management on the operational level as well as on the organization and strategic and even tactical decisions of the companies. The optimization of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. Every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource in customized online shopping service mode. Then, we realized an optimization model and algorithm for the development based on the analysis of the of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: supply chain resource, e-commerce, pure-players, optimization

Procedia PDF Downloads 248