
Automatic Aggregation and Embedding of Microservices for Optimized
Deployments

Authors : Pablo Chico De Guzman, Cesar Sanchez
Abstract : Microservices are a software development methodology in which applications are built by composing a set of
independently deploy-able, small, modular services. Each service runs a unique process and it gets instantiated and deployed in
one or more machines (we assume that different microservices are deployed into different machines). Microservices are
becoming the de facto standard for developing distributed cloud applications due to their reduced release cycles. In principle,
the responsibility of a microservice can be as simple as implementing a single function, which can lead to the following issues: -
Resource fragmentation due to the virtual machine boundary. - Poor communication performance between microservices. Two
composition techniques can be used to optimize resource fragmentation and communication performance: aggregation and
embedding of microservices. Aggregation allows the deployment of a set of microservices on the same machine using a proxy
server. Aggregation helps to reduce resource fragmentation, and is particularly useful when the aggregated services have a
similar scalability behavior. Embedding deals with communication performance by deploying on the same virtual machine
those microservices that require a communication channel (localhost bandwidth is reported to be about 40 times faster than
cloud vendor local networks and it offers better reliability). Embedding can also reduce dependencies on load balancer services
since the communication takes place on a single virtual machine. For example, assume that microservice A has two instances,
a1 and a2, and it communicates with microservice B, which also has two instances, b1 and b2. One embedding can deploy a1
and b1 on machine m1, and a2 and b2 are deployed on a different machine m2. This deployment configuration allows each pair
(a1-b1), (a2-b2) to communicate using the localhost interface without the need of a load balancer between microservices A and
B. Aggregation and embedding techniques are complex since different microservices might have incompatible runtime
dependencies which forbid them from being installed on the same machine. There is also a security concern since the attack
surface between microservices can be larger. Luckily, container technology allows to run several processes on the same
machine in an isolated manner, solving the incompatibility of running dependencies and the previous security concern, thus
greatly simplifying aggregation/embedding implementations by just deploying a microservice container on the same machine
as the aggregated/embedded microservice container. Therefore, a wide variety of deployment configurations can be described
by combining aggregation and embedding to create an efficient and robust microservice architecture. This paper presents a
formal method that receives a declarative definition of a microservice architecture and proposes different optimized
deployment configurations by aggregating/embedding microservices. The first prototype is based on i2kit, a deployment tool
also submitted to ICWS 2018. The proposed prototype optimizes the following parameters: network/system performance,
resource usage, resource costs and failure tolerance.
Keywords : aggregation, deployment, embedding, resource allocation
Conference Title : ICWS 2018 : International Conference on Web Services
Conference Location : Madrid, Spain
Conference Dates : March 26-27, 2018

World Academy of Science, Engineering and Technology
International Journal of Information and Communication Engineering

Vol:12, No:03, 2018

O
pe

n
Sc

ie
nc

e
In

de
x,

 In
fo

rm
at

io
n

an
d

Co
m

m
un

ic
at

io
n

En
gi

ne
er

in
g

Vo
l:1

2,
 N

o:
03

, 2
01

8
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/a
bs

tr
ac

ts
/7

82
24

.p
df

ISNI:0000000091950263International Scholarly and Scientific Research & Innovation 12(03) 2018 1

https://publications.waset.org/abstracts/78224.pdf

