Search results for: fatty acid methyl esters
3187 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore
Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan
Abstract:
The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore
Procedia PDF Downloads 2903186 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production
Authors: Enlin Lo, Ioannis Dogaris, George Philippidis
Abstract:
Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid
Procedia PDF Downloads 2193185 Development of Nanocomposite from Poly (Lactic Acid) Plasticised Epoxidised Jatropha Oil and Nanocrystalline Cellulose
Authors: Siti Hasnah Kamarudin, Luqman Chuah Abdullah, Min Min Aung, Chantara Thevy Ratnam
Abstract:
The primary objective of this work was to develop fully nanocomposite material based on poly(lactic acid), epoxidized jatropha oil (EJO) and nanocrystalline cellulose. EJO was investigated as a sustainable alternative to petrochemical-based plasticizers to reinforce the ductility and toughness of plastics, in this case, nanocellulose/poly(lactic acid) (PLA). The EJO was melt blended into nanocellulose/PLA at concentrations from 1 wt% to 5 wt%. The blends were then hot-pressed into sheets to characterize their mechanical and physical properties. Microcrystalline cellulose had been converted to nanocrystalline cellulose by acid mercerisation technique and the effects thereof on the composites’ tensile, flexural, and impact properties, as well as their water absorption and density, were studied. The impact strengths of the nanocomposites were improved with the addition of NCC up to 0.5 wt%, with a maximum over 10 times that of the neat PLA. The flexural strength and modulus increased 4% and 50%, respectively, for NCC/PLA plasticized with EJO. This increase demonstrated the nanocrystalline cellulose addition gave notable improvements to the composites’ properties. Furthermore, analysis by scanning electron microscopy (SEM) of the nanocomposites’ tensile fracture surfaces indicated better interaction adhesion of the NCC/PLA plasticized with EJO compared with the PLA/EJO composites.Keywords: nanocrystalline cellulose, nanocomposite, poly (lactic acid), epoxidised jatropha oil
Procedia PDF Downloads 1483184 Underivatized Amino Acid Analyses Using Liquid Chromatography-Tandem Mass Spectrometry in Scalp Hair of Children with Autism Spectrum Disorder
Authors: Ayat Bani Rashaid, Zain Khasawneh, Mazin Alqhazo, Shreen Nusair, Mohammad El-Khateeb, Mahmoud Bashtawi
Abstract:
Autism Spectrum disorder (ASD) is a psychiatric disorder with unknown etiology that mainly affects children in the first three years of life. Alterations of amino acid levels are believed to contribute to ASD. The levels of six essential amino acids (methionine, histidine, valine, leucine, threonine, and phenylalanine), five conditional amino acids (proline, tyrosine, glutamine, cysteine, and cystine), and five non-essential amino acids (asparagine, aspartic acid, alanine, serine, and glutamic acid) in hair samples of children with ASD (n = 25) were analyzed and compared to corresponding levels in healthy age-matched controls (n = 25). The results showed that the levels of methionine, alanine, and asparagine were significantly lower in the hair samples of ASD group compared to those of the control group (p ≤ 0.05). However, the levels of glutamic acid were significantly higher in the ASD group than the control group (p ≤ 0.05). The current findings could contribute towards further understanding of ASD etiology and provide specialists with a hair amino acid profile utilized as a biomarker for early diagnosis of ASD. Such biomarkers could participate in future developments of therapies that reduce ASD-related symptoms.Keywords: autism spectrum disorder, amino acids, liquid chromatography-tandem mass spectrometry, human hair
Procedia PDF Downloads 1383183 Potential of Palm Oil Mill Effluent in Algae Cultivation for Biodiesel Production
Authors: Nur Azreena Idris, Soh Kheang Loh, Harrison Lau Lik Nang, Yuen May Choo, Eminour Muzalina Mustafa, Vijaysri Vello, Cheng Yau Tan, Siew Moi Phang
Abstract:
It is estimated that about 0.65-0.67 m3 of palm oil mill effluent (POME) is generated when one tonne of fresh fruit bunches is processed. Owning to the high content of nutrients in POME, it has high potential as a medium for microalgae growth. This study attempted determining the growth rate, biomass productivity and biochemical composition of microalgae (Chlorella sp.) grown in different POME concentrations i.e. 6.25%, 12.5%, 25% and 50% at outdoor conditions using a 200-mL capacity high rate algae pond (HRAP) and 2 closed photobioreactors (PBRs) i.e. annular and flat panel. The strain, Chlorella sp. grown on 12.5% of POME in flat panel PBR exhibited the highest specific growth rate of 0.32/day and biomass productivity (27.1 mg/L/day) followed by those in HRAP and annular PBR. It further showed that a good growth of Chlorella sp. in 12.5% of POME could sufficiently reduce the nutrients of POME such as phosphate (PO4), nitrate (NO3), nitrite (NO2) and chemical oxygen demand (COD). The extracted algal oil from POME culture showed that the saturated fatty acids decreased while polyunsaturated fatty acids increased compared to those cultured in standard culture medium (Bold’s Basal medium). The biochemical compositions of the algae grown in flat panel PBR were the highest with lipid, protein and carbohydrate productivity of 17.91 mg/L/day, 34.65 mg/L/day and 21.44 mg/L/day, respectively. The microalgae cultivation in diluted POME had not only shown potential as biodiesel feedstock based on the fatty acids profile but also the ability to reduce pollutants e.g. PO4, NO3, NO2 and COD in biological wastewater treatment.Keywords: wastewater treatment, photobioreactors, biomass productivity, specific growth rate
Procedia PDF Downloads 2663182 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review
Authors: M. Cortés, E. Vera, M. Avella
Abstract:
Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites
Procedia PDF Downloads 4443181 Assessment of Hepatosteatosis Among Diabetic and Nondiabetic Patients Using Biochemical Parameters and Noninvasive Imaging Techniques
Authors: Tugba Sevinc Gamsiz, Emine Koroglu, Ozcan Keskin
Abstract:
Aim: Nonalcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease in the general population. The higher mortality and morbidity among NAFLD patients and lack of symptoms makes early detection and management important. In our study, we aimed to evaluate the relationship between noninvasive imaging and biochemical markers in diabetic and nondiabetic patients diagnosed with NAFLD. Materials and Methods: The study was conducted from (September 2017) to (December 2017) on adults admitted to Internal Medicine and Gastroenterology outpatient clinics with hepatic steatosis reported on ultrasound or transient elastography within the last six months that exclude patients with other liver diseases or alcohol abuse. The data were collected and analyzed retrospectively. Number cruncher statistical system (NCSS) 2007 program was used for statistical analysis. Results: 116 patients were included in this study. Diabetic patients compared to nondiabetics had significantly higher Controlled Attenuation Parameter (CAP), Liver Stiffness Measurement (LSM) and fibrosis values. Also, hypertension, hepatomegaly, high BMI, hypertriglyceridemia, hyperglycemia, high A1c, and hyperuricemia were found to be risk factors for NAFLD progression to fibrosis. Advanced fibrosis (F3, F4) was present in 18,6 % of all our patients; 35,8 % of diabetic and 5,7 % of nondiabetic patients diagnosed with hepatic steatosis. Conclusion: Transient elastography is now used in daily clinical practice as an accurate noninvasive tool during follow-up of patients with fatty liver. Early diagnosis of the stage of liver fibrosis improves the monitoring and management of patients, especially in those with metabolic syndrome criteria.Keywords: diabetes, elastography, fatty liver, fibrosis, metabolic syndrome
Procedia PDF Downloads 1523180 The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals
Authors: M. Kaviani Darani, S. Bastani, M. Ghahari, P. Kardar
Abstract:
In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion.Keywords: upconversion nanoparticles, NaYF4, lanthanide, hydrothermal
Procedia PDF Downloads 2623179 Natural Dyeing on Wool Fabrics Using Some Red Rose Petals
Authors: Emrah Çimen, Mustafa Demirelli, Burcu Yilmaz Şahinbaşkan, Mahmure Üstün Özgür
Abstract:
Natural colours are used on a large area such as textile, food and pharmaceutical industries by many researchers. When tannic acid is used together with metal salts for dyeing with natural dyes, antibacterial and fastness properties of textile materials are increased. In addition, the allegens are removed on wool fabrics. In this experimental work, some red rose petals were applied as a natural dye with three different dyeing methods and eight different mordant salts. The effect of tannic acid and different metal salts on dyeing of wool fabric was studied. Colour differences ΔECMC (2:1) and fastness properties of dyed fabrics were investigated and compared with each other. Finally, dark colours and adequate colour fastness results (4+) were obtained after dyeing of wool fabrics with FeSO4.7H2O, FeCl3.6H2O and CuCl2.2H2O in the presence of the tannic acid.Keywords: natural dye, red rose petals, tannic acid, mordant salts, wool fabric
Procedia PDF Downloads 6303178 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid
Procedia PDF Downloads 5033177 Conversion of Jatropha curcas Oil to Ester Biolubricant Using Solid Catalyst Derived from Saltwater Clam Shell Waste (SCSW)
Authors: Said Nurdin, Fatimah A. Misebah, Rosli M. Yunus, Mohd S. Mahmud, Ahmad Z. Sulaiman
Abstract:
The discarded clam shell waste, fossil and edible oil as biolubricant feedstocks create environmental impacts and food chain dilemma, thus this work aims to circumvent these issues by using activated saltwater clam shell waste (SCSW) as solid catalyst for conversion of Jatropha curcas oil as non-edible sources to ester biolubricant. The characterization of solid catalyst was done by Differential Thermal Analysis-Thermo Gravimetric Analysis (DTA-TGA), X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Fourier Transformed Infrared Spectroscopy (FTIR) analysis. The calcined catalyst was used in the transesterification of Jatropha oil to methyl ester as the first step, and the second stage was involved the reaction of Jatropha methyl ester (JME) with trimethylolpropane (TMP) based on the various process parameters. The formated biolubricant was analyzed using the capillary column (DB-5HT) equipped Gas Chromatography (GC). The conversion results of Jatropha oil to ester biolubricant can be found nearly 96.66%, and the maximum distribution composition mainly contains 72.3% of triester (TE).Keywords: conversion, Jatropha curcas oil, ester biolubricant, solid catalyst
Procedia PDF Downloads 3683176 L-Carnitine vs Extracorporeal Elimination for Acute Valproic Acid Intoxication: A Systemic Review
Authors: Byung Keun Yang, Jae Eun Ku, Young Seon Joo, Je Sung You, Sung Phil Chung, Hahn Shick Lee
Abstract:
The purpose of this study is to review the evidence comparing the efficacy and safety between L-carnitine and extracorporeal elimination therapy in the management of acute valproic acid L-carnitine vs Extracorporeal Elimination for Acute Valproic acid Intoxication. PubMed, Embase, Cochrane library, Web of Science, KoreaMed, KMbase, and KISS were searched, using the terms carnitine and valproic acid. All studies, regardless of design, reporting efficacy or safety endpoints were included. Reference citations from identified publications were reviewed. Both English and Korean languages were included. Two authors extracted primary data elements including poisoning severity, presenting features, clinical management, and outcomes. Thirty two articles including 33 cases were identified. Poisoning severity was classified as 3 mild, 11 moderate, and 19 severe cases. Nine cases were treated with L-carnitine while 24 cases received extracorporeal therapy without L-carnitine. All patients except one expired patient treated with hemodialysis recovered clinically and no adverse effects were noted. A case report comparing two patients who ingested the same amount of valproic acid showed increased ICU stay (3 vs. 11 days) in case of delayed extracorporeal therapy. Published evidence comparing L-carnitine with extracorporeal therapy is limited. Based on the available evidence, it is reasonable to consider L-carnitine for patients with acute valproic acid overdose. In case of severe poisoning, extracorporeal therapy would also be considered in the early phase of treatment.Keywords: carnitine, overdose, poisoning, renal dialysis, valproic acid
Procedia PDF Downloads 3663175 Studying the Antiapoptotic Activity of Β Cells from Cord Blood Based Mesenchymal Stem Cells as an Approach to Treat Diabetes Mellitus
Authors: Parcha Sreenivasa Rao, P. Lakshmi
Abstract:
Diabetes Mellitus is metabolic disorder, characterized by high glucose levels in the blood due to one of the reason i.e., the death of β cells. The lack of β cells leads to the reduced insulin levels. The β cell death generally occurs due to apoptosis induced by the several cytokines. IL-1β, IFN- ϒ and TNF –α cytokines that are generally cause apoptosis to the β cell. The nutrient based apoptosis is generally seen with high glucose and free fatty acids. It is also noted that the β cell death triggered by Fas ligand and its receptor Fas at the surface of the activated CD8+ T- lymphocytes. Reports also reveal that the β cell apoptosis is under control of the transcription factors NF-kB and STAT- 1. The arresting or opposing of the β cell apoptosis can be overcome by the different growth factors like GLP-1, growth hormone, prolactin, VEGF, Dipeptidyl peptidase-4, Vildagliptin, suberoylanilidehydroxamic acid, trichistatin-A, XIAP, Bcl-2, FGF-21. Present investigation explains antiapoptotic property of the β cells derived from the mesenchymal stem cells of umbilical cord.Keywords: stem cells, umblical cord, diabetes, apoptosis
Procedia PDF Downloads 3803174 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis
Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo
Abstract:
Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination
Procedia PDF Downloads 1443173 Study on the Quality of Biscuits Prepared from Wheat Flour and Cassava Flour
Authors: Ramim Tanver Rahman, Muhammad Mahbub Sobhan, M. A. Alim
Abstract:
This study reports on processing of biscuits using skinned, treated and dried cassava flour. Five samples of biscuits S2, S3, S4, S5, and S6 containing 8, 16, 24, 32, and 40% cassava flour with wheat flour and a control sample (S1) containing no cassava flour were processed. The weights of all the biscuit samples were higher than that of control biscuit. The biscuit containing cassava flour was lower width than the control biscuit. The spread ratio of biscuits with 16% cassava flour was higher than other combinations of cassava flour. No remarkable changes in moisture content, peroxide value, fatty acid value, texture, and flavor were observed up to 4 months of storage in ambient conditions (27° to 35°C). A decreasing trend in color, flavor, texture and overall acceptability was observed with the increased incorporation of cassava flour. The sample S1 (no cassava flour) secured the highest overall acceptability and sample S6 (40% cassava flour) obtained the lowest overall acceptability. It is recommended that good quality cassava flour fortified biscuits may be processed in industrial-scale substituting the wheat flour by cassava flour up to 24% levels.Keywords: cassava flour, wheat flour, shelf life, spread ratio, storage, biscuit
Procedia PDF Downloads 3693172 Tomato Endophytes Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B Exhibits Plant Growth-Promotion and Fusarium Wilt Suppression
Authors: Bandana Saikia, Ashok Bhattacharyya
Abstract:
Endophytic microbes and their metabolites positively impact overall plant health, which may have a potential implication in agriculture. In the present study, 177 bacterial endophytes and 57 fungal endophytes were isolated, with the highest recovery rate from tomato roots. A maximum of 112 endophytes were isolated during monsoon, followed by 64 isolates and 58 isolates isolated during pre-monsoon and post-monsoon periods, respectively, indicating the rich diversity in bacterial and fungal endophytes of tomato crops from different locations of Assam, India. Further, the endophytes were evaluated for their antagonistic potential against Fusarium oxysporum f. sp. lycopersici. Fungal endophytic isolate AAUTLF (Endophytic Fungi of Tomato Leaf from Assam Agricultural University, Assam, India area) and bacterial endophyte D1B (Endophytic bacteria of tomato from Dhemiji, India district) showed the highest antifungal activity against the pathogen both in vitro and in vivo. Based on 5.8 rDNA sequence analysis of fungal and 16S rDNA sequence of bacteria endophytes, the most effective fungal and bacterial isolates against FOL were identified as Trichoderma asperellum AAUTLF and Stenotrophomonas maltophilia D1B, respectively. The isolates showed an antagonistic effect against Fusarium oxysporum f.sp. lycopersici in-vitro and reduced the disease index of Fusarium wilt in tomatoes by 64.4% under pot conditions. Trichoderma asperellum AAUTLF produced an antifungal compound viz., 6-pentyl-2H-pyran-2-one, which also possesses growth-promoting characteristics. The bacteria Stenotrophomonas maltophilia D1B produced antifungal compounds, including benzothiazole, oleic acid, phenylacetic acid, and 3-(Hydroxy-phenyl-methyl)-2,3-dimethyl-octan-4-one. This would be of high importance for the source of antagonistic strains and biocontrol of tomato Fusarium wilt, as well as other plant fungal diseases.Keywords: root endophytes, Stemotrophomonas, Trichoderma, benzothiazole, 6-pentyl-2H-pyran-2-one
Procedia PDF Downloads 713171 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids
Authors: Zharama M. Llarena
Abstract:
Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.Keywords: chlorogenic acid, coleus aromaticus, ionic liquid, rosmarinic acid
Procedia PDF Downloads 3183170 Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua
Authors: Haitham Qaralleh, Syed Z. Idid, Shahbudin Saad, Deny Susanti, Osama Althunibat
Abstract:
This study was carried out to isolate the active antimicrobial compounds from Neopetrosia exigua using bio-guided assay isolation against Staphylococcus aureus. N. exigua was extracted using methanol and subjected to liquid-liquid extraction using solvents with different polarity (n-hexane, carbon tetrachloride, dichloromethane, n-butanol and water). Purification of the active components of n-butanol and dichloromethane fractions was done using Sephadex LH-20 and reverse phase chromatography. Based on the biological guided fractionation results, dichloromethane and n-butanol fractions showed the highest antimicrobial activity. Purification of the active components of n-butanol and dichloromethane fractions yielded three compounds. The structure of the isolated compounds were elucidated and found to be 5-hydroxy-1H-indole-3-carboxylic acid methyl ester, cyclo-1`-demethylcystalgerone and avarol derivative. Avarol was showed potent bactericidal effect against S. aureus. N. exigua appears to be rich source of natural antimicrobial agents. Further studies are needed to investigate the mode of action of these compounds.Keywords: antimicrobial, avarol, Neopetrosia exigua, Staphylococcus aureus
Procedia PDF Downloads 4333169 Lactic Acid, Citric Acid, and Potassium Bitartrate Non-Hormonal Prescription Vaginal PH Modulator Gel for the Prevention of Pregnancy
Authors: Shanna Su, Kathleen Vincent
Abstract:
Introduction: A non-hormonal prescription vaginal pH modulator (VPM) gel (Phexxi®), with active ingredients lactic acid, citric acid, and potassium bitartrate, has recently been approved for the prevention of pregnancy in the United States. The objective of this review is to compile the evidence available from published preclinical and clinical trials to support its use. Areas covered: PubMed was searched for published literature on VPM gel. Two Phase III trials were found on the clinicaltrials.gov database. The results demonstrated that VPM gel is safe, with minimal side effects, and effective (cumulative 6-7 cycle pregnancy rate of 4.1-13.65%, (Pearl Index 27.5) as a contraceptive. Microbicidal effects suggest the potential for the prevention of sexually transmitted infections (STIs); currently, a Phase III clinical trial is being conducted to evaluate the prevention of chlamydia and gonorrhea. Expert opinion: Non-hormonal reversible contraceptive options have been limited to the highly effective copper-releasing intrauterine device that requires insertion by a trained clinician and less effective coitally-associated barrier and spermicide options which are typically available over-the-counter. Spermicides, which improve the efficacy of barrier devices, may increase the risk of Human Immunodeficiency Virus (HIV)/STIs. VPM gel provides a new safe, effective non-hormonal contraceptive option with the potential for prevention of STIs.Keywords: citric acid, lactic acid, non-hormonal contraception, potassium bitartrate, topical vaginal contraceptive, vaginal pH modulator gel
Procedia PDF Downloads 1003168 Effects of Indole on Aerobic Biodegradation of Butanoic Acid by Pseudomonas aeruginosa and Serratia marcescens
Authors: J. B. J. Njalam’mano, E. M. N. Chirwa
Abstract:
In low resource settings in Africa and other developing regions, pit latrines remain the dominant basic minimum acceptable form of sanitation. However, unpleasant smells-malodours emitted from faecal sludge in the pit latrines, which elicit disgusting or repulsive response, are one of the factors that thwart people to use latrines and instead opt for open defecation as an alternative. This provides an important but often overlooked major impediment, dissuading people from adopting and using the pit latrines hence affecting successful, effective sanitation promotion. The malodours are primarily attributed to four odorants: butanoic acid (C₄H₈O₂), dimethyl trisulphide (C₂H₆S₃), indole (C₈H₇N) and para-cresol (C₇H₈O). Several pit latrine deodorisation methods such as addition of carbonous materials, use of ventilation systems and urine separation are available, and they continue to occupy their niche, but social, economic, environmental and technological shortfalls remain. Bioremediation has been gaining popularity because it is inexpensive, simple to operate and environmentally friendly. Recently, the biodegradation of butanoic acid as individual odorant has been studied. However, to the best of our knowledge, there have been no kinetic studies of the butanoic acid in the presence of other key odorous compounds. In this study, a series of experiments were conducted to investigate the effects of indole on the removal of butanoic acid under aerobic conditions using indigenous bacteria strains, Pseudomonas aeruginosa, and Serratia marcescens isolated from faecal sludge as pure cultures as well as mixed cultures. In this purpose, butanoic acid removal was performed in a batch reactor containing the bacterial strains in mineral salt medium (MSM) amended with 3000 ppm of butanoic acid at the temperature of 30°C, under continuous stirring rate of 150 rpm and the concentration of indole was varied from 50-200 ppm. The initial pH of the solution was in the range of 6.0-7.2. Overall, there were significant differences in the bacterial growth rate and total butanoic acid removal dependent on the concentration of indole in the solution.Keywords: biodegradation, butanoic acid, indole, pit latrine
Procedia PDF Downloads 1953167 Rheological and Morphological Properties of Investment Casting Pattern Material Based on Paraffin Wax Fortified with Linear Low-Density Polyethylene and Filled with Poly Methyl Methacrylate
Authors: Robert Kimutai Tewo, Hilary Limo Rutto, Tumisang Seodigeng
Abstract:
The rheological and morphological properties of paraffin wax, linear low-density polyethylene (LLDPE), and poly (methyl methacrylate) (PMMA) microbeads formulations were prepared via an extrusion process. The blends were characterized by rheometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that LLDPE alters the wax crystal habit at higher concentrations. The rheological experimental data fitted with predicted data using the modified Krieger and Dougherty expression. The SEM micrograph of wax/LLDPE/PMMA revealed a near-perfect spherical nature for the filler particles in the wax/EVA polymer matrix. The FT-IR spectra show the deformation vibrations stretch of a long-chain aliphatic hydrocarbon (C-H) and also the presence of carbonyls absorption group denoted by -C=O- stretch.Keywords: investment casting pattern, paraffin wax, LLDPE, PMMA, rheological properties, modified Krieger and Dougherty expression
Procedia PDF Downloads 1703166 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production
Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia
Abstract:
A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel
Procedia PDF Downloads 2333165 Investigating the Antibacterial Properties and Omega-3 Levels of Evening Primrose Plant Against Multi-Drug Resistant Bacteria
Authors: A. H. Taghdisi, M. Mirmohammadi, S. Kamali
Abstract:
Evening primrose (Oenothera biennis L.) is a biennial and herbaceous and one of the most important species of medicinal plants in the world. due to the production of unsaturated fatty acids such as linoleic acid, alpha-linolenic acid, etc. in its seeds and roots, and compounds such as kaempferol in its leaves, Evening primrose has important medicinal efficiency such as reducing premenstrual problems, acceleration of wound healing, inhibiting platelet aggregation, sedation of cardiovascular diseases, and treatment of viral infections. The sap of the plant is used to treat warts, and the plant itself is used as a charm against mental and spiritual diseases and poisonous animals. Its leaves have significant antibacterial activity against yellow staphylococci. It is also used in the treatment of poisoning, especially the toxication caused by the consumption of alcoholic beverages, in the treatment of arteriosclerosis and diseases caused by liver cell insufficiency. Low germination and production speed are the problems of evening primrose growth and propagation. In the present study, extracts were obtained from four components (flowers, stems, seeds, leaves) of the evening primrose plant using the Soxhlet apparatus. To measure the antibacterial properties against MDR bacteria, microbial methods, including dilution, cultivation on a plate containing nutrient agar culture medium, and disc diffusion in agar, were performed using Staphylococcus aureus and Escherichia coli bacteria on all four extracts. The maximum antibacterial activity related to the dilution method was obtained in all extracts. In the plate culture method, antibacterial activity was obtained for all extracts in the nutrient agar medium. The maximum diameter of the non-growth halo was obtained in the disc diffusion method in agar in the leaf extract. The statistical analysis of the microbial part was done by one-way ANOVA test (SPSS). By comparing the amount of omega-3 in extracts of Iranian and foreign oils available in the market and the extracts extracted from evening primrose plant samples with gas chromatography, it is shown that the stem extract had the most omega-3 (oleic acid) and compared to the extract of the mentioned oils, it had the highest amount of omega-3 overall. Also, the amount of omega-3 in the extract of Iranian oils was much higher than in the extract of foreign oils. It should be noted that the extract of foreign oils had a more complete composition of omega-3 than the extract of Iranian oils.Keywords: antibacterial activity, MDR bacteria, evening primrose, omega-3
Procedia PDF Downloads 1033164 Poly (Acrylonitrile-Co-Methylacrylate)/Poly N-Methyl Pyrrole and Pyrrole Nanocomposites
Authors: Fatma Zehra Engin Sagirli, Eyup Sabri Kayali, A. Sezai Sarac
Abstract:
In this study, Poly (acrylonitrile-co-methylacrylate)/N-Methyl Pyrrole and Pyrrole ([P(AN-co-MA)]-NMPy and [P(AN-co-MA)]-PPy) core–shell nanoparticles were obtained by in situ emulsion polymerization in the presence of Sodium dodecyl benzene sulfonate and sodium dodecyl sulfate (SDBS and SDS) by using ammonium per sulphate in the aqueous medium. The spectroscopic characterizations during the formation of nanocomposites were studied using Attenuated total reflectance Fourier transform infrared (FTIR-ATR) spectroscopy, ultraviolet–visible spectrophotometer (Uv-Vis). Electrical conductivity of the emulsion solution was measured by Conductivity Meter from aqueous sample solution. Also, yield of the powder nanocomposites was measured. SDBS and SDS used for investigation of surfactant effect on yield, electrical conductivity and polymerization process. Determination of polymerization yield, (FTIR-ATR) and (Uv-Vis) prove that the SDBS surfactant become more incorporated into the conducting polymers and there is strong interaction between the [P(AN-co-MA)]-PPy derivatives which prepared by these surfactants. The similar inclusion of SDS into conducting polymers was not observed, there is a remarkable difference at nanocomposites which prepared with SDS.Keywords: nanocomposites, core-shell, pyrole, surfactant
Procedia PDF Downloads 4033163 Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid
Authors: H. Aghayan, F. A. Hashemi, R. Yavari, S. Zolghadri
Abstract:
In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N2 adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model.Keywords: platelet SBA-15, tungstomolybdophosphoric acid, adsorption, uranium ion
Procedia PDF Downloads 1873162 The Effects of Different Sowing Times on Seed Yield and Quality of Fenugreek (Trigonella foenum graecum L.) in East Mediterranean Region of Turkey
Authors: Lale Efe, Zeynep Gokce
Abstract:
In this study carried out in 2013-14 growing season in East Mediterranean Region of Turkey, it was aimed to investigate the effects of different sowing times on the seed yield and quality of fenugreek (Trigonella foenum graceum L.). Three fenugreek genotypes (Gürarslan, Candidate Line-1 and Genotype-1) were sown on 13.11.2013 and 07.03.2014 according to factorial randomized block design with 3 replications. Plant height (cm), branch number per plant, first pod height (cm), pod length (mm), seed number per pod (g), seed yield per plant (g), seed yield per decar (kg), thousand seed weight (g), mucilage rate (%), seed protein ratio (%), seed oil ratio (%), oleic acid (%), linoleic acid (%), palmitic acid (%) and stearic acid (%) were investigated. Among genotypes, while the highest seed yield per plant was obtained from Genotype-1 (5 g/plant), the lowest seed yield per plant was obtained from cv. Gürarslan (3.4 g/plant). According to genotype x sowing date interactions, it can be said that the highest seed yield per plant was taken in autumn sowing from Genotype-1 (6.6 g/plant) and the lowest seed yield per plant was taken in spring sowing from cv. Gürarslan (2.9 g/plant). Genotype-1 had the highest linoleic acid ratio (41.6 %). Cv. Gürarslan and Candidate Line-1 had the highest oleic acid ratio (respectively 17.8 % and 17.6%).Keywords: fenugreek, seed yield and quality, sowing times, Trigonella foenum graecum L.
Procedia PDF Downloads 2043161 Optimization of Media for Enhanced Fermentative Production of Mycophenolic Acid by Penicillium brevicompactum
Authors: Shraddha Digole, Swarali Hingse, Uday Annapure
Abstract:
Mycophenolic acid (MPA) is an immunosuppressant; produced by Penicillium Sp. Box-Behnken statistical experimental design was employed to optimize the condition of Penicillium brevicompactum NRRL 2011 for mycophenolic acid (MPA) production. Initially optimization of various physicochemical parameters and media components was carried out using one factor at a time approach and significant factors were screened by Taguchi L-16 orthogonal array design. Taguchi design indicated that glucose, KH2PO4 and MgSO4 had significant effect on MPA production. These variables were selected for further optimization studies using Box-Behnken design. Optimised fermentation condition, glucose (60 g/L), glycine (28 g/L), L-leucine (1.5g/L), KH2PO4 (3g/L), MgSO4.7H2O (1.5g/L), increased the production of MPA from 170 mg/L to 1032.54 mg/L. Analysis of variance (ANOVA) showed a high value of coefficient of determination R2 (0.9965), indicating a good agreement between experimental and predicted values and proves validity of the statistical model.Keywords: Box-Behnken design, fermentation, mycophenolic acid, Penicillium brevicompactum
Procedia PDF Downloads 4523160 Spatial and Temporal Evaluations of Disinfection By-Products Formation in Coastal City Distribution Systems of Turkey
Authors: Vedat Uyak
Abstract:
Seasonal variations of trihalomethanes (THMs) and haloacetic acids (HAAs) concentrations were investigated within three distribution systems of a coastal city of Istanbul, Turkey. Moreover, total trihalomethanes and other organics concentration were also analyzed. The investigation was based on an intensive 16 month (2009-2010) sampling program, undertaken during the spring, summer, fall and winter seasons. Four THM (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), and nine HAA (the most commonly occurring one being dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA); other compounds are monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), dibromoacetic acid (DBAA), tribromoacetic acid (TBAA), bromochloroacetic acid (BCAA), bromodichloroacetic acid (BDCAA) and chlorodibromoacetic acid (CDBAA)) species and other water quality and operational parameters were monitored at points along the distribution system between the treatment plant and the system’s extremity. The effects of coastal water sources, seasonal variation and spatial variation were examined. The results showed that THMs and HAAs concentrations vary significantly between treated waters and water at the distribution networks. When water temperature exceeds 26°C in summer, the THMs and HAAs levels are 0.8 – 1.1, and 0.4 – 0.9 times higher than treated water, respectively. While when water temperature is below 12°C in the winter, the measured THMs and HAAs concentrations at the system’s extremity were very rarely higher than 100 μg/L, and 60 μg/L, respectively. The highest THM concentrations occurred in the Buyukcekmece distribution system, with an average total HAA concentration of 92 μg/L. Moreover, the lowest THM levels were observed in the Omerli distribution network, with a mean concentration of 7 μg/L. For HAA levels, the maximum concentrations again were observed in the Buyukcekmece distribution system, with an average total HAA concentration of 57 μg/l. High spatial and seasonal variation of disinfection by-products in the drinking water of Istanbul was attributed of illegal wastewater discharges to water supplies of Istanbul city.Keywords: disinfection byproducts, drinking water, trihalomethanes, haloacetic acids, seasonal variation
Procedia PDF Downloads 1523159 Experimental Recovery of Gold, Silver and Palladium from Electronic Wastes Using Ionic Liquids BmimHSO4 and BmimCl as Solvents
Authors: Lisa Shambare, Jean Mulopo, Sehliselo Ndlovu
Abstract:
One of the major challenges of sustainable development is promoting an industry which is both ecologically durable and economically viable. This requires processes that are material and energy efficient whilst also being able to limit the production of waste and toxic effluents through effective methods of process synthesis and intensification. In South Africa and globally, both miniaturisation and technological advances have substantially increased the amount of electronic wastes (e-waste) generated annually. Vast amounts of e-waste are being generated yearly with only a minute quantity being recycled officially. The passion for electronic devices cannot ignore the scarcity and cost of mining the noble metal resources which contribute significantly to the efficiency of most electronic devices. It has hence become imperative especially in an African context that sustainable strategies which are environmentally friendly be developed for recycling of the noble metals from e-waste. This paper investigates the recovery of gold, silver and palladium from electronic wastes, which consists of a vast array of metals, using ionic liquids which have the potential of reducing the gaseous and aqueous emissions associated with existing hydrometallurgical and pyrometallurgical technologies while also maintaining the economy of the overall recycling scheme through solvent recovery. The ionic liquids 1-butyl-3-methyl imidazolium hydrogen sulphate (BmimHSO4) which behaves like a protic acid and was used in the present research for the selective leaching of gold and silver from e-waste. Different concentrations of the aqueous ionic liquid were used in the experiments ranging from 10% to 50%. Thiourea was used as the complexing agent in the investigation with Fe3+ as the oxidant. The pH of the reaction was maintained in the range of 0.8 to 1.5. The preliminary investigations conducted were successful in the leaching of silver and palladium at room temperature with optimum results being at 48hrs. The leaching results could not be explained because of the leaching of palladium with the absence of gold. Hence a conclusion could not be drawn and there was the need for further experiments to be run. The leaching of palladium was carried out with hydrogen peroxide as oxidant and 1-butyl-3-methyl imidazolium chloride (BmimCl) as the solvent. The experiments at carried out at a temperature of 60 degrees celsius and a very low pH. The chloride ion was used to complex with palladium metal. From the preliminary results, it could be concluded that pretreatment of the treatment e-waste was necessary to improve the efficiency of the metal recovery process. A conclusion could not be drawn for the leaching experiments.Keywords: BmimCl, BmimHSO4, gold, palladium, silver
Procedia PDF Downloads 2903158 Biohydrogen and Potential Vinegar Production from Agricultural Wastes Using Thermotoga neopolitana
Authors: Nidhi Nalin
Abstract:
This study is theoretical modelling of the fermentation process of glucose in agricultural wastes like discarded peaches to produce hydrogen, acetic acid, and carbon dioxide using Thermotoga neopolitana bacteria. The hydrogen gas produced in this process can be used in hydrogen fuel cells to generate power, and the fermented broth with acetic acid and salts could be utilized as salty vinegar if enough acetic acid is produced. The theoretical modelling was done using SuperPro software, and the results indicated how much sugar (discarded peaches) is required to produce both hydrogen and vinegar for the process to be profitable.Keywords: fermentation, thermotoga, hydrogen, vinegar, biofuel
Procedia PDF Downloads 155