Search results for: deep deterministic policy gradient (DDPG)
6146 India-Afghanistan Relations Post 9\11
Authors: Saifurahman Fayiz
Abstract:
Geo-strategically and geo-politically location of Afghanistan has endured the consideration of Indian government policy. Afghanistan has a durable and widespread economic, historical, military, and cultural relationship with India. Afghanistan has significant and durable bilateral relations with its neighbor India. India has enjoyed friendly relations with Afghanistan since 1947. After the collapse of the Taliban regime, India and Afghanistan started diplomatic relations. The relationship between the two countries was friendly and stable. The objective of this research is to study the India- Afghanistan relationship from 2001 to 2021 from different aspects. The research conducted a qualitative research method based on descriptive. The research findings propose that India should expand its soft power in Afghanistan, and India’s foreign policy in Afghanistan should be evaluated.Keywords: relation, policy, soft power, sector
Procedia PDF Downloads 1646145 Safety, Healthy, Intact, and Halal as New Indonesia Policy on Food Security and Safety to Support SDG'S: Sustainable Development Goals
Authors: Ramadhan Febriansyah, Sarah Novianti, Santi Agustini
Abstract:
Indonesia is a big country with Moslem population. The government must fulfill all needs of the people. However, we do not have a good policy yet especially on healthy, safety and halal food. We try to offer a new solution to overcome this with ASUH (Aman, Sehat, Utuh, Halal) or in English is SHIH (Safe, Healthy, Intact, Halal) as alternative Indonesian policy on food security. This policy is Indonesian Government’s commitment to support Sustainability Development Goals program for the zero hunger (end hunger, to achieve food security and improved nutrition for Indonesian people, of course, to promote sustainable agriculture). Hopefully, it not only can increasing quality on food especially on livestock goods (meat, egg, milk) but also to guarantee the halal food. However, this policy can be an example to others country especially Moslem countries to support SDG’s programs. This research conducted means of the descriptive method; the authors find compare the secondary data obtained from journals, textbook and scientific articles in order to determine the factors that influence food safety and food security. Relevant data used and contain a description of SDG’s as well as about the system food safety and food security that SHIH (Safe, Healthy, Intact and Halal) so these ideas can be implemented.Keywords: food safety, food security, food sovereignty, halal SDG's
Procedia PDF Downloads 3836144 The Morphology and Flash Flood Characteristics of the Transboundary Khowai River: A Catchment Scale Analysis
Authors: Jonahid Chakder, Mahfuzul Haque
Abstract:
Flash flood is among the foremost disastrous characteristic hazards which cause hampering within the environment and social orders due to climate change across the world. In Northeastern region of Bangladesh faces severe flash floods regularly, Such, the Khowai river is a flash flood-prone river. But until now, there are no previous studies about the flash flood of this river. Farmlands Building resilience, protection of crops & fish enclosures of wetland in Habiganj Haor areas, regional roads, and business establishments were submerged due to flash floods. The flash floods of the Khowai River are frequent events, which happened in 1988, 1998, 2000, 2007, 2017, and 2019. Therefore, this study tries to analyze Khowai river morphology, Precipitation, Water level, Satellite image, and Catchment characteristics: a catchment scale analysis that helps to comprehend Khowai river flash flood characteristics and factors of influence. From precipitation analysis, the finding outcome disclosed the data about flash flood accurate zones at the Khowai district watershed. The morphological analysis workout from satellite image and find out the consequence of sinuosity and gradient of this river. The sinuosity indicates that the Khowai river is an antecedent and a meandering river and a meandering river can’t influence the flash flood of any region, but other factors respond here. It is understood that the Khowai river catchment elevation analysis from DEM is directly influenced. The left Baramura and Right Atharamura anticline of the Khowai basin watershed reflects a major impact on the stratigraphy as an impermeable clay layer and this consequence the water passes downward with the drainage pattern and Tributary. This drainage system, the gradient of tributary and their runoff, and the confluence of water in the pre-monsoon season rise the Khowai river water level which influences flash floods (within six hours of Precipitation).Keywords: geology, gradient, tributary, drainage, watershed, flash flood
Procedia PDF Downloads 1266143 A Critical Analysis on Gaps Associated with Culture Policy Milieu Governing Traditional Male Circumcision in the Eastern Cape, South Africa
Authors: Thanduxolo Nomngcoyiya, Simon M. Kang’ethe
Abstract:
The paper aimed to critically analyse gaps pertaining to the cultural policy environments governing traditional male circumcision in the Eastern Cape as exemplified by an empirical case study. The original study which this paper is derived from utilized qualitative paradigm; and encompassed 28 participants. It used in-depth one-on-one interviews complemented by focus group discussions and key informants as a method of data collection. It also adopted interview guide as a data collection instrument. The original study was cross-sectional in nature, and the data was audio recorded and transcribed later during the data analysis and coding process. The study data analysis was content thematic analysis and identified the following key major findings on the culture of male circumcision policy: Lack of clarity on culture of male circumcision policy operations; Myths surrounding procedures on culture of male circumcision; Divergent views on cultural policies between government and male circumcision custodians; Unclear cultural policies on selection criteria of practitioners; and Lack of policy enforcement and implementation on transgressors of culture of male circumcision. It recommended: a stringent selection criteria of practitioners; a need to carry out death-free male circumcision; a need for male circumcision stakeholders to work with other culture and tradition-friendly stakeholders.Keywords: human rights, policy enforcement, traditional male circumcision, traditional surgeons and nurses
Procedia PDF Downloads 2976142 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1466141 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning
Authors: Michael A. Sprayberry, Vincent C. Paquit
Abstract:
Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization
Procedia PDF Downloads 916140 Modeling and Mapping of Soil Erosion Risk Using Geographic Information Systems, Remote Sensing, and Deep Learning Algorithms: Case of the Oued Mikkes Watershed, Morocco
Authors: My Hachem Aouragh, Hind Ragragui, Abdellah El-Hmaidi, Ali Essahlaoui, Abdelhadi El Ouali
Abstract:
This study investigates soil erosion susceptibility in the Oued Mikkes watershed, located in the Meknes-Fez region of northern Morocco, utilizing advanced techniques such as deep learning algorithms and remote sensing integrated within Geographic Information Systems (GIS). Spanning approximately 1,920 km², the watershed is characterized by a semi-arid Mediterranean climate with irregular rainfall and limited water resources. The waterways within the watershed, especially the Oued Mikkes, are vital for agricultural irrigation and potable water supply. The research assesses the extent of erosion risk upstream of the Sidi Chahed dam while developing a spatial model of soil loss. Several important factors, including topography, land use/land cover, and climate, were analyzed, with data on slope, NDVI, and rainfall erosivity processed using deep learning models (DLNN, CNN, RNN). The results demonstrated excellent predictive performance, with AUC values of 0.92, 0.90, and 0.88 for DLNN, CNN, and RNN, respectively. The resulting susceptibility maps provide critical insights for soil management and conservation strategies, identifying regions at high risk for erosion across 24% of the study area. The most high-risk areas are concentrated on steep slopes, particularly near the Ifrane district and the surrounding mountains, while low-risk areas are located in flatter regions with less rugged topography. The combined use of remote sensing and deep learning offers a powerful tool for accurate erosion risk assessment and resource management in the Mikkes watershed, highlighting the implications of soil erosion on dam siltation and operational efficiency.Keywords: soil erosion, GIS, remote sensing, deep learning, Mikkes Watershed, Morocco
Procedia PDF Downloads 186139 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 2736138 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 956137 The Role of Stakeholders in the Development of Sustainable Supply Chain Policy Framework in the Upstream Pharmaceutical Industry in Ghana
Authors: Gifty Kumadey, Albert Tchey Agbenyegah
Abstract:
This study explores the role of stakeholders in developing a sustainable supply chain policy framework in Ghana's pharmaceutical industry. It employs a qualitative research design to analyze policy documents, academic articles, and reports, shedding light on stakeholder involvement. The findings highlight the contributions of government agencies, regulatory bodies, pharmaceutical companies, suppliers, and civil society organizations. Key policies such as green procurement, waste management, and recycling initiatives are identified. However, challenges such as limited transparency, supplier engagement, and regulatory complexity impede implementation. The study recommends strengthening collaboration and promoting transparency to overcome these challenges. The findings provide valuable insights for policymakers, industry stakeholders, and researchers seeking to advance sustainable supply chain practices in Ghana's pharmaceutical industry.Keywords: stakeholders, sustainable supply chain, policy framework, pharmaceutical industry
Procedia PDF Downloads 936136 Massachusetts Homeschool Policy: An Interpretive Analysis of Homeschool Regulation and Oversight
Authors: Lauren Freed
Abstract:
This research proposal outlines an examination of homeschool oversight in the Massachusetts educational system amid the backdrop of ideological differences between various parties with contributing interests. This mixed methodology study will follow an interpretive policy research approach, involving the use of existing data, surveys, and focus groups. The aim is to capture distinct sets of meanings, values, feelings, and beliefs by principal stakeholders, while exploring the ways in which they/each interact with, interpret, and implement homeschool guidelines set forth by the Massachusetts Supreme Judicial Court Decision Care and Protection of Charles (1987). This analysis will identify and contextualize the attitudes, administrative choices, financial implications, and educational impacts that result from the process and practice of enacting current homeschool oversight policy in Massachusetts. The following question will guide this study: How do districts, homeschooling parents, and Massachusetts Department of Elementary and Secondary Education (DESE) regulate, fund, collect, interpret, implement and report Massachusetts homeschool oversight policy? The resulting analysis will produce a unique and original baseline snapshot of qualitative and quantifiable point-in-time data based on the registered homeschool population in the state of Massachusetts.Keywords: alternative education, homeschooling, home education, home schooling policy
Procedia PDF Downloads 1876135 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin
Authors: Hillary Mwongyera
Abstract:
The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring
Procedia PDF Downloads 5316134 Role of Renewable Energy in Foreign Policy of China
Authors: Alina Gilmanova
Abstract:
China’s dependency on coal for energy is causing pollution in China and abroad. To supply the increasing energy demand and being under the pressure from international society to reduce the emissions, China was pushed to develop renewable energy. The increasing subsidies in Renewable energy sources (RES) led not only to the price-cutting but also affecting the international trade in green technology sector. In order to evaluate the role of RES in foreign policy of China, I am going to give an (i) overview of RES development in China and examine the cooperation between China and (ii) developed, (ii) developing and emerging countries. The conclusive remarks are intended to address the question of how the present Chinese renewable energy development is impacting its foreign policy and international society.Keywords: renewable energy, China, foreign affairs, brics, cooperation
Procedia PDF Downloads 6386133 The Hauntings of Empire: Imperial Nationalism and International Relations
Authors: Katie Hudson
Abstract:
A growing body of scholarship is dedicated to the concept of imperial nationalism, denoting a nostalgia for empire amongst former imperial powers and a yearning to recapture the grandeur of the imperial ‘golden age.’ Much research within this field has focused on Brexit, arguing that Britain’s imperialist identity has spawned Euroscepticism. However, the interaction between imperial nationalism and foreign policy remains underdeveloped and thus far has failed to consider cases outside of the UK. Using maximum variation sampling across post-2000 Britain, Spain and the Netherlands, this comparative analysis aims to explore the discursive invocation of empire in foreign policy framing, under which circumstances and in what ways imperial nationalism emerges. Preliminary findings demonstrate that empire is most often cited when there is a perceived threat to the sovereignty of the nation and that all cases frame foreign policy options according to their acute concerns with regaining the prestige associated with empire. This is present to a lesser extent in Spain, whose earlier period of decolonisation affected the extent to which imperialism has permeated their national psyche. This, therefore, provides an alternative lens through which we can view both Euroscepticism and international relations, conditioned by an imperial legacy.Keywords: empire, nationalism, foreign policy, IR
Procedia PDF Downloads 946132 Hyperspectral Band Selection for Oil Spill Detection Using Deep Neural Network
Authors: Asmau Mukhtar Ahmed, Olga Duran
Abstract:
Hydrocarbon (HC) spills constitute a significant problem that causes great concern to the environment. With the latest technology (hyperspectral images) and state of the earth techniques (image processing tools), hydrocarbon spills can easily be detected at an early stage to mitigate the effects caused by such menace. In this study; a controlled laboratory experiment was used, and clay soil was mixed and homogenized with different hydrocarbon types (diesel, bio-diesel, and petrol). The different mixtures were scanned with HYSPEX hyperspectral camera under constant illumination to generate the hypersectral datasets used for this experiment. So far, the Short Wave Infrared Region (SWIR) has been exploited in detecting HC spills with excellent accuracy. However, the Near-Infrared Region (NIR) is somewhat unexplored with regards to HC contamination and how it affects the spectrum of soils. In this study, Deep Neural Network (DNN) was applied to the controlled datasets to detect and quantify the amount of HC spills in soils in the Near-Infrared Region. The initial results are extremely encouraging because it indicates that the DNN was able to identify features of HC in the Near-Infrared Region with a good level of accuracy.Keywords: hydrocarbon, Deep Neural Network, short wave infrared region, near-infrared region, hyperspectral image
Procedia PDF Downloads 1136131 Vertical Structure and Frequencies of Deep Convection during Active Periods of the West African Monsoon Season
Authors: Balogun R. Ayodeji, Adefisan E. Adesanya, Adeyewa Z. Debo, E. C. Okogbue
Abstract:
Deep convective systems during active periods of the West African monsoon season have not been properly investigated over better temporal and spatial resolution in West Africa. Deep convective systems are investigated over seven climatic zones of the West African sub-region, which are; west-coast rainforest, dry rainforest, Nigeria-Cameroon rainforest, Nigeria savannah, Central African and South Sudan (CASS) Savannah, Sudano-Sahel, and Sahel, using data from Tropical Rainfall Measurement Mission (TRMM) Precipitation Feature (PF) database. The vertical structure of the convective systems indicated by the presence of at least one 40 dBZ and reaching (attaining) at least 1km in the atmosphere showed strong core (highest frequency (%)) of reflectivity values around 2 km which is below the freezing level (4-5km) for all the zones. Echoes are detected above the 15km altitude much more frequently in the rainforest and Savannah zones than the Sudano and Sahel zones during active periods in March-May (MAM), whereas during active periods in June-September (JJAS) the savannahs, Sudano and Sahel zones convections tend to reach higher altitude more frequently than the rainforest zones. The percentage frequencies of deep convection indicated that the occurrences of the systems are within the range of 2.3-2.8% during both March-May (MAM) and June-September (JJAS) active periods in the rainforest and savannah zones. On the contrary, the percentage frequencies were found to be less than 2% in the Sudano and Sahel zones, except during the active-JJAS period in the Sudano zone.Keywords: active periods, convective system, frequency, reflectivity
Procedia PDF Downloads 1526130 Principles of Sustainable and Affordable Housing Policy for Afghan Refugees Returning to Afghanistan
Authors: Mohammad Saraj Sharifzai, Keisuke Kitagawa, Mohammad Kamil Halimee, Javid Habib, Daishi Sakaguchi
Abstract:
The overall goal of this paper is to examine the suitability and potential of the policies addressing the sustainability and affordability of housing for returnees, and to determine the impact of this policy on housing delivery for Afghan refugees. Housing is a central component of the settlement experience of refugees. A positive housing situation can facilitate many aspects of integration. Unaffordable, and unsafe housing, however, can cause disruptions in the entire settlement process. This paper aims to identify a suite of built forms for housing that is both affordable and environmentally sustainable for Afghan refugees. The result was the development of a framework that enables the assessment of the overall performance of various types of housing development in all zones of the country. There is very little evidence that the present approach of housing provision to the vagaries of market forces has provided affordable housing, especially for Afghan refugees. There is a need to incorporate social housing into the policy to assist people who cannot afford to have their own houses.Keywords: Afghan refugees, housing policy, affordability, social housing, housing provision, environmental sustainability principles, resettlement
Procedia PDF Downloads 5676129 Deepnic, A Method to Transform Each Variable into Image for Deep Learning
Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.
Abstract:
Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.Keywords: tabular data, deep learning, perfect trees, NICS
Procedia PDF Downloads 906128 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 2406127 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 3316126 Increasing Abundance of Jellyfish in the Shorelines of Bangladesh: Analyzing the Policy Framework for Facing the Challenges
Authors: Md Mizanur Rahman, M. Aslam Alam, Muhammad Abu Yusuf
Abstract:
The abundance of Jellyfish across the coasts of the Bay of Bengal is increasing sharply due to marine pollution, increased sea acidification and climate change. Jellyfish draws our attention to address the local and global stressors. This also indicates that something wrong is happening in this bay behind the scenes. This study aimed to investigate how the policy framework governing the sea can be reformed. To do so, this study evaluated the existing policy, regulatory and institutional framework. Empirical data were collected from the middle coastal zone of Bangladesh. The secondary literature on policy, legal documents, and institutional arrangements were reviewed. The causes of poor coordination among different public sectors and non-compliance of laws were identified. The key findings show that despite the existing of Department of Environment, poor coordination with other departments, and lack of logistics and technical staffs have resulted in severe marine pollution and degradation of coastal and marine living resources. The existing policies had no monitoring and evaluation mechanisms. Non-compliance of the existing laws has been fueling the problems. This study provides an integrated policy and a guideline for updating the legal and institutional mechanism to manage coastal and marine living resources sustainably in Bangladesh to achieve Sustainable Development Goal 14.Keywords: legal, institutional, framework, jellyfish
Procedia PDF Downloads 1256125 Comprehensive Framework for Pandemic-Resilient Cities to Avert Future Migrant Crisis: A Case of Mumbai
Authors: Vasudha Thapa, Kiran Chappa
Abstract:
There is a pressing need to prepare cities in the developing countries of the global south such as India against the chaos created by COVID 19 pandemic and future disaster risks. This pandemic posed the nation with an unprecedented challenge of dealing with a wave of stranded migrant workers. These workers comprise the most vulnerable section of the society in case of any pandemic or disaster risks. The COVID 19 pandemic exposed the vulnerability of migrant workers in the urban form and the need for capacity-building strategies against future pandemics. This paper highlights the challenges of these migrant workers in the case of Mumbai city in lockdown, post lockdown, and the current uncertain scenarios. The paper deals with a thorough investigation of the existing and the recent policies and strategies taken by the Urban Local Bodies (ULBs), state, and central government to assist these migrants in the city during this mayhem of uncertainties. The paper looks further deep into the challenges and opportunities presented in the current scenario through the assessment of existing data and response to policy measures taken by the government organizations. The ULBs are at the forefront in the response to any disaster risk, hence the paper assesses the capacity gaps of the Urban local bodies in mitigating the risks posed by any pandemic-like situation. The study further recommends capacity-building strategies at various levels of governance and uniform policy measures to assist the migrant population of the city.Keywords: urban resilience, covid 19, migrant population, India, capacity building, governance
Procedia PDF Downloads 1876124 Assessing the Macroeconomic Effects of Fiscal Policy Changes in Egypt: A Bayesian Structural Vector Autoregression Approach
Authors: Walaa Diab, Baher Atlam, Nadia El Nimer
Abstract:
Egypt faces many obvious economic challenges, and it is so clear that a real economic transformation is needed to address those problems, especially after the recent decisions of floating the Egyptian pound and the gradual subsidy cuts that are trying to meet the needed conditions to get the IMF support of (a £12bn loan) for its economic reform program. Following the post-2008 revival of the interest in the fiscal policy and its vital role in speeding up or slowing down the economic growth. Here comes the value of this paper as it seeks to analyze the macroeconomic effects of fiscal policy in Egypt by applying A Bayesian SVAR Approach. The study uses the Bayesian method because it includes the prior information and no relevant information is omitted and so it is well suited for rational, evidence-based decision-making. Since the study aims to define the effects of fiscal policy shocks in Egypt to help the decision-makers in determining the proper means to correct the structural problems in the Egyptian economy, it has to study the period of 1990s economic reform, but unfortunately; the available data is on an annual frequency. Thus, it uses annual time series to study the period 1991: 2005 And quarterly data over the period 2006–2016. It uses a set of six main variables includes government expenditure and net tax revenues as fiscal policy arms affecting real GDP, unemployment, inflation and the interest rate. The study also tries to assess the 'crowding out' effects by considering the effects of government spending and government revenue shocks on the composition of GDP, namely, on private consumption and private investment. Last but not least the study provides its policy implications regarding the needed role of fiscal policy in Egypt in the upcoming economic reform building on the results it concludes from the previous reform program.Keywords: fiscal policy, government spending, structural vector autoregression, taxation
Procedia PDF Downloads 2796123 Minority Language Policy and Planning in Manchester, Britain
Authors: Mohamed F. Othman
Abstract:
Manchester, Britain has become the destination of immigrants from different parts of the world. As a result, it is currently home to over 150 different ethnic languages. The present study investigates minority language policy and planning at the micro-level of the city. In order to get an in-depth investigation of such a policy, it was decided to cover it from two angles: the first is the policy making process. This was aimed at getting insights on how decisions regarding the provision of government services in minority languages are taken and what criteria are employed. The second angle is the service provider; i.e. the different departments in Manchester City Council (MCC), the NHS, the courts, and police, etc., to obtain information on the actual provisions of services. Data was collected through semi-structured interviews with different personnel representing different departments in MCC, solicitors, interpreters, etc.; through the internet, e.g. the websites of MCC, NHS, courts, and police, etc.; and via personal observation of provisions of community languages in government services. The results show that Manchester’s language policy is formulated around two concepts that work simultaneously: one is concerned with providing services in community languages in order to help minorities manage their life until they acquire English, and the other with helping the integration of minorities through encouraging them to learn English. In this regard, different government services are provided in community languages, though to varying degrees, depending on the numerical strength of each individual language. Thus, it is concluded that there is awareness in MCC and other government agencies working in Manchester of the linguistic diversity of the city and there are serious attempts to meet this diversity in their services. It is worth mentioning here that providing such services in minority languages are not meant to support linguistic diversity, but rather to maintain the legal right to equal opportunities among the residents of Manchester and to avoid any misunderstanding that may result due to the language barrier, especially in such areas as hospitals, courts, and police. There is actually no explicitly-mentioned language policy regarding minorities in Manchester; rather, there is an implied or covert policy resulting from factors that are not explicitly documented. That is, there are guidelines from the central government, which emphasize the principle of equal opportunities; then the implementation of such guidelines requires providing services in the different ethnic languages.Keywords: community language, covert language policy, micro-language policy and planning, minority language
Procedia PDF Downloads 2686122 The Use of Tourism Destination Management for Image Branding as a Preferable Choice of Foreign Policy
Authors: Mehtab Alam, Mudiarasan Kuppusamy
Abstract:
Image branding is the prominent and well-guided phenomena of managing tourism destinations. It examines the image of cities forming as brand identity. Transformation of cities into tourist destinations is obligatory for the current management practices to be used for foreign policy. The research considers the features of perception, destination accommodation, destination quality, traveler revisit, destination information system, and behavioral image for tourism destination management. Using the quantitative and qualitative research methodology, the objective is to examine and investigate the opportunities for destination branding. It investigates the features and management of tourism destinations in Abbottabad city of Pakistan through SPSS and NVivo 12 software. The prospective outlook of the results and coding reflects the significant contribution of integrated destination management for image branding, where Abbottabad has the potential to become a destination city. The positive impact of branding integrates tourism management as it is fulfilling travelers’ requirements to influence the choice of destination for innovative foreign policy.Keywords: image branding, destination management, tourism, foreign policy, innovative
Procedia PDF Downloads 946121 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 1586120 Effect of Correlation of Random Variables on Structural Reliability Index
Authors: Agnieszka Dudzik
Abstract:
The problem of correlation between random variables in the structural reliability analysis has been extensively discussed in literature on the subject. The cases taken under consideration were usually related to correlation between random variables from one side of ultimate limit state: correlation between particular loads applied on structure or correlation between resistance of particular members of a structure as a system. It has been proved that positive correlation between these random variables reduces the reliability of structure and increases the probability of failure. In the paper, the problem of correlation between random variables from both side of the limit state equation will be taken under consideration. The simplest case where these random variables are of the normal distributions will be concerned. The case when a degree of that correlation is described by the covariance or the coefficient of correlation will be used. Special attention will be paid on questions: how much that correlation changes the reliability level and can it be ignored. In reliability analysis will be used well-known methods for assessment of the failure probability: based on the Hasofer-Lind reliability index and Monte Carlo method adapted to the problem of correlation. The main purpose of this work will be a presentation how correlation of random variables influence on reliability index of steel bar structures. Structural design parameters will be defined as deterministic values and random variables. The latter will be correlated. The criterion of structural failure will be expressed by limit functions related to the ultimate and serviceability limit state. In the description of random variables will be used only for the normal distribution. Sensitivity of reliability index to the random variables will be defined. If the reliability index sensitivity due to the random variable X will be low when compared with other variables, it can be stated that the impact of this variable on failure probability is small. Therefore, in successive computations, it can be treated as a deterministic parameter. Sensitivity analysis leads to simplify the description of the mathematical model, determine the new limit functions and values of the Hasofer-Lind reliability index. In the examples, the NUMPRESS software will be used in the reliability analysis.Keywords: correlation of random variables, reliability index, sensitivity of reliability index, steel structure
Procedia PDF Downloads 2376119 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: deep learning, field programmable gate array, FPGA, hardware accelerator, convolutional neural networks, CNN
Procedia PDF Downloads 1286118 The Role of Interest Groups in Foreign Policy: Assessing the Influence of the 'Pro-Jakarta Lobby' in Australia and Indonesia's Bilateral Relations
Authors: Bec Strating
Abstract:
This paper examines the ways that domestic politics and pressure–generated through lobbying, public diplomacy campaigns and other tools of soft power-contributes to the formation of short-term and long-term national interests, priorities and strategies of states in their international relations. It primarily addresses the conceptual problems regarding the kinds of influence that lobby groups wield in foreign policy and how this influence might be assessed. Scholarly attention has been paid to influential foreign policy lobbies and interest groups, particularly in the areas of US foreign policy. Less attention has been paid to how lobby groups might influence the foreign policy of a middle power such as Australia. This paper examines some of the methodological complexities in developing and conducting a research project that can measure the nature and influence of lobbies on foreign affairs priorities and activities. This paper will use Australian foreign policy in the context of its historical bilateral relationship with Indonesia as a case study for considering the broader issues of domestic influences on foreign policy. Specifically, this paper will use the so-called ‘pro-Jakarta lobby’ as an example of an interest group. The term ‘pro-Jakarta lobby’ is used in media commentary and scholarship to describe an amorphous collection of individuals who have sought to influence Australian foreign policy in favour of Indonesia. The term was originally applied to a group of Indonesian experts at the Australian National University in the 1980s but expanded to include journalists, think tanks and key diplomats. The concept of the ‘pro-Jakarta lobby’ was developed largely through criticisms of Australia’s support for Indonesia’s sovereignty of East Timor and West Papua. Pro-Independence supporters were integral for creating the ‘lobby’ in their rhetoric and criticisms about the influence on Australian foreign policy. In these critical narratives, the ‘pro-Jakarta lobby’ supported a realist approach to relations with Indonesia during the years of President Suharto’s regime, which saw appeasement of Indonesia as paramount to values of democracy and human rights. The lobby was viewed as integral in embedding a form of ‘foreign policy exceptionalism’ towards Indonesia in Australian policy-making circles. However, little critical and scholarly attention has been paid to nature, aims, strategies and activities of the ‘pro-Jakarta lobby.' This paper engages with methodological issues of foreign policy analysis: what was the ‘pro-Jakarta lobby’? Why was it considered more successful than other activist groups in shaping policy? And how can its influence on Australia’s approach to Indonesia be tested in relation to other contingent factors shaping policy? In addressing these questions, this case study will assist in addressing a broader scholarly concern about the capacities of collectives or individuals in shaping and directing the foreign policies of states.Keywords: foreign policy, interests groups, Australia, Indonesia
Procedia PDF Downloads 3436117 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 55