Search results for: cognitive image dimension
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5554

Search results for: cognitive image dimension

4894 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training

Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li

Abstract:

Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.

Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning

Procedia PDF Downloads 263
4893 Association Between Swallowing Disorders and Cognitive Disorders in Adults: Systematic Review and Metaanalysis

Authors: Shiva Ebrahimian Dehaghani, Afsaneh Doosti, Morteza Zare

Abstract:

Background: There is no consensus regarding the association between dysphagia and cognition. Purpose: The aim of this study was to quantitatively and qualitatively analyze the available evidence on the direction and strength of association between dysphagia and cognition. Methodology: PubMed, Scopus, Embase and Web of Science were searched about the association between dysphagia and cognition. A random-effects model was used to determine weighted odds ratios (OR) and 95% confidence intervals (CI). Sensitivity analysis was performed to determine the impact of each individual study on the pooled results. Results: A total of 1427 participants showed that some cognitive disorders were significantly associated with dysphagia (OR = 3.23; 95% CI, 2.33–4.48). Conclusion: The association between cognition and swallowing disorders suggests that multiple neuroanatomical systems are involved in these two functions.

Keywords: adult, association, cognitive impairment, dysphagia, systematic review

Procedia PDF Downloads 161
4892 Cognitive Approach at the Epicenter of Creative Accounting in Cameroonian Companies: The Relevance of the Psycho-Sociological Approach and the Theory of Cognitive Dissonance

Authors: Romuald Temomo Wamba, Robert Wanda

Abstract:

The issue of creative accounting in the psychological and sociological framework has been a mixed subject for over 60 years. The objective of this article is to ensure the existence of creative accounting in Cameroonian entities on the one hand and to understand the strategies used by audit agents to detect errors, omissions, irregularities, or inadequacies in the financial state; optimization techniques used by account preparers to strategically bypass texts on the other hand. To achieve this, we conducted an exploratory study using a cognitive approach, and the data analysis was performed by the software 'decision explorer'. The results obtained challenge the authors' cognition (manifest latent and deceptive behavior). The tax inspectors stress that the entities in Cameroon do not derogate from the rules of piloting in the financial statements. Likewise, they claim a change in current income and net income through depreciation, provisions, inventories, and the spreading of charges over long periods. This suggests the suspicion or intention of manipulating the financial statements. As for the techniques, the account preparers manage the accruals at the end of the year as the basis of the practice of creative accounting. Likewise, management accounts are more favorable to results management.

Keywords: creative accounting, sociocognitive approach, psychological and sociological approach, cognitive dissonance theory, cognitive mapping

Procedia PDF Downloads 193
4891 Classification of Hyperspectral Image Using Mathematical Morphological Operator-Based Distance Metric

Authors: Geetika Barman, B. S. Daya Sagar

Abstract:

In this article, we proposed a pixel-wise classification of hyperspectral images using a mathematical morphology operator-based distance metric called “dilation distance” and “erosion distance”. This method involves measuring the spatial distance between the spectral features of a hyperspectral image across the bands. The key concept of the proposed approach is that the “dilation distance” is the maximum distance a pixel can be moved without changing its classification, whereas the “erosion distance” is the maximum distance that a pixel can be moved before changing its classification. The spectral signature of the hyperspectral image carries unique class information and shape for each class. This article demonstrates how easily the dilation and erosion distance can measure spatial distance compared to other approaches. This property is used to calculate the spatial distance between hyperspectral image feature vectors across the bands. The dissimilarity matrix is then constructed using both measures extracted from the feature spaces. The measured distance metric is used to distinguish between the spectral features of various classes and precisely distinguish between each class. This is illustrated using both toy data and real datasets. Furthermore, we investigated the role of flat vs. non-flat structuring elements in capturing the spatial features of each class in the hyperspectral image. In order to validate, we compared the proposed approach to other existing methods and demonstrated empirically that mathematical operator-based distance metric classification provided competitive results and outperformed some of them.

Keywords: dilation distance, erosion distance, hyperspectral image classification, mathematical morphology

Procedia PDF Downloads 88
4890 Multiple Images Stitching Based on Gradually Changing Matrix

Authors: Shangdong Zhu, Yunzhou Zhang, Jie Zhang, Hang Hu, Yazhou Zhang

Abstract:

Image stitching is a very important branch in the field of computer vision, especially for panoramic map. In order to eliminate shape distortion, a novel stitching method is proposed based on gradually changing matrix when images are horizontal. For images captured horizontally, this paper assumes that there is only translational operation in image stitching. By analyzing each parameter of the homography matrix, the global homography matrix is gradually transferred to translation matrix so as to eliminate the effects of scaling, rotation, etc. in the image transformation. This paper adopts matrix approximation to get the minimum value of the energy function so that the shape distortion at those regions corresponding to the homography can be minimized. The proposed method can avoid multiple horizontal images stitching failure caused by accumulated shape distortion. At the same time, it can be combined with As-Projective-As-Possible algorithm to ensure precise alignment of overlapping area.

Keywords: image stitching, gradually changing matrix, horizontal direction, matrix approximation, homography matrix

Procedia PDF Downloads 319
4889 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: agricultural mobile robot, image processing, path recognition, hough transform

Procedia PDF Downloads 147
4888 Connectomic Correlates of Cerebral Microhemorrhages in Mild Traumatic Brain Injury Victims with Neural and Cognitive Deficits

Authors: Kenneth A. Rostowsky, Alexander S. Maher, Nahian F. Chowdhury, Andrei Irimia

Abstract:

The clinical significance of cerebral microbleeds (CMBs) due to mild traumatic brain injury (mTBI) remains unclear. Here we use magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) and connectomic analysis to investigate the statistical association between mTBI-related CMBs, post-TBI changes to the human connectome and neurological/cognitive deficits. This study was undertaken in agreement with US federal law (45 CFR 46) and was approved by the Institutional Review Board (IRB) of the University of Southern California (USC). Two groups, one consisting of 26 (13 females) mTBI victims and another comprising 26 (13 females) healthy control (HC) volunteers were recruited through IRB-approved procedures. The acute Glasgow Coma Scale (GCS) score was available for each mTBI victim (mean µ = 13.2; standard deviation σ = 0.4). Each HC volunteer was assigned a GCS of 15 to indicate the absence of head trauma at the time of enrollment in our study. Volunteers in the HC and mTBI groups were matched according to their sex and age (HC: µ = 67.2 years, σ = 5.62 years; mTBI: µ = 66.8 years, σ = 5.93 years). MRI [including T1- and T2-weighted volumes, gradient recalled echo (GRE)/susceptibility weighted imaging (SWI)] and gradient echo (GE) DWI volumes were acquired using the same MRI scanner type (Trio TIM, Siemens Corp.). Skull-stripping and eddy current correction were implemented. DWI volumes were processed in TrackVis (http://trackvis.org) and 3D Slicer (http://www.slicer.org). Tensors were fit to DWI data to perform DTI, and tractography streamlines were then reconstructed using deterministic tractography. A voxel classifier was used to identify image features as CMB candidates using Microbleed Anatomic Rating Scale (MARS) guidelines. For each peri-lesional DTI streamline bundle, the null hypothesis was formulated as the statement that there was no neurological or cognitive deficit associated with between-scan differences in the mean FA of DTI streamlines within each bundle. The statistical significance of each hypothesis test was calculated at the α = 0.05 level, subject to the family-wise error rate (FWER) correction for multiple comparisons. Results: In HC volunteers, the along-track analysis failed to identify statistically significant differences in the mean FA of DTI streamline bundles. In the mTBI group, significant differences in the mean FA of peri-lesional streamline bundles were found in 21 out of 26 volunteers. In those volunteers where significant differences had been found, these differences were associated with an average of ~47% of all identified CMBs (σ = 21%). In 12 out of the 21 volunteers exhibiting significant FA changes, cognitive functions (memory acquisition and retrieval, top-down control of attention, planning, judgment, cognitive aspects of decision-making) were found to have deteriorated over the six months following injury (r = -0.32, p < 0.001). Our preliminary results suggest that acute post-TBI CMBs may be associated with cognitive decline in some mTBI patients. Future research should attempt to identify mTBI patients at high risk for cognitive sequelae.

Keywords: traumatic brain injury, magnetic resonance imaging, diffusion tensor imaging, connectomics

Procedia PDF Downloads 172
4887 Video Stabilization Using Feature Point Matching

Authors: Shamsundar Kulkarni

Abstract:

Video capturing by non-professionals will lead to unanticipated effects. Such as image distortion, image blurring etc. Hence, many researchers study such drawbacks to enhance the quality of videos. In this paper, an algorithm is proposed to stabilize jittery videos .A stable output video will be attained without the effect of jitter which is caused due to shaking of handheld camera during video recording. Firstly, salient points from each frame from the input video are identified and processed followed by optimizing and stabilize the video. Optimization includes the quality of the video stabilization. This method has shown good result in terms of stabilization and it discarded distortion from the output videos recorded in different circumstances.

Keywords: video stabilization, point feature matching, salient points, image quality measurement

Procedia PDF Downloads 314
4886 Investigating Sustainable Neighborhood Development in Jahanshahr

Authors: Khashayar Kashani Jou, Ilnaz Fathololoomi

Abstract:

Nowadays, access to sustainable development in cities is assumed as one of the most important goals of urban managers. In the meanwhile, neighborhood as the smallest unit of urban spatial organization has a substantial effect on urban sustainability. Hence, attention to and focus on this subject is highly important in urban development plans. The objective of this study is evaluation of the status of Jahanshahr Neighborhood in Karaj city based on sustainable neighborhood development indicators. This research has been applied based on documentary method and field surveys. Also, evaluating of Jahanshahr Neighborhood of Karaj shows that it has a high level in sustainability in physical and economical dimension while a low level in cultural and social dimension. For this purpose, this neighborhood as a semi-sustainable neighborhood must take measures for development of collective spaces and efficiency of utilizing the public neighborhood spaces via collaboration of citizens and officials.

Keywords: neighborhood, sustainable development, sustainable neighborhood development, Jahanshahr neighborhood

Procedia PDF Downloads 281
4885 Social Dimension of Air Transport Sustainable Development

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Air Transport links markets and individuals, making regions more competitive and promoting social and economic development. The assessment of social contribution is the key objective of this paper, focusing on the definition of the components of social dimension and welfare metrics in the national scale. According to a top-down approach, the key dimensions that affect the social welfare are presented. Conventional wisdom is to provide estimations on added value to social issues caused by the air transport development and present the methodology framework for measuring the contribution of transport development in social value chain. Greece is the case study of this paper, providing results from the contribution of air transport infrastructures in national welfare. The application key findings are essential for managers and decision makers to support actions and plans towards economic recovery of an economy presenting strong seasonal characteristics (because of tourism) and suffering from recession.

Keywords: air transport, social coherence, resilient business development, socioeconomic impact

Procedia PDF Downloads 222
4884 Experimental Characterization of Composite Material with Non Contacting Methods

Authors: Nikolaos Papadakis, Constantinos Condaxakis, Konstantinos Savvakis

Abstract:

The aim of this paper is to determine the elastic properties (elastic modulus and Poisson ratio) of a composite material based on noncontacting imaging methods. More specifically, the significantly reduced cost of digital cameras has given the opportunity of the high reliability of low-cost strain measurement. The open source platform Ncorr is used in this paper which utilizes the method of digital image correlation (DIC). The use of digital image correlation in measuring strain uses random speckle preparation on the surface of the gauge area, image acquisition, and postprocessing the image correlation to obtain displacement and strain field on surface under study. This study discusses technical issues relating to the quality of results to be obtained are discussed. [0]8 fabric glass/epoxy composites specimens were prepared and tested at different orientations 0[o], 30[o], 45[o], 60[o], 90[o]. Each test was recorded with the camera at a constant frame rate and constant lighting conditions. The recorded images were processed through the use of the image processing software. The parameters of the test are reported. The strain map output which is obtained through strain measurement using Ncorr is validated by a) comparing the elastic properties with expected values from Classical laminate theory, b) through finite element analysis.

Keywords: composites, Ncorr, strain map, videoextensometry

Procedia PDF Downloads 145
4883 Cognitive Theory and the Design of Integrate Curriculum

Authors: Bijan Gillani, Roya Gillani

Abstract:

The purpose of this paper is to propose a pedagogical model where engineering provides the interconnection to integrate the other topics of science, technology, engineering, and mathematics. The author(s) will first present a brief discussion of cognitive theory and then derive an integrated pedagogy to use engineering and technology, such as drones, sensors, camera, iPhone, radio waves as the nexus to an integrated curriculum development for the other topics of STEM. Based on this pedagogy, one example developed by the author(s) called “Drones and Environmental Science,” will be presented that uses a drone and related technology as an appropriate instructional delivery medium to apply Piaget’s cognitive theory to create environments that promote the integration of different STEM subjects that relate to environmental science.

Keywords: cogntive theories, drone, environmental science, pedagogy

Procedia PDF Downloads 576
4882 Psychological Biases as Obstacles to Environmental Communication

Authors: De Biase Ilaria, Della Rocca Mattia

Abstract:

Our work aims to highlight the role played by cognitive biases in the reception of environmental information, including scientific communication from expert to the lay public, especially in relationship with environmental data coming from biological and biotechnological recording. Some alternative strategies are suggested in order to maximize public awareness on environmental changes.

Keywords: science communication, environment and psychology, cognitive biases, environmental awareness

Procedia PDF Downloads 114
4881 Large Neural Networks Learning From Scratch With Very Few Data and Without Explicit Regularization

Authors: Christoph Linse, Thomas Martinetz

Abstract:

Recent findings have shown that Neural Networks generalize also in over-parametrized regimes with zero training error. This is surprising, since it is completely against traditional machine learning wisdom. In our empirical study we fortify these findings in the domain of fine-grained image classification. We show that very large Convolutional Neural Networks with millions of weights do learn with only a handful of training samples and without image augmentation, explicit regularization or pretraining. We train the architectures ResNet018, ResNet101 and VGG19 on subsets of the difficult benchmark datasets Caltech101, CUB_200_2011, FGVCAircraft, Flowers102 and StanfordCars with 100 classes and more, perform a comprehensive comparative study and draw implications for the practical application of CNNs. Finally, we show that VGG19 with 140 million weights learns to distinguish airplanes and motorbikes with up to 95% accuracy using only 20 training samples per class.

Keywords: convolutional neural networks, fine-grained image classification, generalization, image recognition, over-parameterized, small data sets

Procedia PDF Downloads 90
4880 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: computer-aided system, detection, image segmentation, morphology

Procedia PDF Downloads 151
4879 Prosperous Digital Image Watermarking Approach by Using DCT-DWT

Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar

Abstract:

In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacks

Keywords: watermarking, digital, DCT-DWT, security

Procedia PDF Downloads 423
4878 Evaluation of Cirata Reservoir Sustainability Using Multi Dimensionalscaling (MDS)

Authors: Kholil Kholil, Aniwidayati

Abstract:

MDS (Multi-Dimensional Scaling) is one method that has been widely used to evaluate the use of natural resources. By using Raffish software tool, we will able to analyze sustainability level of the natural resources use. This paper will discuss the level of sustainability of the reservoir using MDS (Multi-Dimensional Scaling) based on five dimensions: (1) Ecology & Layout, (2) Economics, (3) Social & Culture, (4) Regulations & Institutional, and (5) Infrastructure and Technology. MDS analysis results show that the dimension of ecological and layout, institutional and the regulation are lack of sustainability due to the low index score of 45.76 and 42.24. While for the economic, social and culture, and infrastructure and technology dimension reach each score of 63.12, 64.42, and 68.64 (only the sufficient sustainability category). It means that the sustainability performance of Cirata Reservoir seriously threatened.

Keywords: MDS, cirata reservoir, carrying capacity, water quality, sustainable development, sedimentation, sustainability index

Procedia PDF Downloads 382
4877 PET Image Resolution Enhancement

Authors: Krzysztof Malczewski

Abstract:

PET is widely applied scanning procedure in medical imaging based research. It delivers measurements of functioning in distinct areas of the human brain while the patient is comfortable, conscious and alert. This article presents the new compression sensing based super-resolution algorithm for improving the image resolution in clinical Positron Emission Tomography (PET) scanners. The issue of motion artifacts is well known in Positron Emission Tomography (PET) studies as its side effect. The PET images are being acquired over a limited period of time. As the patients cannot hold breath during the PET data gathering, spatial blurring and motion artefacts are the usual result. These may lead to wrong diagnosis. It is shown that the presented approach improves PET spatial resolution in cases when Compressed Sensing (CS) sequences are used. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were traditionally thought necessary. The application of CS to PET has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the goal is to combine super-resolution image enhancement algorithm with CS framework to achieve high resolution PET output. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity.

Keywords: PET, super-resolution, image reconstruction, pattern recognition

Procedia PDF Downloads 373
4876 Image Segmentation Using Active Contours Based on Anisotropic Diffusion

Authors: Shafiullah Soomro

Abstract:

Active contour is one of the image segmentation techniques and its goal is to capture required object boundaries within an image. In this paper, we propose a novel image segmentation method by using an active contour method based on anisotropic diffusion feature enhancement technique. The traditional active contour methods use only pixel information to perform segmentation, which produces inaccurate results when an image has some noise or complex background. We use Perona and Malik diffusion scheme for feature enhancement, which sharpens the object boundaries and blurs the background variations. Our main contribution is the formulation of a new SPF (signed pressure force) function, which uses global intensity information across the regions. By minimizing an energy function using partial differential framework the proposed method captures semantically meaningful boundaries instead of catching uninterested regions. Finally, we use a Gaussian kernel which eliminates the problem of reinitialization in level set function. We use several synthetic and real images from different modalities to validate the performance of the proposed method. In the experimental section, we have found the proposed method performance is better qualitatively and quantitatively and yield results with higher accuracy compared to other state-of-the-art methods.

Keywords: active contours, anisotropic diffusion, level-set, partial differential equations

Procedia PDF Downloads 162
4875 Naturalistic Neuroimaging: From Film to Learning Disorders

Authors: Asha Dukkipati

Abstract:

Cognitive neuroscience explores neural functioning and aberrant brain activity during cognitive and perceptual tasks. Neurocinematics is a subfield of cognitive neuroscience that observes neural responses of individuals watching a film to see similarities and differences between individuals. This method is typically used for commercial use, allowing directors and filmmakers to produce better visuals and increasing their results in the box office. However, neurocinematics is increasingly becoming a common tool for neuroscientists interested in studying similar patterns of brain activity across viewers outside of the film industry. In this review, it argue that neurocinematics provides an easy, naturalistic approach for studying and diagnosing learning disorders. While the neural underpinnings of developmental learning disorders are traditionally assessed with well-established methods like EEG and fMRI that target particular cognitive domains, such as simple visual and attention tasks, there is initial evidence and theoretical background in support of neurocinematics as a biomarker for learning differences. By using ADHD, dyslexia, and autism as case studies, this literature review discusses the potential advantages of neurocinematics as a new tool for learning disorders research.

Keywords: behavioral and social sciences, neuroscience, neurocinematics, biomarkers, neurobehavioral disorders

Procedia PDF Downloads 98
4874 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 409
4873 Perceiving Text-Worlds as a Cognitive Mechanism to Understand Surah Al-Kahf

Authors: Awatef Boubakri, Khaled Jebahi

Abstract:

Using Text World Theory (TWT), we attempted to understand how mental representations (text worlds) and perceptions can be construed by readers of Quranic texts. To this end, Surah Al-Kahf was purposefully selected given the fact that while each of its stories is narrated, different levels of discourse intervene, which might result in a confused reader who might find it hard to keep track of which discourse he or she is processing. This surah was studied using specifically-designed text-world diagrams. The findings suggest that TWT can be used to help solve problems of ambiguity at the level of discourse in Quranic texts and to help construct a thinking reader whose cognitive constructs (text worlds / mental representations) are built through reflecting on the various and often changing components of discourse world, text world, and sub-worlds.

Keywords: Al-Kahf, Surah, cognitive, processing, discourse

Procedia PDF Downloads 90
4872 Spatial Cognition and 3-Dimensional Vertical Urban Design Guidelines

Authors: Hee Sun (Sunny) Choi, Gerhard Bruyns, Wang Zhang, Sky Cheng, Saijal Sharma

Abstract:

The main focus of this paper is to propose a comprehensive framework for the cognitive measurement and modelling of the built environment. This will involve exploring and measuring neural mechanisms. The aim is to create a foundation for further studies in this field that are consistent and rigorous. Additionally, this framework will facilitate collaboration with cognitive neuroscientists by establishing a shared conceptual basis. The goal of this research is to develop a human-centric approach for urban design that is scientific and measurable, producing a set of urban design guidelines that incorporate cognitive measurement and modelling. By doing so, the broader intention is to design urban spaces that prioritize human needs and well-being, making them more liveable.

Keywords: vertical urbanism, human centric design, spatial cognition and psychology, vertical urban design guidelines

Procedia PDF Downloads 83
4871 Cognitive eTransformation Framework for Education Sector

Authors: A. Hol

Abstract:

21st century brought waves of business and industry eTransformations. The impact of change is also being seen in education. To identify the extent of this, scenario analysis methodology was utilised with the aim to assess business transformations across industry sectors ranging from craftsmanship, medicine, finance and manufacture to innovations and adoptions of new technologies and business models. Firstly, scenarios were drafted based on the current eTransformation models and its dimensions. Following this, eTransformation framework was utilised with the aim to derive the key eTransformation parameters, the essential characteristics that have enabled eTransformations across the sectors. Following this, identified key parameters were mapped to the transforming domain-education. The mapping assisted in deriving a cognitive eTransformation framework for education sector. The framework highlights the importance of context and the notion that education today needs not only to deliver content to students but it also needs to be able to meet the dynamically changing demands of specific student and industry groups. Furthermore, it pinpoints that for such processes to be supported, specific technology is required, so that instant, on demand and periodic feedback as well as flexible, dynamically expanding study content can be sought and received via multiple education mediums.

Keywords: education sector, business transformation, eTransformation model, cognitive model, cognitive systems, eTransformation

Procedia PDF Downloads 137
4870 The Effect of Midwifery Counseling Based on Gamble Approach on the Coping Strategies of Women with Abortion: A Randomized Controlled Clinical Trial

Authors: Hasanzadeh Tahraband F., Kheirkhah M.

Abstract:

The trauma resulting from abortion causes fear, frustration, inability, lack of self-confidence, and psychological distress in women. The present study was conducted to determine the effect of midwifery counseling based on the Gamble approach on coping strategies of women with abortion. This randomized controlled clinical trial was conducted on women with abortions in April–October 2021, Karaj, Iran. Ninety-six eligible women were randomly assigned to two 48-member groups with 4, 6, and 8 blocks. The women in the intervention group participated in two 45-75-minute Gamble counseling programs. They were asked to fill out the demographic and fertility information questionnaire before the intervention and the cope operations preference inquiry questionnaire before, immediately (in the 4-6th week of the study), and three months after the intervention. The analysis of the data was done through Chi-square, independent sample t-test. The significance level was considered P<0.05. The results showed that the differences between the two groups before the intervention were not statistically significant in terms of demographic and fertility variables (P>0.05). However, the total mean score of the problem-focused dimension in 3-month post-abortion (97/34±8/69) and the emotion-focused dimension in 4-6 weeks and 3-month post-abortion (34/14±3/48 and 32/41±3/41) in the intervention group was significantly different from the control group (P<0.001). According to the results of the repeated measures ANOVA, the level of coping and its dimensions significantly changed in the intervention group over time (P<0.001). The results of the present study showed that Gamble counseling promoted the problem-focused dimension score and reduced the emotion-focused dimension score in women with abortion. It is recommended that Gamble counseling should be used as midwife-led counseling to increase coping strategies and reduce the psychological distress of women who have experienced abortion.

Keywords: midwife-led counseling, coping strategies, post-abortion, psychological distress, Iran

Procedia PDF Downloads 98
4869 Robust Medical Image Watermarking Using Frequency Domain and Least Significant Bits Algorithms

Authors: Volkan Kaya, Ersin Elbasi

Abstract:

Watermarking and stenography are getting importance recently because of copyright protection and authentication. In watermarking we embed stamp, logo, noise or image to multimedia elements such as image, video, audio, animation and text. There are several works have been done in watermarking for different purposes. In this research work, we used watermarking techniques to embed patient information into the medical magnetic resonance (MR) images. There are two methods have been used; frequency domain (Digital Wavelet Transform-DWT, Digital Cosine Transform-DCT, and Digital Fourier Transform-DFT) and spatial domain (Least Significant Bits-LSB) domain. Experimental results show that embedding in frequency domains resist against one type of attacks, and embedding in spatial domain is resist against another group of attacks. Peak Signal Noise Ratio (PSNR) and Similarity Ratio (SR) values are two measurement values for testing. These two values give very promising result for information hiding in medical MR images.

Keywords: watermarking, medical image, frequency domain, least significant bits, security

Procedia PDF Downloads 289
4868 Using the Minnesota Multiphasic Personality Inventory-2 and Mini Mental State Examination-2 in Cognitive Behavioral Therapy: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

From a psychological perspective, psychopathology is the area of clinical psychology that has at its core psychological assessment and psychotherapy. In day-to-day clinical practice, psychodiagnosis and psychotherapy are used independently, according to their intended purpose and their specific methods of application. The paper explores how the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) and Mini Mental State Examination-2 (MMSE-2) psychological tools contribute to enhancing the effectiveness of cognitive behavioral psychotherapy (CBT). This combined approach, psychotherapy in conjunction with assessment of personality and cognitive functions, is illustrated by two cases, a severe depressive episode with psychotic symptoms and a mixed anxiety-depressive disorder. The order in which CBT, MMPI-2, and MMSE-2 were used in the diagnostic and therapeutic process was determined by the particularities of each case. In the first case, the sequence started with psychotherapy, followed by the administration of blue form MMSE-2, MMPI-2, and red form MMSE-2. In the second case, the cognitive screening with blue form MMSE-2 led to a personality assessment using MMPI-2, followed by red form MMSE-2; reapplication of the MMPI-2 due to the invalidation of the first profile, and finally, psychotherapy. The MMPI-2 protocols gathered useful information that directed the steps of therapeutic intervention: a detailed symptom picture of potentially self-destructive thoughts and behaviors otherwise undetected during the interview. The memory loss and poor concentration were confirmed by MMSE-2 cognitive screening. This combined approach, psychotherapy with psychological assessment, aligns with the trend of adaptation of the psychological services to the everyday life of contemporary man and paves the way for deepening and developing the field.

Keywords: assessment, cognitive behavioral psychotherapy, MMPI-2, MMSE-2, psychopathology

Procedia PDF Downloads 327
4867 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks

Authors: Danilo López, Johana Hernández, Edwin Rivas

Abstract:

The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.

Keywords: cognitive radio, neural network, prediction, primary user

Procedia PDF Downloads 372
4866 Film Therapy on Adolescent Body Image: A Pilot Study

Authors: Sonia David, Uma Warrier

Abstract:

Background: Film therapy is the use of commercial or non-commercial films to enhance healing for therapeutic purposes. Objectives: The mixed-method study aims to evaluate the effect of film-based counseling on body image dissatisfaction among adolescents to precisely ascertain the cause of the alteration in body image dissatisfaction due to the said intervention. Method: The one group pre-test post-test research design study using inferential statistics and thematic analysis is based on a pre-test post-test design conducted on 44 school-going adolescents between 13 and 17. The Body Shape Questionnaire (BSQ- 34) was used as a pre-test and post-test measure. The film-based counseling intervention model was used through individual counseling sessions. The analysis involved paired sample t-test used to examine the data quantitatively, and thematic analysis was used to evaluate qualitative data. Findings: The results indicated that there is a significant difference between the pre-test and post-test means. Since t(44)= 9.042 is significant at a 99% confidence level, it is ascertained that film-based counseling intervention reduces body image dissatisfaction. The five distinct themes from the thematic analysis are “acceptance, awareness, empowered to change, empathy, and reflective.” Novelty: The paper originally contributes to the repertoire of research on film therapy as a successful counseling intervention for addressing the challenges of body image dissatisfaction. This study also opens avenues for considering alteration of teaching pedagogy to include video-based learning in various subjects.

Keywords: body image dissatisfaction, adolescents, film-based counselling, film therapy, acceptance and commitment therapy

Procedia PDF Downloads 296
4865 Increasing the Speed of the Apriori Algorithm by Dimension Reduction

Authors: A. Abyar, R. Khavarzadeh

Abstract:

The most basic and important decision-making tool for industrial and service managers is understanding the market and customer behavior. In this regard, the Apriori algorithm, as one of the well-known machine learning methods, is used to identify customer preferences. On the other hand, with the increasing diversity of goods and services and the speed of changing customer behavior, we are faced with big data. Also, due to the large number of competitors and changing customer behavior, there is an urgent need for continuous analysis of this big data. While the speed of the Apriori algorithm decreases with increasing data volume. In this paper, the big data PCA method is used to reduce the dimension of the data in order to increase the speed of Apriori algorithm. Then, in the simulation section, the results are examined by generating data with different volumes and different diversity. The results show that when using this method, the speed of the a priori algorithm increases significantly.

Keywords: association rules, Apriori algorithm, big data, big data PCA, market basket analysis

Procedia PDF Downloads 5