Search results for: cleaner production options
7660 Evaluation of the Effect of Lactose Derived Monosaccharide on Galactooligosaccharides Production by β-Galactosidase
Authors: Yenny Paola Morales Cortés, Fabián Rico Rodríguez, Juan Carlos Serrato Bermúdez, Carlos Arturo Martínez Riascos
Abstract:
Numerous benefits of galactooligosaccharides (GOS) as prebiotics have motivated the study of enzymatic processes for their production. These processes have special complexities due to several factors that make difficult high productivity, such as enzyme type, reaction medium pH, substrate concentrations and presence of inhibitors, among others. In the present work the production of galactooligosaccharides (with different degrees of polymerization: two, three and four) from lactose was studied. The study considers the formulation of a mathematical model that predicts the production of GOS from lactose using the enzyme β-galactosidase. The effect of pH in the reaction was studied. For that, phosphate buffer was used and with this was evaluated three pH values (6.0.6.5 and 7.0). Thus it was observed that at pH 6.0 the enzymatic activity insignificant. On the other hand, at pH 7.0 the enzymatic activity was approximately 27 times greater than at 6.5. The last result differs from previously reported results. Therefore, pH 7.0 was chosen as working pH. Additionally, the enzyme concentration was analyzed, which allowed observing that the effect of the concentration depends on the pH and the concentration was set for the following studies in 0.272 mM. Afterwards, experiments were performed varying the lactose concentration to evaluate its effects on the process and to generate the data for the adjustment of the mathematical model parameters. The mathematical model considers the reactions of lactose hydrolysis and transgalactosylation for the production of disaccharides and trisaccharides, with their inverse reactions. The production of tetrasaccharides was negligible and, because of that, it was not included in the model. The reaction was monitored by HPLC and for the quantitative analysis of the experimental data the Matlab programming language was used, including solvers for differential equations systems integration (ode15s) and nonlinear problems optimization (fminunc). The results confirm that the transgalactosylation and hydrolysis reactions are reversible, additionally inhibition by glucose and galactose is observed on the production of GOS. In relation to the production process of galactooligosaccharides, the results show that it is necessary to have high initial concentrations of lactose considering that favors the transgalactosylation reaction, while low concentrations favor hydrolysis reactions.Keywords: β-galactosidase, galactooligosaccharides, inhibition, lactose, Matlab, modeling
Procedia PDF Downloads 3587659 Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes
Authors: Fama Jallow, Melody Neaves, Professor Mcgregor
Abstract:
The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market.Keywords: hydrogen production, electrode, lattice structure, Africa
Procedia PDF Downloads 697658 Silage for Dairy Production: A Case Study of Pakistan
Authors: Noor-ul-Ain, Muhammad Thair Khan, Adeela Ajmal, Hamid Mustafa
Abstract:
Pakistan is an agricultural country and livestock only share 11.8 percent to national GDP during 2015-16. Pakistan is a 3rd largest milk producing country having 41.2, 35.6, 29.4, 68.4 and 1.0 million head cattle, buffalo, sheep, goat and camel, respectively. Modern urbanization and shortage of feed resources for livestock species in a country is an alarming threat. The introduction of new technology and advanced techniques solve this issue. This includes drought feeding, increase production, aid to crop management, balance nutrition and easily storaged of wet feed products. It is therefore clear that silage has important role in animal feed and feeding. Financial model of this study clear the effectiveness of silage. Therefore, it is revealed from this study that silage is a cost-effective option for a profitable dairy farming in Pakistan.Keywords: feed, silage, dairy, production, Pakistan
Procedia PDF Downloads 4377657 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 1447656 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations
Authors: I. S. R. Butswat, D. Zahraddeen
Abstract:
This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.Keywords: animal, agriculture, entreprenurship, wealth
Procedia PDF Downloads 2477655 Bioproduction of Indirubin from Fermentation and Renewable Sugars Through Genomic and Metabolomic Engineering of a Bacterial Strain
Authors: Vijay H. Ingole, Efthimia Lioliou
Abstract:
Indirubin, a key bioactive component of traditional Chinese medicine, has gained increasing recognition for its potential in modern biomedical applications, particularly in pharmacology and therapeutics. The present work aimed to harness the potential by engineering an Escherichia coli strain capable of high-yield indirubin production. Through meticulous genetic engineering, we optimized the metabolic pathways in E. coli to enhance indirubin synthesis. Further, to explored the optimization of culture media and indirubin yield via batch and fed-batch fermentation techniques. By fine-tuning upstream process (USP) parameters, including nutrient composition, pH, temperature, and aeration, we established conditions that maximized both cell growth and indirubin production. Additionally, significant efforts were dedicated to refining downstream process (DSP) conditions for the extraction, purification, and quantification of indirubin. Utilizing advanced biochemical methods and analytical techniques such as UHPLC, we ensured the production of high purity indirubin. This approach not only improved the economic viability of indirubin bioproduction but also aligned with the principles of green production and sustainability.Keywords: indirubin, bacterial strain, fermentation, HPLC
Procedia PDF Downloads 277654 Possibilities and Challenges for District Heating
Authors: Louise Ödlund, Danica Djuric Ilic
Abstract:
From a system perspective, there are several benefits of DH. A possibility to utilize the excess heat from waste incineration and biomass-based combined heat and power (CHP) production (e.g. possibility to utilize the excess heat from electricity production) are two examples. However, in a future sustainable society, the benefits of DH may be less obvious. Due to the climate changes and increased energy efficiency of buildings, the demand for space heating is expected to decrease. Due to the society´s development towards circular economy, a larger amount of the waste will be material recycled, and the possibility for DH production by the energy recovery through waste incineration will be reduced. Furthermore, the benefits of biomass-based CHP production will be less obvious since the marginal electricity production will no longer be linked to high greenhouse gas emissions due to an increased share of renewable electricity capacity in the electricity system. The purpose of the study is (1) to provide an overview of the possible development of other sectors which may influence the DH in the future and (2) to detect new business strategies which would enable for DH to adapt to the future conditions and remain competitive to alternative heat production in the future. A system approach was applied where DH is seen as a part of an integrated system which consists of other sectors as well. The possible future development of other sectors and the possible business strategies for DH producers were searched through a systematic literature review In order to remain competitive to the alternative heat production in the future, DH producers need to develop new business strategies. While the demand for space heating is expected to decrease, the space cooling demand will probably increase due to the climate changes, but also due to the better insulation of buildings in the cases where the home appliances are the heat sources. This opens up a possibility for applying DH-driven absorption cooling, which would increase the annual capacity utilization of the DH plants. The benefits of the DH related to the energy recovery from the waste incineration will exist in the future since there will always be a need to take care of materials and waste that cannot be recycled (e.g. waste containing organic toxins, bacteria, such as diapers and hospital waste). Furthermore, by operating central controlled heat pumps, CHP plants, and heat storage depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid. DH producers can also enable development of local biofuel supply chains and reduce biofuel production costs by integrating biofuel and DH production in local DH systems.Keywords: district heating, sustainable business strategies, sustainable development, system approach
Procedia PDF Downloads 847653 Value in Exchange: The Importance of Users Interaction as the Center of User Experiences
Authors: Ramlan Jantan, Norfadilah Kamaruddin, Shahriman Zainal Abidin
Abstract:
In this era of technology, the co-creation method has become a new development trend. In this light, most design businesses have currently transformed their development strategy from being goods-dominant into service-dominant where more attention is given to the end-users and their roles in the development process. As a result, the conventional development process has been replaced with a more cooperative one. Consequently, numerous studies have been conducted to explore the extension of co-creation method in the design development process and most studies have focused on issues found during the production process. In the meantime, this study aims to investigate potential values established during the pre-production process, which is also known as the ‘circumstances value creation’. User involvement is questioned and crucially debate at the entry level of pre-production process in value in-exchange jointly spheres; thus user experiences took place. Thus, this paper proposed a potential framework of the co-creation method for Malaysian interactive product development. The framework is formulated from both parties involved: the users and designers. The framework will clearly give an explanation of the value of the co-creation method, and it could assist relevant design industries/companies in developing a blueprint for the design process. This paper further contributes to the literature on the co-creation of value and digital ecosystems.Keywords: co-creation method, co-creation framework, co-creation, co-production
Procedia PDF Downloads 1787652 Bacterio-Algal Microbial Fuel Cells for Sustainable Power Production, Wastewater Treatment, and Desalination
Authors: Ann D. Christy, Beenish Saba
Abstract:
The Microbial fuel Cell (MFC) is a successful integrated technology for power production and wastewater treatment. MFCs are recognized for their dual function, but research in this field is still ongoing to increase efficiency and power output. One such effort is successful integration of phototrophic and autotrophic microorganisms to create bacterio-algal MFCs for sustainable electricity production along with wastewater treatment and algal biomass production. An MFC is typically configured with an anaerobic anodic chamber containing exoelectrogenic microorganisms separated by a cation exchange membrane from an adjacent aerobic cathodic chamber. The two electrodes are connected by an external circuit. This conventional MFC can be converted into a phototrophic MFC by introducing photosynthetic microorganisms into the cathode chamber. This study examines adding a third desalination chamber to a two-chamber bacterio-algal MFC. Successful results have been observed from these three-chamber MFCs demonstrating wastewater treatment in the anodic chamber, phototrophic algal growth in the cathodic chamber, and desalination in the middle chamber. The present article will summarize successful results of the bacterio-algal fuel cells and offer insights about the mechanisms involved. Tables summarizing the input substrate along with optimized operational conditions and output performance in terms of power production and efficiencies of water and wastewater treatment will be presented. The negative impacts and challenges will be discussed, along with possible future research directions. Results suggest that the three chamber bacterio-algal desalination cell has potential as a feasible technology for power production, wastewater treatment and desalination, but it needs further investigation under optimized conditions.Keywords: bacterio-algal MFC, three chamber, microbial fuel cell, wastewater treatment and desalination
Procedia PDF Downloads 3627651 The Relation of Water Intake with Level of Knowledge Related to Water Intake in Workers of Food Production Unit, Nutrition Installation at Puspa Hospital, Jakarta
Authors: Siti Rahmah Fitrianti, Mela Milani
Abstract:
Inadequate of water intake has negative effects on the health of the body, which can cause kidney failure and death. One of the factors that can affect someone intake of water is level of knowledge about the importance of water intake itself. A good knowledge of the daily water intake can increase the awareness of daily needed of water intake. Therefore, researchers initiated a study on the relationship of water intake to the level of knowledge related with water intake in food workers, at “Puspa” Hospital. Type of this research is quantitative research with cross-sectional approach. The research data was collected by measuring the independent and dependent variable at a time. This study took place in the food production unit of Nutrition Installation in "Puspa" Hospital, Jakarta in October 2016. The population target in this study were workers in food production unit aged 30-64 years. The instrument was a questionnaire question regarding water intake and 24 hours food recall. The result is 78.6% of respondents have less knowledge about the importance of water intake. Meanwhile, as many as 85.7% of respondents have adequate water intake. Tested by Chi-Square test, showed that no significant relationship between water intake with the level of knowledge related to water intake in workers of food production unit. Adequate intake of water in food workers commonly may be not caused by the level of knowledge related to water intake, but it may be cause of work environment factor which has a high temperature.Keywords: food production unit, food workers, level of knowledge, water intake
Procedia PDF Downloads 3507650 Defective Autophagy Disturbs Neural Migration and Network Activity in hiPSC-Derived Cockayne Syndrome B Disease Models
Authors: Julia Kapr, Andrea Rossi, Haribaskar Ramachandran, Marius Pollet, Ilka Egger, Selina Dangeleit, Katharina Koch, Jean Krutmann, Ellen Fritsche
Abstract:
It is widely acknowledged that animal models do not always represent human disease. Especially human brain development is difficult to model in animals due to a variety of structural and functional species-specificities. This causes significant discrepancies between predicted and apparent drug efficacies in clinical trials and their subsequent failure. Emerging alternatives based on 3D in vitro approaches, such as human brain spheres or organoids, may in the future reduce and ultimately replace animal models. Here, we present a human induced pluripotent stem cell (hiPSC)-based 3D neural in a vitro disease model for the Cockayne Syndrome B (CSB). CSB is a rare hereditary disease and is accompanied by severe neurologic defects, such as microcephaly, ataxia and intellectual disability, with currently no treatment options. Therefore, the aim of this study is to investigate the molecular and cellular defects found in neural hiPSC-derived CSB models. Understanding the underlying pathology of CSB enables the development of treatment options. The two CSB models used in this study comprise a patient-derived hiPSC line and its isogenic control as well as a CSB-deficient cell line based on a healthy hiPSC line (IMR90-4) background thereby excluding genetic background-related effects. Neurally induced and differentiated brain sphere cultures were characterized via RNA Sequencing, western blot (WB), immunocytochemistry (ICC) and multielectrode arrays (MEAs). CSB-deficiency leads to an altered gene expression of markers for autophagy, focal adhesion and neural network formation. Cell migration was significantly reduced and electrical activity was significantly increased in the disease cell lines. These data hint that the cellular pathologies is possibly underlying CSB. By induction of autophagy, the migration phenotype could be partially rescued, suggesting a crucial role of disturbed autophagy in defective neural migration of the disease lines. Altered autophagy may also lead to inefficient mitophagy. Accordingly, disease cell lines were shown to have a lower mitochondrial base activity and a higher susceptibility to mitochondrial stress induced by rotenone. Since mitochondria play an important role in neurotransmitter cycling, we suggest that defective mitochondria may lead to altered electrical activity in the disease cell lines. Failure to clear the defective mitochondria by mitophagy and thus missing initiation cues for new mitochondrial production could potentiate this problem. With our data, we aim at establishing a disease adverse outcome pathway (AOP), thereby adding to the in-depth understanding of this multi-faced disorder and subsequently contributing to alternative drug development.Keywords: autophagy, disease modeling, in vitro, pluripotent stem cells
Procedia PDF Downloads 1207649 Fracking the UK's Shale Gas Regulatory Regime
Authors: Yanal Abul Failat
Abstract:
The production of oil and natural gas from shale formations is becoming a trend, and many countries with technically and economically recoverable unconventional resources are endeavoring to explore how shale formations may benefit the economy and achieve energy security. The trajectory of shale gas development in the UK is highly supported by the government; in the Gas Generation Strategy Paper published by the UK government on 5 December 2013, it is recognized that the shale gas production would decrease reliance on imports and thus enhance the UK’s energy security. Moreover, the UK Institute of Directors report on UK Shale Gas Potential explains that in the UK there is a potential of production peaking at around 1.13 trillion cubic feet (“tcf”) and a sector that could support around 70,000 jobs and secure net benefit to the Treasury in tax revenues. On this basis, there has been a growing interest in the benefits of exploring the UK’s shale gas but a combination of technical challenges faced in shale gas operations, a stern opposition by environmentalists and concerns on the adequacy of the legal framework have slowed the progress of the emerging UK shale industry.Keywords: shale gas, UK, legal, oil and gas, energy
Procedia PDF Downloads 7117648 Production and Purification of Pectinase by Aspergillus Niger
Authors: M. Umar Dahot, G. S. Mangrio
Abstract:
In this study Agro-industrial waste was used as a carbon source, which is a low cost substrate. Along with this, various sugars and molasses of 2.5% and 5% were investigated as substrate/carbon source for the growth of A.niger and Pectinase production. Different nitrogen sources were also used. An overview of results obtained show that 5% sucrose, 5% molasses and 0.4% (NH4)2SO4 were found the best carbon and nitrogen sources for the production of pectinase by A. niger. The maximum production of pectinase (26.87units/ml) was observed at pH 6.0 after 72 hrs incubation. The optimum temperature for the maximum production of pectinase was achieved at 35ºC when maximum production of pectinase was obtained as 28.25Units/ml.Pectinase enzyme was purified with ammonium sulphate precipitation and dialyzed sample was finally applied on gel filtration chromatography (Sephadex G-100) and Ion Exchange DEAE A-50. The enzyme was purified 2.5 fold by gel chromatography on Sephadex G-100 and Four fractions were obtained, Fraction 1, 2, 4 showed single band while Fraction -3 showed multiple bands on SDS Page electrophoresis. Fraction -3 was pooled, dialyzed and separated on Sephdex A-50 and two fractions 3a and 3b showed single band. The molecular weights of the purified fractions were detected in the range of 33000 ± 2000 and 38000± 2000 Daltons. The purified enzyme was specifically most active with pure pectin, while pectin, Lemon pectin and orange peel given lower activity as compared to (control). The optimum pH and temperature for pectinase activity was found between pH 5.0 and 6.0 and 40°- 50°C, respectively. The enzyme was stable over the pH range 3.0-8.0. The thermostability of was determined and it was observed that the pectinase activity is heat stable and retains activity more than 40% when incubated at 90°C for 10 minutes. The pectinase activity of F3a and F3b was increased with different metal ions. The Pectinase activity was stimulated in the presence of CaCl2 up to 10-30%. ZnSO4, MnSO4 and Mg SO4 showed higher activity in fractions F3a and F3b, which indicates that the pectinase belongs to metalo-enzymes. It is concluded that A. niger is capable to produce pH stable and thermostable pectinase, which can be used for industrial purposes.Keywords: pectinase, a. niger, production, purification, characterization
Procedia PDF Downloads 4137647 Hybrid Renewable Energy System Development Towards Autonomous Operation: The Deployment Potential in Greece
Authors: Afroditi Zamanidou, Dionysios Giannakopoulos, Konstantinos Manolitsis
Abstract:
A notable amount of electrical energy demand in many countries worldwide is used to cover public energy demand for road, square and other public spaces’ lighting. Renewable energy can contribute in a significant way to the electrical energy demand coverage for public lighting. This paper focuses on the sizing and design of a hybrid energy system (HES) exploiting the solar-wind energy potential to meet the electrical energy needs of lighting roads, squares and other public spaces. Moreover, the proposed HES provides coverage of the electrical energy demand for a Wi-Fi hotspot and a charging hotspot for the end-users. Alongside the sizing of the energy production system of the proposed HES, in order to ensure a reliable supply without interruptions, a storage system is added and sized. Multiple scenarios of energy consumption are assumed and applied in order to optimize the sizing of the energy production system and the energy storage system. A database with meteorological prediction data for 51 areas in Greece is developed in order to assess the possible deployment of the proposed HES. Since there are detailed meteorological prediction data for all 51 areas under investigation, the use of these data is evaluated, comparing them to real meteorological data. The meteorological prediction data are exploited to form three hourly production profiles for each area for every month of the year; minimum, average and maximum energy production. The energy production profiles are combined with the energy consumption scenarios and the sizing results of the energy production system and the energy storage system are extracted and presented for every area. Finally, the economic performance of the proposed HES in terms of Levelized cost of energy is estimated by calculating and assessing construction, operation and maintenance costs.Keywords: energy production system sizing, Greece’s deployment potential, meteorological prediction data, wind-solar hybrid energy system, levelized cost of energy
Procedia PDF Downloads 1547646 A Method for Reconfigurable Manufacturing Systems Customization Measurement
Authors: Jesus Kombaya, Nadia Hamani, Lyes Kermad
Abstract:
The preservation of a company’s place on the market in such aggressive competition is becoming a survival challenge for manufacturers. In this context, survivors are only those who succeed to satisfy their customers’ needs as quickly as possible. The production system should be endowed with a certain level of flexibility to eliminate or reduce the rigidity of the production systems in order to facilitate the conversion and/or the change of system’s features to produce different products. Therefore, it is essential to guarantee the quality, the speed and the flexibility to survive in this competition. According to literature, this adaptability is referred to as the notion of "change". Indeed, companies are trying to establish a more flexible and agile manufacturing system through several reconfiguration actions. Reconfiguration contributes to the extension of the manufacturing system life cycle by modifying its physical, organizational and computer characteristics according to the changing market conditions. Reconfigurability is characterized by six key elements that are: modularity, integrability, diagnosability, convertibility, scalability and customization. In order to control the production systems, it is essential for manufacturers to make good use of this capability in order to be sure that the system has an optimal and adapted level of reconfigurability that allows it to produce in accordance with the set requirements. This document develops a measure of customization of reconfigurable production systems. These measures do not only impact the production system but also impact the product design and the process design, which can therefore serve as a guide for the customization of manufactured product. A case study is presented to show the use of the proposed approach.Keywords: reconfigurable manufacturing systems, customization, measure, flexibility
Procedia PDF Downloads 1287645 Associations between Polymorphism of Growth Hormone Gene on Milk Production, Fat and Protein Content in Friesian Holstein Cattle
Authors: Tety Hartatik, Dian Kurniawati, Adiarto
Abstract:
The aim of the research was to determine the associations between polymorphism of the bovine growth hormone (GH) gene (Leu/Val, L/V) and milk production of Friesian Holstein Cattle. A total of 62 cows which consist of two Friesian Holstein groups (cattle from New Zealand are 19 heads and cattle from Australia are 43 heads). We perform the PCR and RFLP method for analyzing the genotype of the target gene GH 211 bp in the part of intron 4 and exon 5 of GH gene. The frequencies of genotypes LL were higher than genotype LV. The number of genotype LL in New Zealand and Australia groups are 84% and 79%, respectively. The number of genotype LV in New Zealand and Australia groups are 16% and 21%, respectively. The association between Leu/Val polymorphism on milk production, fat and protein content in both groups does not show the significant effect. However base on the groups (cows from New Zealand compare with those from Australia) show the significant effect on fat and protein content.Keywords: Friesian Holstein, fat content, growth hormone gene, milk production, PCR-RLFP, protein content
Procedia PDF Downloads 6587644 Design of an Energy Efficient Electric Auto Rickshaw
Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar
Abstract:
Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment
Procedia PDF Downloads 2877643 Study and Improvement of the Quality of a Production Line
Authors: S. Bouchami, M.N. Lakhoua
Abstract:
The automotive market is a dynamic market that continues to grow. That’s why several companies belonging to this sector adopt a quality improvement approach. Wanting to be competitive and successful in the environment in which they operate, these companies are dedicated to establishing a system of quality management to ensure the achievement of the objective quality, improving the products and process as well as the satisfaction of the customers. In this paper, the management of the quality and the improvement of a production line in an industrial company is presented. In fact, the project is divided into two essential parts: the creation of the technical line documentation and the quality assurance documentation and the resolution of defects at the line, as well as those claimed by the customer. The creation of the documents has required a deep understanding of the manufacturing process. The analysis and problem solving were done through the implementation of PDCA (Plan Do Check Act) and FTA (Fault Tree Analysis). As perspective, in order to better optimize production and improve the efficiency of the production line, a study on the problems associated with the supply of raw materials should be made to solve the problems of stock-outs which cause delays penalizing for the industrial company.Keywords: quality management, documentary system, Plan Do Check Act (PDCA), fault tree analysis (FTA) method
Procedia PDF Downloads 1427642 Enhanced Enzymes Production through Immobilization of Filamentous Fungi
Authors: Zhanara B. Suleimenova, Zhazira K. Saduyeva
Abstract:
Filamentous fungi are major producers of enzymes that have important applications in the food and beverage industries. The overall objective of this research is a strain improvement technology for efficient industrial enzymes production. The new way of filamentous fungi cultivation method has been developed. Such technology prolong producers’ cultivation period up to 60 days and create the opportunity to obtain enzymes repeatedly in every 2-3 days of fungal cultivation. This method is based on immobilizing enzymes producers with solid support in submerged conditions of growth. Immobilizing has a range of advantages: Decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, ability of various enzymes simultaneous production, etc. Design of proposed technology gives the opportunity to increase the activity of immobilized cells culture filtrate comparing to free cells, growing in periodic culture conditions. Thus, proposed research focuses on new, more versatile, microorganisms capable of squeezing more end-products as well as proposed cultivation technology led to increased enzymatic productivity by several times.Keywords: filamentous fungi, immobilization, industrial enzymes production, strain improvement
Procedia PDF Downloads 3607641 Economic Evaluation of Biogas and Biomethane from Animal Manure
Authors: Shahab Shafayyan, Tara Naderi
Abstract:
Biogas is the product of decomposition of organic materials. A variety of sources, including animal wastes, municipal solid wastes, sewage and agricultural wastes may be used to produce biogas in an anaerobic process. The main forming material of biogas is methane gas, which can be used directly in a variety of ways, such as heating and as fuel, which is very common in a number of countries, such as China and India. In this article, the cost of biogas production from animal fertilizers, and its refined form, bio methane gas has been studied and it is shown that it can be an alternative for natural gas in terms of costs, in the near future. The cost of biogas purification to biomethane is more than three times the cost of biogas production for an average unit. Biomethane production costs, calculated for a small unit, is about $9/MMBTU and for an average unit is about $5.9/MMBTU.Keywords: biogas, biomethane, anaerobic digestion, economic evaluation
Procedia PDF Downloads 4907640 The Food Industry in Nigeria: Development and Quality Assurance
Authors: Agi Sunday, Agih Ukuru Agih
Abstract:
In Nigeria, the food processing sector is dominated by small and medium enterprises, as well as multinational food companies. Quality standards are usually related to improving the safety of food products suitable for consumption in accordance to specifications by food regulatory bodies. These standards are essential elements for local and international businesses which contribute to economic progress through industrial development and trade. This review takes a critical look on the Nigerian food industry development in terms of quality standards that are necessary to be given consideration in the production of food and also ways of improving food production in Nigeria through the use of Total Quality Management (TQM) technique and the use of computerized systems to produce high quality and high value products while at the same time reducing production time and cost.Keywords: food industry, quality assurance, Nigeria, TQM, computerized systems
Procedia PDF Downloads 4557639 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 977638 Implications of Oxidative Stress for Monoterpenoid Oxindole Alkaloid Production in Uncaria tomentosa Cultures
Authors: Ana C. Ramos Valdivia, Ileana Vera-Reyes, Ariana A. Huerta-Heredia
Abstract:
The conditions of biotic and abiotic stress in plants can lead to the generation of high amounts of reactive oxygen species (ROS), which leads through a signaling cascade and second messengers to different antioxidant defense responses including the production of secondary metabolites. A limited number of species of plants like Uncaria tomentosa (cat claw) typical of the Amazon region produce monoterpenoid oxindole alkaloids (MOA) such as isopteropodine, mitraphylline, rhynchophylline and its isomers. Moreover, in cultivated roots, the glucoindole alkaloid 3α-dihydrocadambine (DHC) is also accumulated. Several studies have demonstrated that MAO has antioxidant properties and possess important pharmacological activities such as antitumor and immunostimulant while DHC, has hypotensive and hypolipidemic effects. In order the study the regulatory concerns operating in MAO production, the links between oxidative stress and antioxidant alkaloid production in U. tomentosa root cultures were examined. Different amount of hydrogen peroxide between 0.2 -1.0 mM was added to 12 days old roots cultures showing that, this substance had a differential effect on the production of DHC and MOA whereas the viability remained in 80% after six days. Addition of 0.2 mM hydrogen peroxide increased approximately 65% MAO and DHC production (0,540 ± 0.018 and 0.618 ± 0.029 mg per g dry weight, respectively) relative to the control. On contrast, after the addition of 0.6 mM and 1 mM hydrogen peroxide, DHC accumulation into the roots gradually decreased to 53% and 93% respectively, without changes in MAO concentration, which was in relation to a twice increase of the intracellular hydrogen peroxide content. On the other hand, concentrations of DHC (0.1, 0.5 and 1.0 mM in methanol) demonstrated free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The calculated IC50 for all tested concentrations was 0.180 mg per ml (0.33 mM) while the calculated TE50 was 276 minutes. Our results suggest that U. tomentosa root cultures both MAO and DHC have antioxidant capacities and respond to oxidative stress with a stimulation of their production; however, in presence of a higher concentration of ROS into the roots, DHC could be oxidized.Keywords: monoterpenoid indole alkaloid, oxidative stress, root cultures, uncaria tomentosa
Procedia PDF Downloads 1827637 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications
Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.Keywords: geobacillus, optimization, production, xylanase
Procedia PDF Downloads 3087636 Continuous Production of Prebiotic Pectic Oligosaccharides from Sugar Beet Pulp in a Continuous Cross Flow Membrane Bioreactor
Authors: Neha Babbar, S. Van Roy, W. Dejonghe, S. Sforza, K. Elst
Abstract:
Pectic oligosaccharides (a class of prebiotics) are non-digestible carbohydrates which benefits the host by stimulating the growth of healthy gut micro flora. Production of prebiotic pectic oligosaccharides (POS) from pectin rich agricultural residues involves a cutting of long chain polymer of pectin to oligomers of pectin while avoiding the formation of monosaccharides. The objective of the present study is to develop a two-step continuous biocatalytic membrane reactor (MER) for the continuous production of POS (from sugar beet pulp) in which conversion is combined with separation. Optimization of the ratio of POS/monosaccharides, stability and productivities of the process was done by testing various residence times (RT) in the reactor vessel with diluted (10 RT, 20 RT, and 30 RT) and undiluted (30 RT, 40 RT and 60 RT) substrate. The results show that the most stable processes (steady state) were 20 RT and 30 RT for diluted substrate and 40 RT and 60 RT for undiluted substrate. The highest volumetric and specific productivities of 20 g/L/h and 11 g/gE/h; 17 g/l/h and 9 g/gE/h were respectively obtained with 20 RT (diluted substrate) and 40 RT (undiluted substrate). Under these conditions, the permeates of the reactor test with 20 RT (diluted substrate) consisted of 80 % POS fractions while that of 40 RT (undiluted substrate) resulted in 70% POS fractions. A two-step continuous biocatalytic MER for the continuous POS production looks very promising for the continuous production of tailor made POS. Although both the processes i.e 20 RT (diluted substrate) and 40 RT (undiluted substrate) gave the best results, but for an Industrial application it is preferable to use an undiluted substrate.Keywords: pectic oligosaccharides, membrane reactor, residence time, specific productivity, volumetric productivity
Procedia PDF Downloads 4407635 Development of Concurrent Engineering through the Application of Software Simulations of Metal Production Processing and Analysis of the Effects of Application
Authors: D. M. Eric, D. Milosevic, F. D. Eric
Abstract:
Concurrent engineering technologies are a modern concept in manufacturing engineering. One of the key goals in designing modern technological processes is further reduction of production costs, both in the prototype and the preparatory part, as well as during the serial production. Thanks to many segments of concurrent engineering, these goals can be accomplished much more easily. In this paper, we give an overview of the advantages of using modern software simulations in relation to the classical aspects of designing technological processes of metal deformation. Significant savings are achieved thanks to the electronic simulation and software detection of all possible irregularities in the functional-working regime of the technological process. In order for the expected results to be optimal, it is necessary that the input parameters are very objective and that they reliably represent the values of these parameters in real conditions. Since it is a metal deformation treatment here, the particularly important parameters are the coefficient of internal friction between the working material and the tools, as well as the parameters related to the flow curve of the processing material. The paper will give a presentation for the experimental determination of some of these parameters.Keywords: production technologies, metal processing, software simulations, effects of application
Procedia PDF Downloads 2357634 Proposal of Innovative Risk Assessment of Ergonomic Factors in the Production of Jet Engines Using AHP (Analytic Hierarchy Process)
Authors: Jose Cristiano Pereira, Gilson Brito Alves Lima
Abstract:
Ergonomics is a key factor affecting the operational safety and quality in the aircraft engine manufacturing industry and evidence shows that the lack of attention to it can increase the risk of accidents. In order to emphasize the importance of ergonomics, this paper systematically reviews the critical processes used in the aircraft engine production industry with focus on the ergonomic factors. about the subject to identify key ergonomic factors. Experts validated the factors and used AHP to rank the factors in order of significance. From the six key risk factors identified, the ones with the highest weight are psychological demand followed by understanding of operational side. These factors suggest that measures must be taken to improve ergonomic factors, quality and safety in the manufacturing of aircraft engines.Keywords: ergonomics, safety, aviation, aircraft engine production
Procedia PDF Downloads 3157633 Impact of the Fourth Industrial Revolution on Food Security in South Africa
Authors: Fiyinfoluwa Giwa, Nicholas Ngepah
Abstract:
This paper investigates the relationship between the Fourth Industrial Revolution and food security in South Africa. The Ordinary Least Square was adopted from 2012 Q1 to 2021 Q4. The study used artificial intelligence investment and the food production index as the measure for the fourth industrial revolution and food security, respectively. Findings reveal a significant and positive coefficient of 0.2887, signifying a robust statistical relationship between AI adoption and the food production index. As a policy recommendation, this paper recommends the introduction of incentives for farmers and agricultural enterprises to adopt AI technologies -and the expansion of digital connectivity and access to technology in rural areas.Keywords: Fourth Industrial Revolution, food security, artificial intelligence investment, food production index, ordinary least square
Procedia PDF Downloads 757632 IL-33 Production in Murine Macrophages via PGE2-E Prostanoid Receptor 2/4 Signaling
Authors: Sachin K. Samuchiwal, Barbara Balestrieri, Amanda Paskavitz, Hannah Raff, Joshua A. Boyce
Abstract:
IL-33, a recently discovered member of the IL-1 cytokine family, binds to the TLR/IL1R super family receptor ST2 and induces type 2 immune responses. IL-33 is constitutively expressed in structural cells at barrier sites such as skin, lung, and intestine, and also inducibly expressed by hematopoietic cells including macrophages. Stimulation of macrophages by Lipopolysaccharide (LPS) can induce de novo IL-33 expression, and also causes the production of prostaglandin-E2 (PGE2) via cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1). Because PGE2 can regulate macrophage functions through both autocrine and paracrine mechanisms, the potential interplay of endogenous PGE2 on IL-33 production was explored. Bone-marrow derived murine macrophages (bmMF) that lack either mPGES-1 or EP2 receptor expression were stimulated with LPS in the absence or presence of exogenous PGE2 along with pharmacological agonists and antagonists. The study results demonstrate that endogenous PGE2 markedly enhances LPS-induced IL-33 production by bmMFs via EP2 receptors. Moreover, exogenous PGE2 can amplify LPS-induced IL-33 expression dominantly by EP2 and partly by EP4 receptors by a pathway involving cAMP and exchange protein activated by cAMP (EPAC), but not protein kinase A (PKA). Though both IL-33 production and PGE2 generation in response to LPS require activation of both p38 MAPK and NF-κB, PGE2 did not influence this activation. In conclusion, it is demonstrated that endogenous PGE2 signaling through EP2 and EP4 receptors is a prerequisite for LPS-induced IL-33 production in bmMFs and the underlying cAMP mediated pathway involves EPAC. Since IL-33 is a critical pro-inflammatory cytokine in various pathological disorders, this PGE2-EP2/EP4-cAMP mediated pathway can be exploited to intervene in IL-33 driven pathologies.Keywords: bone marrow macrophages, EPAC, IL-33, PGE2
Procedia PDF Downloads 1887631 Virtualization of Production Using Digital Twin Technology
Authors: Bohuslava Juhasova, Igor Halenar, Martin Juhas
Abstract:
The contribution deals with the current situation in modern manufacturing enterprises, which is affected by digital virtualization of different parts of the production process. The overview part of this article points to the fact, that wide informatization of all areas causes substitution of real elements and relationships between them with their digital, often virtual images, in real practice. Key characteristics of the systems implemented using digital twin technology along with essential conditions for intelligent products deployment were identified across many published studies. The goal was to propose a template for the production system realization using digital twin technology as a supplement to standardized concepts for Industry 4.0. The main resulting idea leads to the statement that the current trend of implementation of the new technologies and ways of communication between industrial facilities erases the boundaries between the real environment and the virtual world.Keywords: communication, digital twin, Industry 4.0, simulation, virtualization
Procedia PDF Downloads 249