Search results for: civil engineers (CE)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1452

Search results for: civil engineers (CE)

792 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions

Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.

Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation

Procedia PDF Downloads 168
791 Promises versus Realities: A Critical Assessment of the Integrated Design Process

Authors: Firdous Nizar, Carmela Cucuzzella

Abstract:

This paper explores how the integrated design process (IDP) was adopted for an architectural project. The IDP is a relatively new approach to collaborative design in architectural design projects in Canada. It has gained much traction recently as the closest possible approach to the successful management of low energy building projects and has been advocated as a productive method for multi-disciplinary collaboration within complex projects. This study is based on the premise that there are explicit and implicit dimensions of power within the integrated design process (IDP) in the green building industry that may or may not lead to irreconcilable differences in a process that demands consensus. To gain insight on the potential gap between the theoretical promises and practical realities of the IDP, a review of existing IDP literature is compared with a case study analysis of a competition-based architectural project in Canada, a first to incorporate the IDP in its overall design format. This paper aims to address the undertheorized power relations of the IDP in a real project. It presents a critical assessment through the lens of the combined theories of deliberative democracy by Jürgen Habermas, with that of agonistic pluralism by political theorist Chantal Mouffe. These two theories are intended to more appropriately embrace the conflictual situations in collaborative environments, and shed light on the relationships of power, between engineers, city officials, architects, and designers in this conventional consensus-based model. In addition, propositions for a shift in approach that embraces conflictual differences among its participants are put forth based on concepts of critical spatial practice by Markus Meissen. As IDP is a relatively new design process, it requires much deliberation on its structure from the theoretical framework built in this paper in order to unlock its true potential.

Keywords: agonistic pluralism, critical spatial practice, deliberative democracy, integrated design process

Procedia PDF Downloads 163
790 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud

Authors: Sharda Kumari, Saiman Shetty

Abstract:

Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.

Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation

Procedia PDF Downloads 81
789 Anti-Corruption Effect on Whistle Blowing Act

Authors: Na Young Kim

Abstract:

This is a study on the relation between the introduction bill of the Whistle Blowing Act and the CPI (Corruption Perception Index) from 1998 to 2019. It shows that the degree of corruption can be relatively lowered when WBA is introduced, and the system is matured. And when WBA was introduced at the national level and matured, it was found that it could have a greater impact on corruption. Secondly, it shows that OECD countries may have relatively low levels of corruption. In addition to the two variables representing democracy, when additional control variables (GDP (economic power), population size, HDI (education level), etc.) are controlled under the same conditions, the degree of corruption in countries with high political rights can be low (it means clean), while those with high civil freedom can be serious (it means not clean).

Keywords: Whistle Blowing Act, anti-corruption, CPI, GDP

Procedia PDF Downloads 40
788 Impact of Financial and Non-Financial Motivation on Motivating Employees

Authors: Al-Yaqdhan Al-Rawahi, Kaneez Fatima Sadriwala

Abstract:

The purpose of this paper is to discover the readiness of Civil Service Employee Pension Fund (CSEPF), a governmental organization, in motivating its staff. Exploratory survey has been conducted in order to extract needed information. For this purpose we proposed a questionnaire to understand staff viewpoint of motivation. Data was analyzed by using SPSS 15.0 for Windowsand Excel. Major results prove that good working conditions is the most important factor of staff and sympathetic help with personal problem is the least important one. Also the relationship between financial motivation and employee motivation is very weak, whereas with non-financial motivation and employee motivation is moderate. Future research may focus on studying all departments of CSEPF.

Keywords: financial motivation, non-financial motivation, employee motivation

Procedia PDF Downloads 366
787 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 64
786 The Effect of Curing Temperature and Rice Husk Ash Addition on the Behaviour of Sulfate-Rich Clay after Lime Stabilization

Authors: E. Bittar, A. Quiñonez, F. Mencia, E. Aguero, M. Delgado, V. Arriola, R. López

Abstract:

In the western region of Paraguay, the poor condition of the roads has negatively affected the development of this zone, where the absence of petrous material has led engineers to opt for the stabilization of soils with lime or cement as the main structure for bases and subbases of these roads. In several areas of this region, high sulfate contents have been found both in groundwater and in soils, which, when reacted with lime or cement, generate a new problem instead of solving it. On the other hand, the use of industrial waste as granulated slag and fly ash proved to be a sustainable practice widely used in the manufacture of cement, and now also, in the stabilization of soils worldwide. Works related to soils containing sulfates stabilized either with granulated slag or fly ash and lime shown a good performance in their mechanical behaviour. This research seeks to evaluate the mechanical behaviour of soils with high contents of sulfates stabilized with lime by curing them both, at the normalized temperature (23 ± 2 °C) and at 40 ± 2 °C. Moreover, it attempts to asses if the addition of rice husk ash has a positive influence on the new geomaterial. The 40 ± 2 °C curing temperature was selected trying to simulate the average local temperature in summer and part of spring session whereas rice husk ash is an affordable waste produced in the region. An extensive experimental work, which includes unconfined compression, durability and free swell tests were carried out considering different dry unit weights, lime content and the addition of 20% of rice husk ash. The results showed that the addition of rice husk ash increases the resistance and durability of the material and decreases the expansion of this, moreover, the specimens cured at a temperature of 40 ± 2 °C showed higher resistance, better durability and lower expansion compared to those cured at the normalized temperature of 23 ± 2 °C.

Keywords: durability, expansion, lime stabilization, rice husk ash, sulfate

Procedia PDF Downloads 103
785 Size Effects on Structural Performance of Concrete Gravity Dams

Authors: Mehmet Akköse

Abstract:

Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.

Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions

Procedia PDF Downloads 258
784 Occupational Exposure to Electromagnetic Fields Can Increase the Release of Mercury from Dental Amalgam Fillings

Authors: Ghazal Mortazavi, S. M. J. Mortazavi

Abstract:

Electricians, power line engineers and power station workers, welders, aluminum reduction workers, MRI operators and railway workers are occupationally exposed to different levels of electromagnetic fields. Mercury is among the most toxic metals. Dental amalgam fillings cause significant exposure to elemental mercury vapour in the general population. Today, substantial evidence indicates that mercury even at low doses may lead to toxicity. Increased release of mercury from dental amalgam fillings after exposure to MRI or microwave radiation emitted by mobile phones has been previously shown by our team. Moreover, our recent studies on the effects of stronger magnetic fields entirely confirmed our previous findings. From the other point of view, we have also shown that papers which reported no increased release of mercury after MRI, may have some methodological flaws. Over the past several years, our lab has focused on the health effects of exposure of laboratory animals and humans to different sources of electromagnetic fields such as mobile phones and their base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons, and MRI. As a strong association between exposure to electromagnetic fields and mercury level has been found in our studies, our findings lead us to this conclusion that occupational exposure to electromagnetic fields in workers with dental amalgam fillings can lead to elevated levels of mercury. Studies which reported that exposure to mercury can be a risk factor of Alzheimer’s disease (AD) due to the accumulation of amyloid beta protein (Aβ) in the brain and those reported that long-term occupational exposure to high levels of electromagnetic fields can increase the risk of Alzheimer's disease and dementia in male workers support our concept and confirm the significant role of the occupational exposure to electromagnetic fields in increasing the mercury level in workers with amalgam fillings.

Keywords: occupational exposure, electromagnetic fields, workers, mercury release, dental amalgam, restorative dentistry

Procedia PDF Downloads 409
783 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle

Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh

Abstract:

Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.

Keywords: aerodynamics, CFD, fuel efficiency, golf ball

Procedia PDF Downloads 319
782 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review

Authors: Anicet Dansou

Abstract:

Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.

Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete

Procedia PDF Downloads 91
781 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 409
780 Contribution of Algerians Local Materials on the Compressive Strengths of Concrete: Experimental and Numerical Study

Authors: Mohamed Lyes Kamel Khouadjia, Bouzidi Mezghiche

Abstract:

The evolution in the civil engineering and carried out more consumption of aggregates and particularly the sand. Due to the depletion of natural reserves of sand, it is necessary to focus on the use of local materials such as crushed sand, river sand and dune sand, mineral additions. The aim of this work is to improve the state of knowledge on the compressive strengths of crushed sands with several mixtures (dune sand, river sand, pozzolan, and slag). The obtained results were compared with numerical results obtained with the software Béton Lab Pro 3.

Keywords: crushed sand, river sand, dune sand, pouzzolan, slag, compressive strengths, Béton Lab Pro 3

Procedia PDF Downloads 299
779 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules

Authors: Michael Naderhirn, Marco Pavone

Abstract:

Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.

Keywords: formal system verification, reachability, real time controller, hybrid system

Procedia PDF Downloads 224
778 Hydraulics of 3D Aerators with Lateral Enlargements

Authors: Nirmala Lama

Abstract:

The construction of high dams has led to significant challenges in managing flow rates discharging over spillways, resulting in cavitation damages on hydraulic surfaces. To address this, aerator devices were designed and installed to promote fore aeration, thereby controlling and mitigating damages caused by cavitation. Consequently, these aerator types, three-dimensional aerators (3DAEs), have demonstrated superior efficiency in introducing forced air into the flow.This research focuses on the installation and evaluation of three-dimensional aerator devices at the high discharge spillway surface. In the laboratory, the air concentration downstream of the hydraulic structures was extensively measured, and the data were analyzed in details.Multiple flow scenarios and structural arrangements of the aerators were adopted for the study. The outcomes of these experiments are listed as In terms of air concentration value, the comparison between 3 DAE (three-dimensional aerator) with offset only and offset with ramp reveals significant differences. The concentration value on the side wall was justified. The side cavity length was found to increase with higher approach Froude numbers and lateral enlargement widths. Furthermore, 3DAE exhibited shorter side cavity lengths compared to three-dimensional aerator devices without ramps (3DAD), a beneficial features for controlling water fins. An empirical formula to express the side cavity length was derived from the measured data. Also, the comparison were made on the basis of water fin formation between the different arrangements of 3D aerators. In conclusion, this research provides valuable insights into the performance of three-dimensional aerators in mitigating cavitation damages and controlling water fins in high dam spillways. The findings offer practical implications for designers and engineers seeking to enhance the efficiency and safety of hydraulic structures subjected to high flow rates.

Keywords: three-dimension aerator, cavity, water fin, air entrainment

Procedia PDF Downloads 54
777 Solutions for Comfort and Safety on Vibrations Resulting from the Action of the Wind on the Building in the Form of Portico with Four Floors

Authors: G. B. M. Carvalho, V. A. C. Vale, E. T. L. Cöuras Ford

Abstract:

With the aim of increasing the levels of comfort and security structures, the study of dynamic loads on buildings has been one of the focuses in the area of control engineering, civil engineering and architecture. Thus, this work presents a study based on simulation of the dynamics of buildings in the form of portico subjected to wind action, besides presenting an action of passive control, using for this the dynamics of the structure, consequently representing a system appropriated on environmental issues. These control systems are named the dynamic vibration absorbers.

Keywords: dynamic vibration absorber, structure, comfort, safety, wind behavior, structure

Procedia PDF Downloads 390
776 A 3D Eight Nodes Brick Finite Element Based on the Strain Approach

Authors: L. Belounar, K. Gerraiche, C. Rebiai, S. Benmebarek

Abstract:

This paper presents the development of a new three dimensional brick finite element by the use of the strain based approach for the linear analysis of plate bending behavior. The developed element has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes. The displacements field of the developed element is based on assumed functions for the various strains satisfying the compatibility and the equilibrium equations. The performance of this element is evaluated on several problems related to thick and thin plate bending in linear analysis. The obtained results show the good performances and accuracy of the present element.

Keywords: brick element, strain approach, plate bending, civil engineering

Procedia PDF Downloads 468
775 Identifying and Prioritizing Critical Success Factors (Csfs) in Retaining and Developing Knowledge Workers in Oil and Gas Project–Based Companies

Authors: Ehsan Samimi, Mohammaa Ali Shahosseeni, Ali Abasltian, Shahriar Shafaghi

Abstract:

Background/Objectives: Voluntary turnover and early retirement request by specialists and experienced people in project-based organizations (PBO) has caused many problems in finding suitable experts to execute the projects. Methods/Statistical analysis: The present study is a descriptive and applied research. Research population consists of KWs in oil and gas PBO. The engineers in these organizations were considered as research sample. Interviews and questionnaire were used to gather information. Interviews with experts were used to identify factors and questionnaires were utilized to identify the importance and prioritization. 72 factors were identified and categorized into 9 groups within organizational and HR initiative levels. Results: Results of the research indicate the priority of each group of factors according to the proposed model in the view of KWs in oil, gas and petrochemical industries. On this basis, the following factors have the highest effect ratio based on the respondents’ point of view: 1. knowledge management 2. Performance appraisal system 3. Communication 4.Training and development 5.Job design and analysis 6. Employment policies 7. Career planning 8. Project/organizational factors 9. Salary and rewards. Additionally, in each group the priority of effective sub-factors has been identified as the result of the research .The results support the definitions of KWs and influence of factors examined and specified by similar studies in retention and development of KWs. The high importance of knowledge management and low rank for salary and rewards can be mentioned as example in this regard. Despite the priority of each group of factors the uniqueness of the result is due to identification of effective factors in the specific industry (oil and gas) and type of organization (PBO). Conclusion/Application: The findings of present study can be used to devise plans for retaining and developing KWs in PBO especially in oil and gas industry.

Keywords: project–based organizations, knowledge workers, HR management, turnover, retaining and developing employees

Procedia PDF Downloads 274
774 A Brief Overview of Seven Churches in Van Province

Authors: Eylem Güzel, Soner Guler, Mustafa Gulen

Abstract:

Van province which has a very rich historical heritage is located in eastern part of Turkey, between Lake Van and the Iranian border. Many civilizations prevailing in Van until today have built up many historical structures such as castles, mosques, churches, bridges, baths, etc. In 2011, a devastating earthquake with magnitude 7.2 Mw, epicenter in Tabanlı Village, occurred in Van, where a large part of the city locates in the first-degree earthquake zone. As a result of this earthquake, 644 people were killed; a lot of reinforced, unreinforced and historical structures were badly damaged. Many historical structures damaged due to this earthquake have been restored. In this study, the damages observed in Seven churches (Yedi Kilise) after 2011 Van earthquake is evaluated with regard to architecture and civil engineering perspective.

Keywords: earthquake, historical structures, Van province, church

Procedia PDF Downloads 526
773 Ecosystem Engineering Strengthens Bottom-Up and Weakens Top-Down Effects via Trait-Mediated Indirect Interactions

Authors: Zhiwei Zhong, Xiaofei Li, Deli Wang

Abstract:

Ecosystem engineering is a powerful force shaping community structure and ecosystem function. Yet, very little is known about the mechanisms by which engineers affect vital ecosystem processes like trophic interactions. Here, we examine the potential for a herbivore ecosystem engineer, domestic sheep, to affect trophic interactions between the web-building spider Argiope bruennichi, its grasshopper prey Euchorthippus spp., and the grasshoppers’ host plant Leymus chinensis. By integrating small- and large-scale field experiments, we demonstrate that: 1) moderate sheep grazing changed the structure of plant communities by suppressing strongly interacting forbs within a grassland matrix; 2) this change in plant community structure drove interaction modifications between the grasshoppers and their grass host plants and between grasshoppers and their spider predators, and 3) these interaction modifications were entirely mediated by plasticity in grasshopper behavior. Overall, ecosystem engineering by sheep grazing strengthened bottom-up effects and weakened top-down effects via trait-mediated interactions, resulting in a nearly two-fold increase in grasshopper densities. Interestingly, the grasshopper behavioral shifts which reduced spider per capita predation rates in the microcosms did not translate to reduced spider predation rates at the larger system scale because increased grasshopper densities offset behavioral effects at larger scales. Our findings demonstrate that 1) ecosystem engineering can strongly alter trophic interactions, 2) such effects can be driven by cryptic trait-mediated interactions, and 3) the relative importance of trait- versus density effects as measured by microcosm experiments may not reflect the importance of these processes at realistic ecological scales due to scale-dependent interactions.

Keywords: bottom-up effects, ecosystem engineering, trait-mediated indirect effects, top-down effects

Procedia PDF Downloads 328
772 Use of Recycled PVB as a Protection against Carbonation

Authors: Michael Tupý, Vít Petránek

Abstract:

The paper is focused on testing of the poly(vinyl butyral) (PVB) layer which had the function of a CO2 insulating protection against concrete and mortar carbonation. The barrier efficiency of PVB was verified by the measurement of diffusion characteristics. Two different types of PVB were tested; original extruded PVB sheet and PVB sheet made from PVB dispersion which was obtained from recycled windshields. The work deals with the testing CO2 diffusion when polymer sheets were exposed to a CO2 atmosphere (10% v/v CO2) with 0% RH. The excellent barrier capability against CO2 permeability of original and also recycled types of PVB layers was observed. This application of PVB waste can bring advantageous use in civil engineering and significant environmental contribution.

Keywords: windshield, poly(vinyl butyral), mortar, diffusion, carbonatation, polymer waste

Procedia PDF Downloads 408
771 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying

Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job

Abstract:

As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.

Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning

Procedia PDF Downloads 91
770 Indicators of Regional Development, Case Study: Bucharest-Ilfov Region

Authors: Dan Cristian Popescu

Abstract:

The new territorial identities and global dynamics have determined a change of policies of economics, social and cultural development from a vertical to a horizontal approach, which is based on cooperation networks between institutional actors, economic operators or civil society representatives. The European integration has not only generated a different patterns of competitiveness, economic growth, concentration of attractive potential, but also disparities among regions of this country, or even in the countryside within a region. To a better understanding of the dynamics of regional development and the impact of this concept on Romania, I chose as a case study the region Bucharest-Ilfov which is analyzed on the basis of predetermined indicators and of the impact of European programs.

Keywords: regional competition, regional development, rural, urban

Procedia PDF Downloads 571
769 Optimizing The Residential Design Process Using Automated Technologies

Authors: Martin Georgiev, Milena Nanova, Damyan Damov

Abstract:

Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.

Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization

Procedia PDF Downloads 32
768 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology

Authors: Shashank. S. Bagane, H. N. Rajendra Prasad

Abstract:

Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.

Keywords: building information modeling, energy impact, spatial geometry, vastu

Procedia PDF Downloads 144
767 A Quantitative Model for Replacement of Medical Equipment Based on Technical and Environmental Factors

Authors: Ghadeer Mohammad Said El-Sheikh, Samer Mohamad Shalhoob

Abstract:

Medical equipment operation state is a valid reflection of health care organizations' performance, where such equipment highly contributes to the quality of healthcare services on several levels in which quality improvement has become an intrinsic part of the discourse and activities of health care services. In healthcare organizations, clinical and biomedical engineering departments play an essential role in maintaining the safety and efficiency of such equipment. One of the most challenging topics when it comes to such sophisticated equipment is the lifespan of medical equipment, where many factors will impact such characteristics of medical equipment through its life cycle. So far, many attempts have been made in order to address this issue where most of the approaches are kind of arbitrary approaches and one of the criticisms of existing approaches trying to estimate and understand the lifetime of a medical equipment lies under the inquiry of what are the environmental factors that can play into such a critical characteristic of a medical equipment. In an attempt to address this shortcoming, the purpose of our study rises where in addition to the standard technical factors taken into consideration through the decision-making process by a clinical engineer in case of medical equipment failure, the dimension of environmental factors shall be added. The investigations, researches and studies applied for the purpose of supporting the decision making process by a clinical engineers and assessing the lifespan of healthcare equipment’s in the Lebanese society was highly dependent on the identification of technical criteria’s that impacts the lifespan of a medical equipment where the affecting environmental factors didn’t receive the proper attention. The objective of our study is based on the need for introducing a new well-designed plan for evaluating medical equipment depending on two dimensions. According to this approach, the equipment that should be replaced or repaired will be classified based on a systematic method taking into account two essential criteria; the standard identified technical criteria and the added environmental criteria.

Keywords: technical, environmental, healthcare, characteristic of medical equipment

Procedia PDF Downloads 137
766 From Achilles to Chris Kyle-Militarized Masculinity and Hollywood in the Post-9/11 Era

Authors: Mary M. Park

Abstract:

Hollywood has had a long and enduring history of showcasing the United States military to civilian audiences, and the portrayals of soldiers in films have had a definite impact on the civilian perception of the US military. The growing gap between the civilian population and the military in the US has led to certain stereotypes of military personnel to proliferate, especially in the area of militarized masculinity, which has often been harmful to the psychological and spiritual wellbeing of military personnel. Examining Hollywood's portrayal of soldiers can serve to enhance our understanding of how civilians may be influenced in their perception of military personnel. Moreover, it can provide clues as to how male military personnel may also be influenced by Hollywood films as they form their own military identity. The post 9/11 era has seen numerous high budget films lionizing a particular type of soldier, the 'warrior-hero', who adheres to a traditional form of hegemonic masculinity and exhibits traits such as physical strength, bravery, stoicism, and an eagerness to fight. This paper examines how the portrayal of the 'warrior-hero' perpetuates a negative stereotype that soldiers are a blend of superheroes and emotionless robots and, therefore, inherently different from civilians. This paper examines the portrayal of militarized masculinity in three of the most successful war films of the post-9/11 era; Black Hawk Down (2001), The Hurt Locker (2008), and American Sniper (2014). The characters and experiences of the soldiers depicted in these films are contrasted with the lived experiences of soldiers during the Iraq and Afghanistan wars. Further, there is an analysis of popular films depicting ancient warriors, such as Troy (2004) and 300 (2007), which were released during the early years of the War on Terror. This paper draws on the concept of hegemonic militarised masculinity by leading scholars and feminist international relations theories on militarized masculinity. This paper uses veteran testimonies collected from a range of public sources, as well as previous studies on the link between traditional masculinity and war-related mental illness. This paper concludes that the seemingly exclusive portrayal of soldiers as 'warrior-heroes' in films in the post-9/11 era is misleading and damaging to civil-military relations and that the reality of the majority of soldiers' experiences is neglected in Hollywood films. As civilians often believe they are being shown true depictions of the US military in Hollywood films, especially in films that portray real events, it is important to find the differences between the idealized fictional 'warrior-heroes' and the reality of the soldiers on the ground in the War on Terror.

Keywords: civil-military relations, gender studies, militarized masculinity, social pyschology

Procedia PDF Downloads 106
765 Comparison of Steel and Composite Analysis of a Multi-Storey Building

Authors: Çiğdem Avcı Karataş

Abstract:

Mitigation of structural damage caused by earthquake and reduction of fatality is one of the main concerns of engineers in seismic prone zones of the world. To achieve this aim many technologies have been developed in the last decades and applied in construction and retrofit of structures. On the one hand Turkey is well-known a country of high level of seismicity; on the other hand steel-composite structures appear competitive today in this country by comparison with other types of structures, for example only-steel or concrete structures. Composite construction is the dominant form of construction for the multi-storey building sector. The reason why composite construction is often so good can be expressed in one simple way - concrete is good in compression and steel is good in tension. By joining the two materials together structurally these strengths can be exploited to result in a highly efficient design. The reduced self-weight of composite elements has a knock-on effect by reducing the forces in those elements supporting them, including the foundations. The floor depth reductions that can be achieved using composite construction can also provide significant benefits in terms of the costs of services and the building envelope. The scope of this paper covers analysis, materials take-off, cost analysis and economic comparisons of a multi-storey building with composite and steel frames. The aim of this work is to show that designing load carrying systems as composite is more economical than designing as steel. Design of the nine stories building which is under consideration is done according to the regulation of the 2007, Turkish Earthquake Code and by using static and dynamic analysis methods. For the analyses of the steel and composite systems, plastic analysis methods have been used and whereas steel system analyses have been checked in compliance with EC3 and composite system analyses have been checked in compliance with EC4. At the end of the comparisons, it is revealed that composite load carrying systems analysis is more economical than the steel load carrying systems analysis considering the materials to be used in the load carrying system and the workmanship to be spent for this job.

Keywords: composite analysis, earthquake, steel, multi-storey building

Procedia PDF Downloads 548
764 Dynamic Modeling of Advanced Wastewater Treatment Plants Using BioWin

Authors: Komal Rathore, Aydin Sunol, Gita Iranipour, Luke Mulford

Abstract:

Advanced wastewater treatment plants have complex biological kinetics, time variant influent flow rates and long processing times. Due to these factors, the modeling and operational control of advanced wastewater treatment plants become complicated. However, development of a robust model for advanced wastewater treatment plants has become necessary in order to increase the efficiency of the plants, reduce energy costs and meet the discharge limits set by the government. A dynamic model was designed using the Envirosim (Canada) platform software called BioWin for several wastewater treatment plants in Hillsborough County, Florida. Proper control strategies for various parameters such as mixed liquor suspended solids, recycle activated sludge and waste activated sludge were developed for models to match the plant performance. The models were tuned using both the influent and effluent data from the plant and their laboratories. The plant SCADA was used to predict the influent wastewater rates and concentration profiles as a function of time. The kinetic parameters were tuned based on sensitivity analysis and trial and error methods. The dynamic models were validated by using experimental data for influent and effluent parameters. The dissolved oxygen measurements were taken to validate the model by coupling them with Computational Fluid Dynamics (CFD) models. The Biowin models were able to exactly mimic the plant performance and predict effluent behavior for extended periods. The models are useful for plant engineers and operators as they can take decisions beforehand by predicting the plant performance with the use of BioWin models. One of the important findings from the model was the effects of recycle and wastage ratios on the mixed liquor suspended solids. The model was also useful in determining the significant kinetic parameters for biological wastewater treatment systems.

Keywords: BioWin, kinetic modeling, flowsheet simulation, dynamic modeling

Procedia PDF Downloads 136
763 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry

Authors: David E. Culler, Noah D. Anderson

Abstract:

Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.

Keywords: PDM, PLM, collaboration, CAD/CAM, scalable systems

Procedia PDF Downloads 160