Search results for: biomass steam gasification
695 Improvement of Fatigue and Fatigue Corrosion Resistances of Turbine Blades Using Laser Cladding
Authors: Sami I. Jafar, Sami A. Ajeel, Zaman A. Abdulwahab
Abstract:
The turbine blades used in electric power plants are made of low alloy steel type 52. These blades will be subjected to fatigue and also at other times to fatigue corrosion with aging time. Due to their continuous exposure to cyclic rotational stresses in corrosive steam environments, The current research aims to deal with this problem using the laser cladding method for low alloy steel type 52, which works to re-compose the metallurgical structure and improve the mechanical properties by strengthening the resulting structure, which leads to an increase in fatigue and wears resistance, therefore, an increase in the life of these blades is observed.Keywords: fatigue, fatigue corrosion, turbine blades, laser cladding
Procedia PDF Downloads 199694 EDTA Enhanced Plant Growth, Antioxidant Defense System, and Phytoextraction of Copper by Brassica napus L.
Authors: Ume Habiba, Shafaqat Ali, Mujahid Farid, Muhammad Bilal Shakoor
Abstract:
Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.Keywords: antioxidants, biomass, copper, EDTA, phytoextraction, tolerance
Procedia PDF Downloads 411693 Robust Method for Evaluation of Catchment Response to Rainfall Variations Using Vegetation Indices and Surface Temperature
Authors: Revalin Herdianto
Abstract:
Recent climate changes increase uncertainties in vegetation conditions such as health and biomass globally and locally. The detection is, however, difficult due to the spatial and temporal scale of vegetation coverage. Due to unique vegetation response to its environmental conditions such as water availability, the interplay between vegetation dynamics and hydrologic conditions leave a signature in their feedback relationship. Vegetation indices (VI) depict vegetation biomass and photosynthetic capacity that indicate vegetation dynamics as a response to variables including hydrologic conditions and microclimate factors such as rainfall characteristics and land surface temperature (LST). It is hypothesized that the signature may be depicted by VI in its relationship with other variables. To study this signature, several catchments in Asia, Australia, and Indonesia were analysed to assess the variations in hydrologic characteristics with vegetation types. Methods used in this study includes geographic identification and pixel marking for studied catchments, analysing time series of VI and LST of the marked pixels, smoothing technique using Savitzky-Golay filter, which is effective for large area and extensive data. Time series of VI, LST, and rainfall from satellite and ground stations coupled with digital elevation models were analysed and presented. This study found that the hydrologic response of vegetation to rainfall variations may be shown in one hydrologic year, in which a drought event can be detected a year later as a suppressed growth. However, an annual rainfall of above average do not promote growth above average as shown by VI. This technique is found to be a robust and tractable approach for assessing catchment dynamics in changing climates.Keywords: vegetation indices, land surface temperature, vegetation dynamics, catchment
Procedia PDF Downloads 287692 Promotive Role of 5-Aminolevulinic Acid on Chromium-Induced Morphological, Photosynthetic and Oxidative Changes in Cauliflower (Brassica oleracea Botrytis L.)
Authors: Shafaqat Ali, Rehan Ahmad, Muhammad Rizwan
Abstract:
Chromium (Cr) is one of the most toxic pollutants among heavy metals that adversely affect living organisms and physiological processes in plants. The present study investigated the effect of without and with 15 mg L-1 5-Aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100 and 200 μM) in the growth medium. Results showed that Cr stress decreased the plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD), and caused oxidative stress, as observed by increased level of malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), in both leaves and roots of cauliflower. Chromium concentrations and total Cr uptake increased in roots, stem and leaves of plants with increasing Cr levels in the growth medium. Foliar application of ALA increased plant growth, biomass, photosynthetic pigments and gas exchange characteristics under Cr stress as compared to without ALA application. As compared to Cr stress alone, ALA application decreased the levels of MDA, H2O2 and EL while further enhanced the activities of antioxidant enzymes in both leaves and roots. Chromium concentrations and total Cr uptake decreased by the ALA application as compared to without ALA. These results showed that foliar application of ALA might be effective in reducing Cr uptake and toxicity in cauliflower.Keywords: antioxidant enzymes, cauliflower, photosynthesis, chromium, ALA, hydrogen peroxide, electrolyte leakage
Procedia PDF Downloads 301691 Creep Analysis and Rupture Evaluation of High Temperature Materials
Authors: Yuexi Xiong, Jingwu He
Abstract:
The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines
Procedia PDF Downloads 290690 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept
Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia
Abstract:
The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.Keywords: biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol
Procedia PDF Downloads 170689 Energy Efficiency Measures in Canada’s Iron and Steel Industry
Authors: A. Talaei, M. Ahiduzzaman, A. Kumar
Abstract:
In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation
Procedia PDF Downloads 396688 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico
Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva
Abstract:
Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients
Procedia PDF Downloads 182687 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media
Authors: Swati Tomar, Sunil Kumar Gupta
Abstract:
Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.Keywords: anammox, filter media, kinetics, nitrogen removal
Procedia PDF Downloads 382686 Value Adding of Waste Biomass of Capsicum and Chilli Crops for Medical and Health Supplement Industries
Authors: Mursleen Yasin, Sunil Panchal, Michelle Mak, Zhonghua Chen
Abstract:
“The use of agricultural and horticultural waste to obtain beneficial products. Thus reduce its environmental impact and help the general population.” Every year 20 billion dollars of food is wasted in the world. All the energy, resources, nutrients and metabolites are lost to the landfills as well. On farm production losses are a main issue in agriculture. Almost 25% vegetables never leave the farm because they are not considered perfect for supermarkets and treated as waste material along with the rest of the plant parts. For capsicums, this waste is 56% of the total crop. Capsicum genus is enriched with a group of compounds called capsaicinoids which are a source of spiciness of these fruits. Capsaicin and dihydrocapsaicin are the major members comprising almost 90% of this group. The major production and accumulation site is the non-edible part of fruit i.e., placenta. Other parts of the plant, like stem, leaves, pericarp and seeds, also contain these pungent compounds. Capsaicinoids are enriched with properties like analgesic, antioxidants, anti-inflammatory, antibacterial, anti-virulence anti-carcinogenic, chemo preventive, chemotherapeutic, antidiabetic etc. They are also effective in treating problems related to gastrointestinal tract, lowering cholesterol and triglycerides in obesity. The aim of the study is to develop a standardised technique for capsaicinoids extraction and to identify better nutrient treatment for fruit and capsaicinoids yield. For research 3 capsicum and 2 chilli varieties were grown in a high-tech glass house facility in Sydney, Australia. Plants were treated with three levels of nutrient treatments i.e., EC 1.8, EC 2.8 and EC 3.8 in order to check its effect on fruit yield and capsaicinoids concentration. Solvent extraction procedure is used with 75% ethanol to extract these secondary metabolites. Physiological, post-harvest and waste biomass measurement and metabolomic analysis are also performed. The results showed that EC 2.8 gave the better fruit yield of capsicums, and those fruits have the higher capsaicinoids concentration. For chillies, higher EC levels had better results than lower treatment. The UHPLC analysis is done to quantify the compounds, and a decrease in capsaicin concentration is observed with the crop maturation. The outcome of this project is a sustainable technique for extraction of capsaicinoids which can easily be adopted by farmers. In this way, farmers can help in value adding of waste by extracting and selling capsaicinoids to nutraceutical and pharmaceutical industries and also earn some secondary income from the 56% waste of capsicum crop.Keywords: capsaicinoids, plant waste, capsicum, solvent extraction, waste biomass
Procedia PDF Downloads 79685 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa
Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly
Abstract:
It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal
Procedia PDF Downloads 277684 Multi-Criteria Assessment of Biogas Feedstock
Authors: Rawan Hakawati, Beatrice Smyth, David Rooney, Geoffrey McCullough
Abstract:
Targets have been set in the EU to increase the share of renewable energy consumption to 20% by 2020, but developments have not occurred evenly across the member states. Northern Ireland is almost 90% dependent on imported fossil fuels. With such high energy dependency, Northern Ireland is particularly susceptible to the security of supply issues. Linked to fossil fuels are greenhouse gas emissions, and the EU plans to reduce emissions by 20% by 2020. The use of indigenously produced biomass could reduce both greenhouse gas emissions and external energy dependence. With a wide range of both crop and waste feedstock potentially available in Northern Ireland, anaerobic digestion has been put forward as a possible solution for renewable energy production, waste management, and greenhouse gas reduction. Not all feedstock, however, is the same, and an understanding of feedstock suitability is important for both plant operators and policy makers. The aim of this paper is to investigate biomass suitability for anaerobic digestion in Northern Ireland. It is also important that decisions are based on solid scientific evidence. For this reason, the methodology used is multi-criteria decision matrix analysis which takes multiple criteria into account simultaneously and ranks alternatives accordingly. The model uses the weighted sum method (which follows the Entropy Method to measure uncertainty using probability theory) to decide on weights. The Topsis method is utilized to carry out the mathematical analysis to provide the final scores. Feedstock that is currently available in Northern Ireland was classified into two categories: wastes (manure, sewage sludge and food waste) and energy crops, specifically grass silage. To select the most suitable feedstock, methane yield, feedstock availability, feedstock production cost, biogas production, calorific value, produced kilowatt-hours, dry matter content, and carbon to nitrogen ratio were assessed. The highest weight (0.249) corresponded to production cost reflecting a variation of £41 gate fee to 22£/tonne cost. The weights calculated found that grass silage was the most suitable feedstock. A sensitivity analysis was then conducted to investigate the impact of weights. The analysis used the Pugh Matrix Method which relies upon The Analytical Hierarchy Process and pairwise comparisons to determine a weighting for each criterion. The results showed that the highest weight (0.193) corresponded to biogas production indicating that grass silage and manure are the most suitable feedstock. Introducing co-digestion of two or more substrates can boost the biogas yield due to a synergistic effect induced by the feedstock to favor positive biological interactions. A further benefit of co-digesting manure is that the anaerobic digestion process also acts as a waste management strategy. From the research, it was concluded that energy from agricultural biomass is highly advantageous in Northern Ireland because it would increase the country's production of renewable energy, manage waste production, and would limit the production of greenhouse gases (current contribution from agriculture sector is 26%). Decision-making methods based on scientific evidence aid policy makers in classifying multiple criteria in a logical mathematical manner in order to reach a resolution.Keywords: anaerobic digestion, biomass as feedstock, decision matrix, renewable energy
Procedia PDF Downloads 462683 Integration of Agroforestry Shrub for Diversification and Improved Smallholder Production: A Case of Cajanus cajan-Zea Mays (Pigeonpea-Maize) Production in Ghana
Authors: F. O. Danquah, F. Frimpong, E. Owusu Danquah, T. Frimpong, J. Adu, S. K. Amposah, P. Amankwaa-Yeboah, N. E. Amengor
Abstract:
In the face of global concerns such as population increase, climate change, and limited natural resources, sustainable agriculture practices are critical for ensuring food security and environmental stewardship. The study was conducted in the Forest zones of Ghana during the major and minor seasons of 2023 cropping seasons to evaluate maize yield productivity improvement and profitability of integrating Cajanus cajan (pigeonpea) into a maize production system described as a pigeonpea-maize cropping system. This is towards an integrated soil fertility management (ISFM) with a legume shrub pigeonpea for sustainable maize production while improving smallholder farmers' resilience to climate change. A split-plot design with maize-pigeonpea (Pigeonpea-Maize intercrop – MPP and No pigeonpea/ Sole maize – NPP) and inorganic fertilizer rate (250 kg/ha of 15-15-15 N-P2O5-K2O + 250 kg/ha Sulphate of Ammonia (SoA) – Full rate (FR), 125 kg/ha of 15-15-15 N-P2O5-K2O + 125 kg/ha Sulphate of Ammonia (SoA) – Half rate (HR) and no inorganic fertilizer (NF) as control) was used as the main plot and subplot treatments respectively. The results indicated a significant interaction of the pigeonpea-maize cropping system and inorganic fertilizer rate on the growth and yield of the maize with better and similar maize productivity when HR and FR were used with pigeonpea biomass. Thus, the integration of pigeonpea and its biomass would result in the reduction of recommended fertiliser rate to half. This would improve farmers’ income and profitability for sustainable maize production in the face of climate change.Keywords: agroforestry tree, climate change, integrated soil fertility management, resource use efficiency
Procedia PDF Downloads 57682 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst
Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci
Abstract:
The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel
Procedia PDF Downloads 154681 Wood Decay Fungal Strains Useful for Bio-Composite Material Production
Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino
Abstract:
Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi
Procedia PDF Downloads 141680 An Analysis of Eco-efficiency and GHG Emission of Olive Oil Production in Northeast of Portugal
Authors: M. Feliciano, F. Maia, A. Gonçalves
Abstract:
Olive oil production sector plays an important role in Portuguese economy. It had a major growth over the last decade, increasing its weight in the overall national exports. International market penetration for Mediterranean traditional products is increasingly more demanding, especially in the Northern European markets, where consumers are looking for more sustainable products. Trying to support this growing demand this study addresses olive oil production under the environmental and eco-efficiency perspectives. The analysis considers two consecutive product life cycle stages: olive trees farming; and olive oil extraction in mills. Addressing olive farming, data collection covered two different organizations: a middle-size farm (~12ha) (F1) and a large-size farm (~100ha) (F2). Results from both farms show that olive collection activities are responsible for the largest amounts of Green House Gases (GHG) emissions. In this activities, estimate for the Carbon Footprint per olive was higher in F2 (188g CO2e/kgolive) than in F1 (148g CO2e/kgolive). Considering olive oil extraction, two different mills were considered: one using a two-phase system (2P) and other with a three-phase system (3P). Results from the study of two mills show that there is a much higher use of water in 3P. Energy intensity (EI) is similar in both mills. When evaluating the GHG generated, two conditions are evaluated: a biomass neutral condition resulting on a carbon footprint higher in 3P (184g CO2e/Lolive oil) than in 2P (92g CO2e/Lolive oil); and a non-neutral biomass condition in which 2P increase its carbon footprint to 273g CO2e/Lolive oil. When addressing the carbon footprint of possible combinations among studied subsystems, results suggest that olive harvesting is the major source for GHG.Keywords: carbon footprint, environmental indicators, farming subsystem, industrial subsystem, olive oil
Procedia PDF Downloads 287679 The Impact of PM-Based Regulations on the Concentration and Sources of Fine Organic Carbon in the Los Angeles Basin from 2005 to 2015
Authors: Abdulmalik Altuwayjiri, Milad Pirhadi, Sina Taghvaee, Constantinos Sioutas
Abstract:
A significant portion of PM₂.₅ mass concentration is carbonaceous matter (CM), which majorly exists in the form of organic carbon (OC). Ambient OC originates from a multitude of sources and plays an important role in global climate effects, visibility degradation, and human health. In this study, positive matrix factorization (PMF) was utilized to identify and quantify the long-term contribution of PM₂.₅ sources to total OC mass concentration in central Los Angeles (CELA) and Riverside (i.e., receptor site), using the chemical speciation network (CSN) database between 2005 and 2015, a period during which several state and local regulations on tailpipe emissions were implemented in the area. Our PMF resolved five different factors, including tailpipe emissions, non-tailpipe emissions, biomass burning, secondary organic aerosol (SOA), and local industrial activities for both sampling sites. The contribution of vehicular exhaust emissions to the OC mass concentrations significantly decreased from 3.5 µg/m³ in 2005 to 1.5 µg/m³ in 2015 (by about 58%) at CELA, and from 3.3 µg/m³ in 2005 to 1.2 µg/m³ in 2015 (by nearly 62%) at Riverside. Additionally, SOA contribution to the total OC mass, showing higher levels at the receptor site, increased from 23% in 2005 to 33% and 29% in 2010 and 2015, respectively, in Riverside, whereas the corresponding contribution at the CELA site was 16%, 21% and 19% during the same period. The biomass burning maintained an almost constant relative contribution over the whole period. Moreover, while the adopted regulations and policies were very effective at reducing the contribution of tailpipe emissions, they have led to an overall increase in the fractional contributions of non-tailpipe emissions to total OC in CELA (about 14%, 28%, and 28% in 2005, 2010 and 2015, respectively) and Riverside (22%, 27% and 26% in 2005, 2010 and 2015), underscoring the necessity to develop equally effective mitigation policies targeting non-tailpipe PM emissions.Keywords: PM₂.₅, organic carbon, Los Angeles megacity, PMF, source apportionment, non-tailpipe emissions
Procedia PDF Downloads 198678 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures
Authors: Amir Ali, Laura Yael Mendoza
Abstract:
The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.Keywords: cell culture, stevia, iron nanoparticles, antioxidants
Procedia PDF Downloads 96677 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint
Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier
Abstract:
Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.Keywords: biogas, cover crops, catch crops, land use competition, sustainable agriculture
Procedia PDF Downloads 542676 The SBO/LOCA Analysis of TRACE/SNAP for Kuosheng Nuclear Power Plant
Authors: J. R. Wang, H. T. Lin, Y. Chiang, H. C. Chen, C. Shih
Abstract:
Kuosheng Nuclear Power Plant (NPP) is located on the northern coast of Taiwan. Its nuclear steam supply system is a type of BWR/6 designed and built by General Electric on a twin unit concept. First, the methodology of Kuosheng NPP SPU (Stretch Power Uprate) safety analysis TRACE/SNAP model was developed in this research. Then, in order to estimate the safety of Kuosheng NPP under the more severe condition, the SBO (Station Blackout) + LOCA (Loss-of-Coolant Accident) transient analysis of Kuosheng NPP SPU TRACE/SNAP model was performed. Besides, the animation model of Kuosheng NPP was presented using the animation function of SNAP with TRACE/SNAP analysis results.Keywords: TRACE, safety analysis, BWR/6, severe accident
Procedia PDF Downloads 714675 A Systematic Review of Business Strategies Which Can Make District Heating a Platform for Sustainable Development of Other Sectors
Authors: Louise Ödlund, Danica Djuric Ilic
Abstract:
Sustainable development includes many challenges related to energy use, such as (1) developing flexibility on the demand side of the electricity systems due to an increased share of intermittent electricity sources (e.g., wind and solar power), (2) overcoming economic challenges related to an increased share of renewable energy in the transport sector, (3) increasing efficiency of the biomass use, (4) increasing utilization of industrial excess heat (e.g., approximately two thirds of the energy currently used in EU is lost in the form of excess and waste heat). The European Commission has been recognized DH technology as of essential importance to reach sustainability. Flexibility in the fuel mix, and possibilities of industrial waste heat utilization, combined heat, and power (CHP) production and energy recovery through waste incineration, are only some of the benefits which characterize DH technology. The aim of this study is to provide an overview of the possible business strategies which would enable DH to have an important role in future sustainable energy systems. The methodology used in this study is a systematic literature review. The study includes a systematic approach where DH is seen as a part of an integrated system that consists of transport , industrial-, and electricity sectors as well. The DH technology can play a decisive role in overcoming the sustainability challenges related to our energy use. The introduction of biofuels in the transport sector can be facilitated by integrating biofuel and DH production in local DH systems. This would enable the development of local biofuel supply chains and reduce biofuel production costs. In this way, DH can also promote the development of biofuel production technologies that are not yet developed. Converting energy for running the industrial processes from fossil fuels and electricity to DH (above all biomass and waste-based DH) and delivering excess heat from industrial processes to the local DH systems would make the industry less dependent on fossil fuels and fossil fuel-based electricity, as well as the increasing energy efficiency of the industrial sector and reduce production costs. The electricity sector would also benefit from these measures. Reducing the electricity use in the industry sector while at the same time increasing the CHP production in the local DH systems would (1) replace fossil-based electricity production with electricity in biomass- or waste-fueled CHP plants and reduce the capacity requirements from the national electricity grid (i.e., it would reduce the pressure on the bottlenecks in the grid). Furthermore, by operating their central controlled heat pumps and CHP plants depending on the intermittent electricity production variation, the DH companies may enable an increased share of intermittent electricity production in the national electricity grid.Keywords: energy system, district heating, sustainable business strategies, sustainable development
Procedia PDF Downloads 169674 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production
Authors: Enlin Lo, Ioannis Dogaris, George Philippidis
Abstract:
Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid
Procedia PDF Downloads 219673 Development of Alternative Fuels Technologies for Transportation
Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej
Abstract:
Currently, in automotive transport to power vehicles, almost exclusively hydrocarbon based fuels are used. Due to increase of hydrocarbon fuels consumption, quality parameters are tightend for clean environment. At the same time efforts are undertaken for development of alternative fuels. The reasons why looking for alternative fuels for petroleum and diesel are: to increase vehicle efficiency and to reduce the environmental impact, reduction of greenhouse gases emissions and savings in consumption of limited oil resources. Significant progress was performed on development of alternative fuels such as methanol, ethanol, natural gas (CNG / LNG), LPG, dimethyl ether (DME) and biodiesel. In addition, biggest vehicle manufacturers work on fuel cell vehicles and its introduction to the market. Alcohols such as methanol and ethanol create the perfect fuel for spark-ignition engines. Their advantages are high-value antiknock which determines their application as additive (10%) to unleaded petrol and relative purity of produced exhaust gasses. Ethanol is produced in distillation process of plant products, which value as a food can be irrational. Ethanol production can be costly also for the entire economy of the country, because it requires a large complex distillation plants, large amounts of biomass and finally a significant amount of fuel to sustain the process. At the same time, the fermentation process of plants releases into the atmosphere large quantities of carbon dioxide. Natural gas cannot be directly converted into liquid fuels, although such arrangements have been proposed in the literature. Going through stage of intermediates is inevitable yet. Most popular one is conversion to methanol, which can be processed further to dimethyl ether (DME) or olefin (ethylene and propylene) for the petrochemical sector. Methanol uses natural gas as a raw material, however, requires expensive and advanced production processes. In relation to pollution emissions, the optimal vehicle fuel is LPG which is used in many countries as an engine fuel. Production of LPG is inextricably linked with production and processing of oil and gas, and which represents a small percentage. Its potential as an alternative for traditional fuels is therefore proportionately reduced. Excellent engine fuel may be biogas, however, follows to the same limitations as ethanol - the same production process is used and raw materials. Most essential fuel in the campaign of environment protection against pollution is natural gas. Natural gas as fuel may be either compressed (CNG) or liquefied (LNG). Natural gas can also be used for hydrogen production in steam reforming. Hydrogen can be used as a basic starting material for the chemical industry, an important raw material in the refinery processes, as well as a fuel vehicle transportation. Natural gas can be used as CNG which represents an excellent compromise between the availability of the technology that is proven and relatively cheap to use in many areas of the automotive industry. Natural gas can also be seen as an important bridge to other alternative sources of energy derived from fuel and harmless to the environment. For these reasons CNG as a fuel stimulates considerable interest in the worldwide.Keywords: alternative fuels, CNG (Compressed Natural Gas), LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles)
Procedia PDF Downloads 181672 Repeated Batch Cultivation: A Novel Empty and Fill Strategy for the Enhanced Production of a Biodegradable Polymer, Polyhydroxy Alkanoate by Alcaligenes latus
Authors: Geeta Gahlawat, Ashok Kumar Srivastava
Abstract:
In the present study, a simple drain and fill protocol strategy of repeated batch was adopted for enhancement in polyhydroxyalkanoates (PHAs) production using alcaligenes latus DSM 1124. Repeated batch strategy helped in increasing the longevity of otherwise decaying culture in the bioreactor by supplementing fresh substrates during each cycle of repeated-batch. The main advantages of repeated batch are its ease of operation, enhancement of culture stability towards contamination, minimization of pre-culture effects and maintenance of organism at high growth rates. The cultivation of A. latus was carried out in 7 L bioreactor containing 4 L optimized nutrient medium and a comparison with the batch mode fermentation was done to evaluate the performance of repeated batch in terms of PHAs accumulation and productivity. The statistically optimized medium recipe consisted of: 25 g/L Sucrose, 2.8 g/L (NH4)2SO4, 3.25 g/L KH2PO4, 3.25 g/L Na2HPO4, 0.2 g/L MgSO4, 1.5 mL/L trace element solution. In this strategy, 20% (v/v) of the culture broth was removed from the reactor and supplemented with an equal volume of fresh medium when sucrose concentration inside the reactor decreased below 8 g/L. The fermenter was operated for three repeated batch cycles and fresh nutrient feeding was done at 27 h, 48 h, and 60 h. Repeated batch operation resulted in a total biomass of 27.89 g/L and PHAs concentration 20.55 g/L at the end of 69 h which was a marked improvement as compared to batch cultivation (8.71 g/L biomass and 6.24 g/L PHAs). This strategy demonstrated 3.3 fold and 1.8 fold increase in PHAs concentration and volumetric productivity, respectively as compared to batch cultivation. Repeated batch cultivation strategy had also the benefit of avoiding non-productive time period required for cleaning, refilling and sterilization of bioreactor, thereby increasing the overall volumetric productivity and making the entire process cost-effective too.Keywords: alcaligenes, biodegradation, polyhydroxyalkanoates, repeated batch
Procedia PDF Downloads 369671 Indoor Air Pollution Effects on Physical Growth of Children under 5 Years from Solid Fuel Combustion
Authors: Nayomi Ranathunga, Priyantha Perera, Sumal Nandasena, Nalini Sathiakumar, Anuradhini Kasthuriratne, Rajitha Wikremasinghe
Abstract:
Solid fuel combustion is an important source of indoor air pollution (IAP) in developing countries that has adverse health impacts particularly in children. This study was conducted to determine the effect of IAP due to solid fuel combustion on physical growth of children under five in a Sri Lankan setting. A prospective study was conducted in a mixed population comprising urban and semi urban residents. The study included 240 children under 5 who were permanent residents of the area. Physical growth was assessed by measuring anthropometric indices based on the World Health Organization (WHO) guidelines and standards. Exposure levels were defined according to the main type of fuel used for cooking at home: children residing in households using biomass fuel or kerosene as the main type of fuel for cooking were classified as the “high exposure” group and children resident in households using liquefied petroleum gas (LPG) or electricity for cooking were classified as the “low exposure” group. Sixty percent of the children were classified as from the “high” exposure group and 40% of the children were classified as from the “low” exposure group; 54% of the children were male. At baseline, the prevalence of wasting was 17.1% and the prevalence of stunting was 10.4%; the mean z-score for weight for height was - 0.85, weight for age was - 0.46 and height for age was -0.38. At baseline, children from the “high” exposure group had a significantly lower mean weight for height z-score (p=0.02) and a mean height for age z-score (p=0.001) as compared to children from the “low” exposure group after adjusting for confounding factors such as father’s education, mother’s education and family income. Poor maternal education was significantly associated with lower height for age z-scores (p=0.04) after adjusting for exposure status. IAP due to combustion of biomass fuel leads to chronic malnutrition.Keywords: children, growth, indoor air pollution, solid fuel
Procedia PDF Downloads 302670 Nitrogen Fixation in Hare Gastrointestinal Tract
Authors: Tatiana A. Kuznetsova, Maxim V. Vechersky, Natalia V. Kostina, Marat M. Umarov, Elena I. Naumova
Abstract:
One of the main problems of nutrition of phytophagous animals is the insufficiency of protein in their forage. Usually, symbiotic microorganisms highly contribute both to carbohydrates and nitrogen compounds of the food. But it is not easy to utilize microbial biomass in the large intestine and caecum for the animals with hindgut fermentation. So that, some animals, as well hares, developed special mechanism of contribution of such biomass - obligate autocoprophagy, or reingestion. Hares have two types of feces - the hard and the soft. Hard feces are excreted at night, while hares are vigilance ("foraging period"), and the soft ones (caecotrophs) are produced and reingested in the day-time during hares "resting-period". We examine the role of microbial digestion in providing nitrogen nutrition of hare (Lepus europaeus). We determine the ability of nitrogen fixation in fornix and stomach body, small intestine, caecum and colon of hares' gastro-intestinal tract in two main period of hares activity - "resting-period" (day time) and "foraging period" (late-evening and very-early-morning). We use gas chromatography to measure levels of nitrogen fixing activity (acetylene reduction). Nitrogen fixing activity was detected in the contents of all analyzed parts of the gastrointestinal tract. Maximum values were recorded in the large intestine. Also daily dynamics of the process was detected. Thus, during hare “resting-period” (caecotrophs formation) N2-fixing activity was significantly higher than during “foraging period”, reaching 0,3 nmol C2H4/g*h. N2-fixing activity in the gastrointestinal tract can allocate to significant contribution of nitrogen fixers to microbial digestion in hare and confirms the importance of coprophagy as a nitrogen source in lagomorphs.Keywords: coprophagy, gastrointestinal tract, lagomorphs, nitrogen fixation
Procedia PDF Downloads 364669 Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste
Authors: Ticiane Rossi, Maurício C. Araújo, José O. Brito, Harold S. Freeman
Abstract:
Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool.Keywords: eucalyptus, natural dye, textile fibers, wash fastness
Procedia PDF Downloads 614668 Hydrodynamics of Periphyton Biofilters in Recirculating Aquaculture
Authors: Adam N. Bell, Sarina J. Ergas, Michael Nystrom, Nathan P. Brennan, Kevan L. Main
Abstract:
Integrated Multi-Trophic Aquaculture systems (IMTA) have the potential to improve the sustainability of seafood production, generate organic fertilizer and feed, remove waste discharges and reduce energy use. IMTA can include periphyton biofilters where algae and microbes grow on surfaces, along with caught detritus and amphipods. Periphyton biofilters provide many advantages: nitrification, denitrification, primary production and ecological diversity. The goal of this study was to determine how biofilter hydraulic residence time (τ) effects periphyton biomass production, dissolved oxygen (DO) and nutrient removal. A pilot scale recirculating aquaculture system (RAS) was designed, constructed and operated at different hydraulic residence times (τ= 1, 2, 4, 6, 8 hours per tank). For each τ, a conservative tracer study was conducted to investigate system hydrodynamics. Data on periphyton weights, pH, nitrogen species, phosphorus, temperature and DO were collected. The tracer study for τ =1 hour revealed that the normalized time < τ, indicating short-circuiting. Periphyton biomass production rate was relatively unaffected by τ (R_e<1 for all τ). Average ammonia nitrogen removal was > 75% for all trials. Nitrate and nitrite did not accumulate in the RAS for τ≥4 hours due to enhanced denitrification in anoxic zones. For τ≥4 hours DO concentration was at a maximum of 4 mg L-1 after 14:00, and decreased to 0 mg L-1 during nighttime. At τ=1 hour, the RAS stayed > 2 mg L-1 and DO was more evenly distributed. For the validation trial, the culture tank was stocked with Centropomus undecimalis (common snook) and the system was operated at τ= 1 hr. Preliminary results showed that a RAS with an integrated periphyton biofilter could support fish health with low nutrient concentrations DO > 6 mg L-1.Keywords: sustainable aquaculture, resource recovery, nitrogen, microalgae, hydrodynamics, integrated multi-trophic aquaculture
Procedia PDF Downloads 131667 Role of Climatic Conditions on Pacific Bluefin Tuna Thunnus orientalis Stock Structure
Authors: Ashneel Ajay Singh, Kazumi Sakuramoto, Naoki Suzuki, Kalla Alok, Nath Paras
Abstract:
Bluefin (Thunnus orientalis) tuna is one of the most economically valuable tuna species in the world. In recent years the stock has been observed to decline. It is suspected that the stock-recruitment relationship and population structure is influenced by environmental and climatic variables. This study was aimed at investigating the influence of environmental and climatic conditions on the trajectory of the different life stages of the North Pacific bluefin tuna. Exploratory analysis was performed for the North Pacific sea surface temperature (SST) and Pacific Decadal Oscillation (PDO) on the time series of the bluefin tuna cohorts (age-0, 1, 2,…,9, 10+). General Additive Modeling (GAM) was used to reconstruct the recruitment (R) trajectory. The spatial movement of the SST was also monitored from 1953 to 2012 in the distribution area of the bluefin tuna. Exploratory analysis showed significance influence of the North Pacific Sea Surface temperature (SST) and Pacific Decadal Oscillation (PDO) on the time series of the age-0 group. Other age group (1, 2,…,9, 10+) time series did not exhibit any significant correlations. PDO showed most significant relationship in the months of October to December. Although the stock-recruitment relationship is of biological significance, the recruits (age-0) showed poor correlation with the Spawning Stock Biomass (SSB). Indeed the most significant model incorporated the SSB, SST and PDO. The results show that the stock-recruitment relationship of the North Pacific bluefin tuna is multi-dimensional and cannot be adequately explained by the SSB alone. SST and PDO forcing of the population structure is of significant importance and needs to be accounted for when making harvesting plans for bluefin tuna in the North Pacific.Keywords: pacific bluefin tuna, Thunnus orientalis, cohorts, recruitment, spawning stock biomass, sea surface temperature, pacific decadal oscillation, general additive model
Procedia PDF Downloads 236666 First Approach on Lycopene Extraction Using Limonene
Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat
Abstract:
Lycopene extraction with petroleum derivatives as solvents has caused safety, health, and environmental concerns everywhere. Thus, finding a safe alternative solvent will have a strong and positive impact on environments and general health of the world population. d-limonene from the orange peel was extracted through a steam distillation procedure followed by a deterpenation process and combining this achievement by using it as a solvent for extracting lycopene from tomato fruit as a substitute of dichloromethane. Lycopene content of fresh tomatoes was determined by high-performance liquid chromatography after extraction. Yields obtained for both extractions showed that yields of d-limonene’s extracts were almost equivalent to those obtained using dichloromethane. The proposed approach using a green solvent to perform extraction is useful and can be considered as a nice alternative to conventional petroleum solvent where toxicity for both operator and environment is reduced.Keywords: alternative solvent, d-limonene, extraction, lycopene
Procedia PDF Downloads 413