Search results for: biomass residues
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1377

Search results for: biomass residues

717 Improvement of Greenhouse Gases Bio-Fixation by Microalgae Using a “Plasmon-Enhanced Photobioreactor”

Authors: Francisco Pereira, António Augusto Vicente, Filipe Vaz, Joel Borges, Pedro Geada

Abstract:

Light is a growth-limiting factor in microalgae cultivation, where factors like spectral components, intensity, and duration, often characterized by its wavelength, are well-reported to have a substantial impact on cell growth rates and, consequently, photosynthetic performance and mitigation of CO2, one of the most significant greenhouse gases (GHGs). Photobioreactors (PBRs) are commonly used to grow microalgae under controlled conditions, but they often fail to provide an even light distribution to the cultures. For this reason, there is a pressing need for innovations aiming at enhancing the efficient utilization of light. So, one potential approach to address this issue is by implementing plasmonic films, such as the localized surface plasmon resonance (LSPR). LSPR is an optical phenomenon connected to the interaction of light with metallic nanostructures. LSPR excitation is characterized by the oscillation of unbound conduction electrons of the nanoparticles coupled with the electromagnetic field from incident light. As a result of this excitation, highly energetic electrons and a strong electromagnetic field are generated. These effects lead to an amplification of light scattering, absorption, and extinction of specific wavelengths, contingent on the nature of the employed nanoparticle. Thus, microalgae might benefit from this biotechnology as it enables the selective filtration of inhibitory wavelengths and harnesses the electromagnetic fields produced, which could lead to enhancements in both biomass and metabolite productivity. This study aimed at implementing and evaluating a “plasmon-enhanced PBR”. The goal was to utilize LSPR thin films to enhance the growth and CO2 bio-fixation rate of Chlorella vulgaris. The internal/external walls of the PBRs were coated with a TiO2 matrix containing different nanoparticles (Au, Ag, and Au-Ag) in order to evaluate the impact of this approach on microalgae’s performance. Plasmonic films with distinct compositions resulted in different Chlorella vulgaris growth, ranging from 4.85 to 6.13 g.L-1. The highest cell concentrations were obtained with the metallic Ag films, demonstrating a 14% increase compared to the control condition. Moreover, it appeared to be no differences in growth between PBRs with inner and outer wall coatings. In terms of CO2 bio-fixation, distinct rates were obtained depending on the coating applied, ranging from 0.42 to 0.53 gCO2L-1d-1. Ag coating was demonstrated to be the most effective condition for carbon fixation by C. vulgaris. The impact of LSPR films on the biochemical characteristics of biomass (e.g., proteins, lipids, pigments) was analysed as well. Interestingly, Au coating yielded the most significant enhancements in protein content and total pigments, with increments of 15 % and 173 %, respectively, when compared to the PBR without any coating (control condition). Overall, the incorporation of plasmonic films in PBRs seems to have the potential to improve the performance and efficiency of microalgae cultivation, thereby representing an interesting approach to increase both biomass production and GHGs bio-mitigation.

Keywords: CO₂ bio-fixation, plasmonic effect, photobioreactor, photosynthetic microalgae

Procedia PDF Downloads 79
716 Polycyclic Aromatic Hydrocarbons: Pollution and Ecological Risk Assessment in Surface Soil of the Tezpur Town, on the North Bank of the Brahmaputra River, Assam, India

Authors: Kali Prasad Sarma, Nibedita Baul, Jinu Deka

Abstract:

In the present study, pollution level of polycyclic aromatic hydrocarbon (PAH) in surface soil of historic Tezpur town located in the north bank of the River Brahmaputra were evaluated. In order to determine the seasonal distribution and concentration level of 16 USEPA priority PAHs surface soil samples were collected from 12 different sampling sites with various land use type. The total concentrations of 16 PAHs (∑16 PAHs) varied from 242.68µgkg-1to 7901.89µgkg-1. Concentration of total probable carcinogenic PAH ranged between 7.285µgkg-1 and 479.184 µgkg-1 in different seasons. However, the concentration of BaP, the most carcinogenic PAH, was found in the range of BDL to 50.01 µgkg-1. The composition profiles of PAHs in 3 different seasons were characterized by following two different types of ring: (1) 4-ring PAHs, contributed to highest percentage of total PAHs (43.75%) (2) while in pre- and post- monsoon season 3- ring compounds dominated the PAH profile, contributing 65.58% and 74.41% respectively. A high PAHs concentration with significant seasonality and high abundance of LMWPAHs was observed in Tezpur town. Soil PAHs toxicity was evaluated taking toxic equivalency factors (TEFs), which quantify the carcinogenic potential of other PAHs relative to BaP and estimate benzo[a]pyrene-equivalent concentration (BaPeq). The calculated BaPeq value signifies considerable risk to contact with soil PAHs. We applied cluster analysis and principal component analysis (PCA) with multivariate linear regression (MLR) to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soil of Tezpur town, based on the measured PAH concentrations. The results indicate that petrogenic and pyrogenic sources are the important sources of PAHs. A combination of chemometric and molecular indices were used to identify the sources of PAHs, which could be attributed to vehicle emissions, a mixed source input, natural gas combustion, wood or biomass burning and coal combustion. Source apportionment using absolute principle component scores–multiple linear regression showed that the main sources of PAHs are 22.3% mix sources comprising of diesel and biomass combustion and petroleum spill,13.55% from vehicle emission, 9.15% from diesel and natural gas burning, 38.05% from wood and biomass burning and 16.95% contribute coal combustion. Pyrogenic input was found to dominate source of PAHs origin with more contribution from vehicular exhaust. PAHs have often been found to co-emit with other environmental pollutants like heavy metals due to similar source of origin. A positive correlation was observed between PAH with Cr and Pb (r2 = 0.54 and 0.55 respectively) in monsoon season and PAH with Cd and Pb (r2 = 0.54 and 0.61 respectively) indicating their common source. Strong correlation was observed between PAH and OC during pre- and post- monsoon (r2=0.46 and r2=0.65 respectively) whereas during monsoon season no significant correlation was observed (r2=0.24).

Keywords: polycyclic aromatic hydrocarbon, Tezpur town, chemometric analysis, ecological risk assessment, pollution

Procedia PDF Downloads 209
715 Effect of Lowering the Proportion of Chlorella vulgaris in Fish Feed on Tilapia's Immune System

Authors: Hamza A. Pantami, Khozizah Shaari, Intan S. Ismail, Chong C. Min

Abstract:

Introduction: Tilapia is the second-highest harvested freshwater fish species in Malaysia, available in almost all fish farms and markets. Unfortunately, tilapia culture in Malaysia is highly affected by Aeromonas hydrophila and Streptococcus agalactiae, which affect the production rate and consequently pose a direct negative economic impact. Reliance on drugs to control or reduce bacterial infections has been led to contamination of water bodies and development of drug resistance, as well as gave rise to toxicity issues in downstream fish products. Resorting to vaccines have helped curb the problem to a certain extent, but a more effective solution is still required. Using microalgae-based feed to enhance the fish immunity against bacterial infection offers a promising alternative. Objectives: This study aims to evaluate the efficacy of Chlorella vulgaris at lower percentage incorporation in feeds for an immune boost of tilapia in a shorter time. Methods: The study was in two phases. The safety concentration studies at 500 mg/kg-1 and the administration of cultured C. vulgaris biomass via incorporation into fish feed for five different groups in three weeks. Group 1 was the control (0% incorporation), whereas group 2, 3, 4 and 5 received 0.625%, 1.25%, 2.5% and 5% incorporation respectively. The parameters evaluated were the blood profile, serum lysozyme activity (SLA), serum bactericidal activity (SBA), phagocytosis activity (PA), respiratory burst activity (RBA), and lymphoproliferation activity (LPA). The data were analyzed via ANOVA using SPSS (version 16). Further testing was done using Tukey’s test. All tests were performed at the 95% confidence interval (p < 0.05). Results: There were no toxic signs in tilapia fish at 500 mg/kg-1. Treated groups showed significantly better immune parameters compared to the control group (p < 0.05). Conclusions: C. vulgaris crude biomass in a fish meal at a lower incorporation level of 5% can increase specific and non-specific immunity in tilapia fish in a shorter time duration.

Keywords: Chlorella vulgaris, hematology profile, immune boost, lymphoproliferation

Procedia PDF Downloads 104
714 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block

Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar

Abstract:

Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.

Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent

Procedia PDF Downloads 246
713 Winners and Losers of Severe Drought and Grazing on a Dryland Grassland in Limpopo Province

Authors: Vincent Mokoka, Kai Behn, Edwin Mudongo, Jan Ruppert, Kingsley Ayisi, Anja Linstädter

Abstract:

Severe drought may trigger a transition of vegetation composition in dryland grasslands, with productive perennial grasses often being replaced by annual grasses. Grazing pressure is thought to exacerbate drought effects, but little is known on the joint effects of grazing and drought on the functional and taxonomic composition of the herbaceous vegetation in African savannas. This study thus aimed to elucidate which herbaceous species and plant functional types (PFTs) are most resistant to prolonged drought and grazing and whether resting plays a role in this context. Thus, we performed a six-year field experiment in South Africa’s Limpopo province, combining drought and grazing treatments. Aboveground herbaceous biomass was harvested annually and separated into species. We grouped species into five PFTs, i.e. very broad-leaved perennial grasses, broad-leaved perennial grasses, narrow-leaved perennial grasses, annual grasses, and forbs. For all species, we also recorded three-leaf traits (leaf area - LA, specific leaf area – SLA, and leaf dry matter content – LDM) to describe their resource acquisition strategies. We used generalized linear models to test for treatment effects and their interaction. Association indices were used to detect the relationship between species and treatments. We found that there were no absolute winner species or PFTs, as the six-year severe drought had a pronounced negative impact on the biomass production of all species and PFTs. However, we detected relative winners with increases in relative abundances, mainly forbs and less palatable narrow-leafed grasses with comparatively low LA and high LDMC, such as Aristida stipidata Hack. These species and PFTs also tended to be favored by grazing. Although few species profited from resting, for most species, the combination of drought and resting proved to be particularly unfavorable. Winners and losers can indicate ecological transition and may be used to guide management decisions.

Keywords: aboveground net primary production, drought, functional diversity, winner and loser species

Procedia PDF Downloads 171
712 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function

Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen

Abstract:

This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).

Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance

Procedia PDF Downloads 280
711 Phytoplankton Structure and Invasive Cyanobacterial Species of Polish Temperate Lakes: Their Associations with Environmental Parameters and Findings About Their Toxic Properties

Authors: Tumer Orhun Aykut, Robin Michael Crucitti-Thoo, Agnieszka Rudak, Iwona Jasser

Abstract:

Due to eutrophication connected to the growing human population, intensive agriculture, industrialization, and reinforcement of global warming, freshwater resources are changing negatively in every region of the World. This change also concerns the replacement of native species by invasive ones that can spread in many ways. Biological invasions are a developing problem to ecosystem continuity and their presence is mostly common in freshwater bodies. The occurrence and potential invasion of the species depends on associations between abiotic and biotic variables. Due to climate change, many species can extend their range from low to high latitudes and differ in their geographic ranges. In addition, the hydrological issues strongly influence the physicochemical parameters and biological processes, especially the growth rates of species and bloom formation of Cyanobacteria. Among tropical invasive species noted in temperate Europe, Raphidiopsis raciborskii, Chrysosporum bergii, and Sphaerospermopsis aphanizomenoides are considered a serious threat. R. raciborskii being the most important one as it is already known as a highly invasive species in almost all around the World, is a freshwater, planktonic, filamentous, potentially toxic, and nitrogen-fixing Cyanobacteria. This study aimed to investigate the presence of invasive cyanobacterial species in temperate lakes in Northeastern Poland, reveal the composition of phytoplankton communities, determine the effect of environmental variables, and identify the toxic properties of invasive Cyanobacteria and other phytoplankton groups. Our study was conducted in twenty-five lakes in August 2023. The lakes represent a geographical gradient from central Poland to the Northeast and have different depths, sizes, and trophic statuses. According to performed analyses, the presence of R. raciborskii was recorded in five lakes: Szczęśliwickie (Warsaw), Mikołajskie, Rekąty, Sztynorckie (Masurian Lakeland), and further East, in Pobondzie (Suwałki Lakeland). On the other hand, C. bergii was found in three lakes: Rekąty (Masurian Lakeland), Żabinki, and Pobondzie (Suwałki Lakeland), while S. aphanizomenoides only in Pobondzie (Suwałki Lakeland). Maximum phytoplankton diversity was found in Lake Rekąty, a small and shallow lake mentioned above. The highest phytoplankton biomass was detected in highly eutrophic Lake Suskie, followed by Lake Sztynorckie. In this last lake, which is also strongly eutrophic, the highest biomass of R. raciborskii was found. Cyanophyceae had the highest biovolume and was followed by Chlorophyceae in the entire study. Numerous environmental parameters, including nutrients, were studied, and their relationships with the invasive species and the whole phytoplankton community will be presented. In addition, toxic properties of environmental DNA results from each lake will also be shown. In conclusion, investigated invasive cyanobacterial species were found in a few Northeastern Polish temperate lakes, but the number of individuals was quite low, so the biomass was quite low. It has been observed that the structure of phytoplankton changed based on lakes and environmental parameters.

Keywords: biological invasion, cyanobacteria, cyanotoxins, phytoplankton ecology, sanger sequencing

Procedia PDF Downloads 34
710 Biosynthesis of Tumor Inhibitory Podophyllotoxin, Quercetin and Kaempferol from Callogenesis of Dysosma Pleiantha (Hance) Woodson

Authors: Palaniyandi Karuppaiya, Hsin Sheng Tsay, Fang Chen

Abstract:

Medicinal herbs do represent a huge and noteworthy reservoir for novel anticancer drugs discovery. Dysosma pleiantha (Hance) Woodson (Berberidaceae), one of the oldest traditional Chinese medicinal herb, highly prized by the mountain tribes of Taiwan and China for its medicinal properties contained pharmaceutically important antitumor compounds podophyllotoxin, quercetin and kaempferol. Among lignans, podophyllotoxin is an active antitumor compound and has now been modified to produce clinically useful drugs etoposide and teniposide. In recent years, natural populations of D. peliantha have declined considerably due to anthropogenic activities such as habitat destruction and commercial exploitation for medicinal applications. As to its overall conservation status, D. pleiantha has been ranked as threatened on the China Species Red List. In the present study, an efficient in vitro callus culture system of D. pleiantha was established on Gamborg’s medium with various combinations and concentrations of different auxins and cytokinins under dark condition. Best callus induction was recorded in 2 mg/L 2, 4 - Dichlorophenoxyacetic acid (2,4-D) along with 0.2 mg/L kinetin and the maximum callus proliferation was achieved at 1 mg/L 2,4-D. Among the explants tested, maximum callus induction (86 %) was achieved from tender leaves. Hence, in subsequent experiments, leaf callus was further investigated for suitable callus biomass and production level of anticancer compounds under the influence of different additives. A maximum fresh callus biomass (8.765 g) was recorded in callus proliferation medium contained 500 mg/L casein hydrolysate. High performance liquid chromatography results revealed that the addition of different concentrations of peptone (1, 2 and 4 g/L) in callus proliferation medium enhanced podophyllotoxin (16 fold), quercetin (12 fold) and kaempferol (5 fold) accumulation than control. Thus, the established in vitro callus culture under the influence of different additives may offer an alternative source of enhanced production of podophyllotoxin, kaempferol and quecertin without harming natural plant population.

Keywords: dysosma pleiantha, kaempferol, podophyllotoxin, quercetin

Procedia PDF Downloads 276
709 Molecular Docking Study of Quinazoline and Quinoline Derivatives against EGFR

Authors: Asli Faiza, Khamouli Saida

Abstract:

With the development of computer tools over the past 20 years. Molecular modeling and, more precisely, molecular docking has very quickly entered field of pharmaceutical research. EGFR enzyme involved in cancer disease.Our work consists of studying the inhibition of EGFR (1M17) with deferent inhibitors derived from quinazoline and quinoline by molecular docking. The values of ligands L148 and L177 are the best ligands for inhibit the activity of 1M17 since it forms a stable complex with this enzyme by better binding to the active site. The results obtained show that the ligands L148 and L177 give weak interactions with the active site residues EGFR (1M17), which stabilize the complexes formed of this ligands, which gives a better binding at the level of the active site, and an RMSD of L148 [1,9563 Å] and of L177 [ 1,2483 Å]. [1, 9563, 1.2483] Å

Keywords: docking, EGFR, quinazoline, quinoliène, MOE

Procedia PDF Downloads 61
708 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 49
707 Chemical Synthesis, Characterization and Dose Optimization of Chitosan-Based Nanoparticles of MCPA for Management of Broad-Leaved Weeds (Chenopodium album, Lathyrus aphaca, Angalis arvensis and Melilotus indica) of Wheat

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Tasawer Abbas

Abstract:

Nanoherbicides utilize nanotechnology to enhance the delivery of biological or chemical herbicides using combinations of nanomaterials. The aim of this research was to examine the efficacy of chitosan nanoparticles containing MCPA herbicide as a potential eco-friendly alternative for weed control in wheat crops. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet absorbance were used to analyze the developed nanoparticles. The SEM analysis indicated that the average size of the particles was 35 nm, forming clusters with a porous structure. Both nanoparticles of fluroxyper + MCPA exhibited maximal absorption peaks at a wavelength of 320 nm. The compound fluroxyper +MCPA has a strong peak at a 2θ value of 30.55°, which correlates to the 78 plane of the anatase phase. The weeds, including Chenopodium album, Lathyrus aphaca, Angalis arvensis, and Melilotus indica, were sprayed with the nanoparticles while they were in the third or fourth leaf stage. There were seven distinct dosages used: doses (D0 (Check weeds), D1 (Recommended dose of traditional herbicide, D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). The chitosan-based nanoparticles of MCPA at the prescribed dosage of conventional herbicide resulted in complete death and visual damage, with a 100% fatality rate. The dosage that was 5-fold lower exhibited the lowest levels of plant height (3.95 cm), chlorophyll content (5.63%), dry biomass (0.10 g), and fresh biomass (0.33 g) in the broad-leaved weed of wheat. The herbicide nanoparticles, when used at a dosage 10-fold lower than that of conventional herbicides, had a comparable impact on the prescribed dosage. Nano-herbicides have the potential to improve the efficiency of standard herbicides by increasing stability and lowering toxicity.

Keywords: mortality, visual injury, chlorophyl contents, chitosan-based nanoparticles

Procedia PDF Downloads 62
706 Evaluation of Pozzolanic Properties of Micro and Nanofillers Origin from Waste Products

Authors: Laura Vitola, Diana Bajare, Genadijs Sahmenko, Girts Bumanis

Abstract:

About 8 % of CO2 emission in the world is produced by concrete industry therefore replacement of cement in concrete composition by additives with pozzolanic activity would give a significant impact on the environment. Material which contains silica SiO2 or amorphous silica SiO2 together with aluminum dioxide Al2O3 is called pozzolana type additives in the concrete industry. Pozzolana additives are possible to obtain from recycling industry and different production by-products such as processed bulb boric silicate (DRL type) and lead (LB type) glass, coal combustion bottom ash, utilized brick pieces and biomass ash, thus solving utilization problem which is so important in the world, as well as practically using materials which previously were considered as unusable. In the literature, there is no summarized method which could be used for quick waste-product pozzolana activity evaluation without the performance of wide researches related to the production of innumerable concrete contents and samples in the literature. Besides it is important to understand which parameters should be predicted to characterize the efficiency of waste-products. Simple methods of pozzolana activity increase for different types of waste-products are also determined. The aim of this study is to evaluate effectiveness of the different types of waste materials and industrial by-products (coal combustion bottom ash, biomass ash, waste glass, waste kaolin and calcined illite clays), and determine which parameters have the greatest impact on pozzolanic activity. By using materials, which previously were considered as unusable and landfilled, in concrete industry basic utilization problems will be partially solved. The optimal methods for treatment of waste materials and industrial by–products were detected with the purpose to increase their pozzolanic activity and produce substitutes for cement in the concrete industry. Usage of mentioned pozzolanic allows us to replace of necessary cement amount till 20% without reducing the compressive strength of concrete.

Keywords: cement substitutes, micro and nano fillers, pozzolanic properties, specific surface area, particle size, waste products

Procedia PDF Downloads 426
705 Effect of Open Burning on Soil Carbon Stock in Sugarcane Plantation in Thailand

Authors: Wilaiwan Sornpoon, Sébastien Bonnet, Savitri Garivait

Abstract:

Open burning of sugarcane fields is recognized to have a negative impact on soil by degrading its properties, especially soil organic carbon (SOC) content. Better understating the effect of open burning on soil carbon dynamics is crucial for documenting the carbon sequestration capacity of agricultural soils. In this study, experiments to investigate soil carbon stocks under burned and unburned sugarcane plantation systems in Thailand were conducted. The results showed that cultivation fields without open burning during 5 consecutive years enabled to increase the SOC content at a rate of 1.37 Mg ha-1y-1. Also it was found that sugarcane fields burning led to about 15% reduction of the total carbon stock in the 0-30 cm soil layer. The overall increase in SOC under unburned practice is mainly due to the large input of organic material through the use of sugarcane residues.

Keywords: soil organic carbon, soil inorganic carbon, carbon sequestration, open burning, sugarcane

Procedia PDF Downloads 299
704 Catalytic Decomposition of Formic Acid into H₂/CO₂ Gas: A Distinct Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of the biomass platform, comprising a potential pool of hydrogen energy that stands as a distinct energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need for in-situ H₂ production, which plays a key role in the hydrogenation reactions of biomass into higher-value components. It is reported elsewhere in the literature that catalytic decomposition of FA is usually performed in poorly designed setups using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. Our work suggests an approach that integrates designing a distinct catalyst featuring magnetic properties with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for the dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H₂ gas from FA. Using an ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under an inert medium. Through a distinct approach, FA is charged into the reactor via a high-pressure positive displacement pump at steady-state conditions. The produced gas (H₂+CO₂) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The uniqueness of this work lies in designing a very responsive catalyst, pumping a consistent amount of FA into a sealed reactor running at steady-state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at a lower temperature range (35-50°C) yielded more gas, while the catalyst loading and Pd doping wt.% were found to be the most significant factors with P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 49
703 Beneficial Effect of Micropropagation Coupled with Mycorrhization on Enhancement of Growth Performance of Medicinal Plants

Authors: D. H. Tejavathi

Abstract:

Medicinal plants are globally valuable sources of herbal products. Wild populations of many medicinal plants are facing threat of extinction because of their narrow distribution, endemicity, and degradation of specific habitats. Micropropagation is an established in vitro technique by which large number of clones can be obtained from a small bit of explants in a short span of time within a limited space. Mycorrhization can minimize the transient transplantation shock, experienced by the micropropagated plants when they are transferred from lab to land. AM fungal association improves the physiological status of the host plants through better uptake of water and nutrients, particularly phosphorus. Consequently, the growth performance and biosynthesis of active principles are significantly enhanced in AM fungal treated plants. Bacopa monnieri, Andrographis paniculata, Agave vera-curz, Drymaria cordata and Majorana hortensis, important medicinal plants used in various indigenous systems of medicines, are selected for the present study. They form the main constituents of many herbal formulations. Standard in vitro techniques were followed to obtain the micropropagated plants. Shoot tips and nodal segments were used as explants. Explants were cultured on Murashige and Skoog, and Phillips and Collins media supplemented with various combinations of growth regulators. Multiple shoots were obtained on a media containing both auxins and cytokinins at various concentrations and combinations. Multiple shoots were then transferred to rooting media containing auxins for root induction. Thus, obtained in vitro regenerated plants were subjected to brief acclimatization before transferring them to land. One-month-old in vitro plants were treated with AM fungi, and the symbiotic effect on the overall growth parameters was analyzed. It was found that micropropagation coupled with mycorrhization has significant effect on the enhancement of biomass and biosynthesis of active principles in these selected medicinal plants. In vitro techniques coupled with mycorrhization have opened a possibility of obtaining better clones in respect of enhancement of biomass and biosynthesis of active principles. Beneficial effects of AM fungal association with medicinal plants are discussed.

Keywords: cultivation, medicinal plants, micropropagation, mycorrhization

Procedia PDF Downloads 168
702 Evaluation of Non-Destructive Application to Detect Pesticide Residue on Leaf Mustard Using Spectroscopic Method

Authors: Nazmi Mat Nawi, Muhamad Najib Mohamad Nor, Che Dini Maryani Ishkandar

Abstract:

This study was conducted to evaluate the capability of spectroscopic methods to detect the presence of pesticide residues on leaf mustard. A total of 105 leaf mustard used were divided into five batches, four batches were treated with four different types of pesticides whereas one batch with no pesticide applied. Spectral data were obtained using visible shortwave near infrared spectrometer (VSWNIRS) which is Ocean Optics HR4000 High-resolution Miniature Fiber Optic Spectrometer. Reflectance value was collected to determine the difference between one pesticide to the other. The obtained spectral data were pre-processed for optimum performance. The effective wavelength of approximate 880 nm, 675-710 nm also 550 and 700 nm indicates the overtones -CH stretching vibration, tannin, also chlorophyll content present in the leaf mustard respectively. This study has successfully demonstrated that the spectroscopic method was able to differentiate between leaf mustard sample with and without pesticide residue.

Keywords: detect, leaf mustard, non-destructive, pesticide residue

Procedia PDF Downloads 252
701 Enzyme Redesign: From Metal-Dependent to Metal-Independent, a Symphony Orchestra without Concertmasters

Authors: Li Na Zhao, Arieh Warshel

Abstract:

The design of enzymes is an extremely challenging task, and this is also true for metalloenzymes. In the case of naturally evolved enzymes, one may consider the active site residues as the musicians in the enzyme orchestra, while the metal can be considered as their concertmaster. Together they catalyze reactions as if they performed a masterpiece written by nature. The Lactonase can be thought as a member of the amidohydrolase family, with two concertmasters, Fe and Zn, at its active site. It catalyzes the quorum sensing signal- N-acyl homoserine lactones (AHLs or N-AHLs)- by hydrolyzing the lactone ring. This process, known as quorum quenching, provides a strategy in the treatment of infectious diseases without introducing selection pressure. However, the activity of lactonase is metal-dependent, and this dependence hampers the clinic usage. In our study, we use the empirical valence bond (EVB) approach to evaluate the catalytic contributions decomposing them to electrostatic and other components.

Keywords: enzyme redesign, empirical valence bond, lactonase, quorum quenching

Procedia PDF Downloads 246
700 A Study on Removal of SO3 in Flue Gas Generated from Power Plant

Authors: E. Y. Jo, S. M. Park, I. S. Yeo, K. K. Kim, S. J. Park, Y. K. Kim, Y. D. Kim, C. G. Park

Abstract:

SO3 is created in small quantities during the combustion of fuel that contains sulfur, with the quantity produced a function of the boiler design, fuel sulfur content, excess air level, and the presence of oxidizing agents. Typically, about 1% of the fuel sulfur will be oxidized to SO3, but it can range from 0.5% to 1.5% depending on various factors. Combustion of fuels that contain oxidizing agents, such as certain types of fuel oil or petroleum coke, can result in even higher levels of oxidation. SO3 levels in the flue gas emitted by combustion are very high, which becomes a cause of machinery corrosion or a visible blue plume. Because of that, power plants firing petroleum residues need to installation of SO3 removal system. In this study, SO3 removal system using salt solution was developed and several salts solutions were tested for obtain optimal solution for SO3 removal system. Response surface methodology was used to optimize the operation parameters such as gas-liquid ratio, concentration of salts.

Keywords: flue gas desulfurization, petroleum cokes, Sulfur trioxide, SO3 removal

Procedia PDF Downloads 516
699 Production and Valorization of Nano Lignins by Organosolv and Steam Explosion

Authors: V. Girard, I. Ziegler-Devin, H. Chapuis, N. Canilho, L. Marchal-Heussler, N. Brosse

Abstract:

Lignocellulosic biomass is made up of the three polymeric fractions that are cellulose, hemicellulose, and lignin, which are highly entangled. In this project, we are particularly interested in the under-valued lignin polymer, which is mainly used for thermal valorization. Lignin from Macro to Nanosize (LIMINA) project will first focus on the extraction of macro lignin from forestry waste (hardwood and softwood) by the mean of eco-friendly processes (organosolv and steam explosion) and then the valorization of nano lignins produced by using anti-solvent precipitation (UV-blocker, cosmetic, food products).

Keywords: nanolignin, nanoparticles, organosolv, steam explosion

Procedia PDF Downloads 125
698 The Utilization of Tea Residues for Activated Carbon Preparation

Authors: Jiazhen Zhou, Youcai Zhao

Abstract:

Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.

Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea

Procedia PDF Downloads 325
697 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 141
696 Valorization Bio-Waste Argan Pulp for Green Synthesis of Silver Nanoparticles

Authors: Omar Drissi, Nadia El Harfaoui, Khalid Nouneh, Rachid Hsissou, Badre Daoudi

Abstract:

The pulp endures of having a lower importance, incompletely because of the way that it has been less studied, and it has been recognized as a pivotal product got from biomass that can be utilized in different fields. The current research focuses on pulp of Argania spinosa (L). To this end, the aim is to study the characteristics and properties of Argan pulp, such as shape, chemical and macromineral composition. As a result, X-Ray Fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used in the research.

Keywords: argania spinose, argan pulp, argan bio-waste, green synthesis, silver nanoparticles, valorization

Procedia PDF Downloads 115
695 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors

Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl

Abstract:

An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.

Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids

Procedia PDF Downloads 127
694 Evaluation of Sugarcane Straw Derived Biochar for the Remediation of Chromium and Nickel Contaminated Soil

Authors: Selam M. Tefera

Abstract:

Soil constitutes a crucial component of rural and urban environments. This fact is making role of heavy and trace elements in the soil system an issue of global concern. Heavy metals constitute an ill-defined group of inorganic chemical hazards, whose main source is anthropogenic activities mainly related to fabrications. This accumulation of heavy metals soils can prove toxic to the environment. The application of biochar to soil is one way of immobilizing these contaminants through sorption by exploiting the high surface area of this material among its other essential properties. This research examined the ability of sugar cane straw, an organic waste material from sugar farm, derived biochar and ash to remediate soil contaminated with heavy metals mainly Chromium and Zinc from the effluent of electroplating industry. Biochar was produced by varying the temperature from 300 °C to 500 °C and ash at 700 °C. The highest yield (50%) was obtained at the lowest temperature (300 °C). The proximate analysis showed ash content of 42.8%, ultimate analysis with carbon content of 67.18%, the Hydrogen to Carbon ratio of 0.54 and the results from FTIR analysis disclosed the organic nature of biochar. Methylene blue absorption indicated its fine surface area and pore structure, which increases with severity of temperature. Biochar was mixed with soil with at a ration varying from 4% w/w to 10% w/w of soil, and the response variables were determined at a time interval of 150 days, 180 days, and 210 days. As for ash (10% w/w), the characterization was performed at incubation time of 210 days. The results of pH indicated that biochar (9.24) had a notable liming capacity of acidic soil (4.8) by increasing it to 6.89 whereas ash increased it to 7.5. The immobilization capacity of biochar was found to effected mostly by the highest production temperature (500 °C), which was 75.5% for chromium and 80.5% for nickel. In addition, ash was shown to possess an outstanding immobilization capacity of 95.5% and 90.5% for Chromium and Nickel, respectively. All in all, the results from these methods showed that biochar produced from this specific biomass possesses the typical functional groups that enable it to store carbon, the appropriate pH that could remediate acidic soil, a fine amount of macro and micro nutrients that would aid plant growth.

Keywords: biochar, biomass, heavy metal immobalization, soil remediation

Procedia PDF Downloads 141
693 Adsorption Cooling Using Hybrid Energy Resources

Authors: R. Benelmir, M. El Kadri, A. Donnot, D. Descieux

Abstract:

HVAC represents a significant part of energy needs in buildings. Integrating renewable energy in cooling processes contributes to reducing primary energy consumption. Sorption refrigeration allows cold production through the use of solar/biomass/geothermal energy or even valuation of waste heat. This work presents an analysis of an experimental bench incorporating an adsorption chiller driven by hybrid energy resources associating solar thermal collectors with a cogeneration gas engine and a geothermal heat pump.

Keywords: solar cooling, cogeneration, geothermal heat pump, hybrid energy resources

Procedia PDF Downloads 352
692 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development

Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib

Abstract:

Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.

Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification

Procedia PDF Downloads 77
691 An Invertebrate-Type Lysozyme from Chinese Mitten Crab Eriocheir Sinensis: Cloning and Characterization

Authors: Fengmei Li, Li Xu, Guoliang Xia

Abstract:

Lysozyme is a catalytic enzyme that performs bacterial cell lysis by cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine of peptidoglycan in cell walls. In the present study, an invertebrate-type (i-type) lysozyme gene was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsLysozyme) based on PCR-based rapid amplification of cDNA ends (RACE) technology. The full-length cDNA of EsLysozyme was of 831 bp. SMART and SIGNALP 3.0 program analysis revealed that EsLysozyme contained a signal peptide and a destabilase domain. The five amino acid residues (Tyr63, Trp64, Tyr91, His110, Pro114) and the conserved motif GSLSCG(P/Y)FQI and CL(E/L/R/H)C(I/M)C in i-type lysozymes were also found in EsLysozyme. The high similarity of EsLysozyme with L. vannamei lysozymes and phylogenetic analysis suggested that EsLysozyme should be a new member of i-type lysozyme family.

Keywords: i-type lysozyme, Eriocheir sinensis, cloning, characterization

Procedia PDF Downloads 288
690 Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water

Authors: Aimad Oulebsir, Toufik Chaabane, Venkataraman Sivasankar, André Darchen, Titus A. M. Msagati

Abstract:

Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles.

Keywords: electrocoagulation, aluminum electrode, electrogenerated alumina, iron, adsorption/desorption

Procedia PDF Downloads 297
689 Counting Fishes in Aquaculture Ponds: Application of Imaging Sonars

Authors: Juan C. Gutierrez-Estrada, Inmaculada Pulido-Calvo, Ignacio De La Rosa, Antonio Peregrin, Fernando Gomez-Bravo, Samuel Lopez-Dominguez, Alejandro Garrocho-Cruz, Jairo Castro-Gutierrez

Abstract:

The semi-intensive aquaculture in traditional earth ponds is the main rearing system in Southern Spain. These fish rearing systems are approximately two thirds of aquatic production in this area which has made a significant contribution to the regional economy in recent years. In this type of rearing system, a crucial aspect is the correct quantification and control of the fish abundance in the ponds because the fish farmer knows how many fishes he puts in the ponds but doesn’t know how many fishes will harvest at the end of the rear period. This is a consequence of the mortality induced by different causes as pathogen agents as parasites, viruses and bacteria and other factors as predation of fish-eating birds and poaching. Track the fish abundance in these installations is very difficult because usually the ponds take up a large area of land and the management of the water flow is not automatized. Therefore, there is a very high degree of uncertainty on the abundance fishes which strongly hinders the management and planning of the sales. A novel and non-invasive procedure to count fishes in the ponds is by the means of imaging sonars, particularly fixed systems and/or linked to aquatic vehicles as Remotely Operated Vehicles (ROVs). In this work, a method based on census stations procedures is proposed to evaluate the fish abundance estimation accuracy using images obtained of multibeam sonars. The results indicate that it is possible to obtain a realistic approach about the number of fishes, sizes and therefore the biomass contained in the ponds. This research is included in the framework of the KTTSeaDrones Project (‘Conocimiento y transferencia de tecnología sobre vehículos aéreos y acuáticos para el desarrollo transfronterizo de ciencias marinas y pesqueras 0622-KTTSEADRONES-5-E’) financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-Portugal Programme (POCTEP) 2014-2020.

Keywords: census station procedure, fish biomass, semi-intensive aquaculture, multibeam sonars

Procedia PDF Downloads 221
688 A Novel Approach for Energy Utilisation in a Pyrolysis Plant

Authors: S. Murugan, Bohumil Horak

Abstract:

Pyrolysis is one of the possible technologies to derive energy from waste organic substances. In recent years, pilot level and demonstrated plants have been installed in few countries. The heat energy lost during the process is not effectively utilized resulting in less savings of energy and money. This paper proposes a novel approach to integrate a combined heat and power unit(CHP) and reduce the primary energy consumption in a tyre pyrolysis pilot plant. The proposal primarily uses the micro combined heat and power concept that will help to produce both heat and power in the process.

Keywords: pyrolysis, waste tyres, waste plastics, biomass, waste heat

Procedia PDF Downloads 324