Search results for: collaboration learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8137

Search results for: collaboration learning

1447 Impact of Organic Architecture in Building Design

Authors: Zainab Yahaya Suleiman

Abstract:

Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.

Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design

Procedia PDF Downloads 414
1446 TQM Framework Using Notable Authors Comparative

Authors: Redha M. Elhuni

Abstract:

This paper presents an analysis of the essential characteristics of the TQM philosophy by comparing the work of five notable authors in the field. A framework is produced which gather the identified TQM enablers under the well-known operations management dimensions of process, business and people. These enablers are linked with sustainable development via balance scorecard type economic and non-economic measures. In order to capture a picture of Libyan Company’s efforts to implement the TQM, a questionnaire survey is designed and implemented. Results of the survey are presented showing the main differentiating factors between the sample companies, and a way of assessing the difference between the theoretical underpinning and the practitioners’ undertakings. Survey results indicate that companies are experiencing much difficulty in translating TQM theory into practice. Only a few companies have successfully adopted a holistic approach to TQM philosophy, and most of these put relatively high emphasis on hard elements compared with soft issues of TQM. However, where companies can realize the economic outputs, non- economic benefits such as workflow management, skills development and team learning are not realized. In addition, overall, non-economic measures have secured low weightings compared with the economic measures. We believe that the framework presented in this paper can help a company to concentrate its TQM implementation efforts in terms of process, system and people management dimensions.

Keywords: TQM, balance scorecard, EFQM excellence model, oil sector, Libya

Procedia PDF Downloads 407
1445 Human Resources Recruitment Defining Peculiarities of Students as Job Seekers

Authors: O. Starineca

Abstract:

Some organizations as employers have difficulties to attract job seekers and retain their employees. Strategic planning of Human Resources (HR) presumes broad analysis of perspectives including analysis of potential job seekers in the field. Human Resources Recruitment (HRR) influences employer brand of an organization and peculiarities of both external organizational factors and stakeholders. Defining peculiarities of the future job seekers, who could potentially become the employees of the organization, could help to adjust HRR tools and methods adapt to the youngest generation employees’ preferences and be more successful in selecting the best candidates, who are likely to be loyal to the employer. The aim of the empirical study is definition of some students’ as job seekers peculiarities and their requirements to their potential employer. The survey in Latvia, Lithuania and Spain. Respondents were students from these countries’ tertiary education institutions Public Administration (PA) or relevant study programs. All three countries students’ peculiarities have just a slight difference. Overall, they all wish to work for a socially responsible employer that is able to provide positive working environment and possibilities for professional development and learning. However, respondents from each country have own peculiarities. The study might have a practical application. PA of the examined countries might use the results developing employer brand and creating job advertisements focusing on recent graduates’ recruitment.

Keywords: generation Y, human resources recruitment, job seekers, public administration

Procedia PDF Downloads 209
1444 Developing Critical-Process Skills Integrated Assessment Instrument as Alternative Assessment on Electrolyte Solution Matter in Senior High School

Authors: Sri Rejeki Dwi Astuti, Suyanta

Abstract:

The demanding of the asessment in learning process was impact by policy changes. Nowadays, the assessment not only emphasizes knowledge, but also skills and attitude. However, in reality there are many obstacles in measuring them. This paper aimed to describe how to develop instrument of integrated assessment as alternative assessment to measure critical thinking skills and science process skills in electrolyte solution and to describe instrument’s characteristic such as logic validity and construct validity. This instrument development used test development model by McIntire. Development process data was acquired based on development test step and was analyzed by qualitative analysis. Initial product was observed by three peer reviewer and six expert judgment (two subject matter expert, two evaluation expert and two chemistry teacher) to acquire logic validity test. Logic validity test was analyzed using Aiken’s formula. The estimation of construct validity was analyzed by exploratory factor analysis. Result showed that integrated assessment instrument has 0,90 of Aiken’s Value and all item in integrated assessment asserted valid according to construct validity.

Keywords: construct validity, critical thinking skills, integrated assessment instrument, logic validity, science process skills

Procedia PDF Downloads 264
1443 The Application of System Approach to Knowledge Management and Human Resource Management Evidence from Tehran Municipality

Authors: Vajhollah Ghorbanizadeh, Seyed Mohsen Asadi, Mirali Seyednaghavi, Davoud Hoseynpour

Abstract:

In the current era, all organizations need knowledge to be able to manage the diverse human resources. Creative, dynamic and knowledge-based Human resources are important competitive advantage and the scarcest resource in today's knowledge-based economy. In addition managers with skills of knowledge management must be aware of human resource management science. It is now generally accepted that successful implementation of knowledge management requires dynamic interaction between knowledge management and human resource management. This is emphasized at systematic approach to knowledge management as well. However human resource management can be complementary of knowledge management because human resources management with the aim of empowering human resources as the key resource organizations in the 21st century, the use of other resources, creating and growing and developing today. Thus, knowledge is the major capital of every organization which is introduced through the process of knowledge management. In this context, knowledge management is systematic approach to create, receive, organize, access, and use of knowledge and learning in the organization. This article aims to define and explain the concepts of knowledge management and human resource management and the importance of these processes and concepts. Literature related to knowledge management and human resource management as well as related topics were studied, then to design, illustrate and provide a theoretical model to explain the factors affecting the relationship between knowledge management and human resource management and knowledge management system approach, for schematic design and are drawn.

Keywords: systemic approach, human resources, knowledge, human resources management, knowledge management

Procedia PDF Downloads 378
1442 Using Presentation as a Means to Develop Communication Skills of Engineering Students

Authors: Urvashi Kaushal

Abstract:

With the entry of multinationals in India, engineering students of Indian universities have opportunity to work with the best and the most innovative industries in the world, but in order to compete in the global job market, they require an added competence of communication skills in English. With work places turning global, competence in English can provide the Indian student the added advantage to begin his/her career in the international market. The present method of teaching English in any engineering college across Gujarat mostly concentrates on developing writing, and reading skills. Developing speech becomes a secondary topic owing to the old trend of lecturing in the class room and the huge strength of the class. This paper aims to highlight the importance of improving speaking skills of engineering students. It also insists that presentations can be used as a viable method to enhance the communication skills of these students. Presentations force students to plan, prepare, practice and perfect their communication skills which will enable them to get a foothold in the industry. The paper also discusses one such experiment carried out at the author’s institute and the response it received. Further, such experimental language learning approach is bound to have some limitations and obstacles. The paper suggests ways to overcome such limitations and strives to develop an interesting means of developing communication skills of the engineering students.

Keywords: engineering, English, presentation, communication skills

Procedia PDF Downloads 442
1441 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 13
1440 Theology of Science and Technology as a Tool for Peace Education

Authors: Jonas Chikelue Ogbuefi

Abstract:

Science and Technology have a major impact on societal peace, it offers support to teaching and learning, cuts costs, and offers solutions to the current agitations and militancy in Nigeria today. Christianity, for instance, did not only change and form the western world in the past 2022 but still has a substantial role to play in society through liquid ecclesiology. This paper interrogated the impact of the theology of Science and Technology as a tool for peace sustainability through peace education in Nigeria. The method adopted is a historical and descriptive method of analysis. It was discovered that a larger number of Nigerian citizens lack almost all the basic things needed for the standard of living, such as Shelter, meaningful employment, and clothing, which is the root course of all agitations in Nigeria. Based on the above findings, the paper contends that the government alone cannot restore Peace in Nigeria. Hence the inability of the government to restore peace calls for all religious actors to be involved. The main thrust and recommendation of this paper are to challenge the religious actors to implement the Theology of Science and Technology as a tool for peace restoration and should network with both the government and the private sectors to make funds available to budding and existing entrepreneurs using Science and Technology as a tool for Peace and economic sustainability. This paper viewed the theology of Science and Technology as a tool for Peace and economic sustainability in Nigeria.

Keywords: theology, science, technology, peace education

Procedia PDF Downloads 86
1439 Museums: The Roles of Lighting in Design

Authors: Fernanda S. Oliveira

Abstract:

The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return.

Keywords: daylight, comfort, museums, luminance, visitor

Procedia PDF Downloads 489
1438 A Study on the Application of Generative AI Tools for Chinese Writing Feedback in Non-Fiction Writing Instruction

Authors: Stephanie Liu Lu

Abstract:

The course University Chinese, integral to the curriculum of higher education institutions in Hong Kong, significantly enhances students' creative expression, narrative construction, argumentative prowess, and literary skills through its focus on non-fiction writing. Despite its importance, the breadth of the syllabus, combined with limited classroom time, frequently restricts sufficient practice opportunities and leads to delayed feedback, which adversely affects students' preparation for assessments. This paper explores the utility of generative artificial intelligence (AI) tools in offering personalized and instantaneous feedback for writing tasks. The principal aim of this research is to assess student receptiveness to feedback generated by AI and compare it to the traditional feedback provided solely by human instructors. To this end, participants will be systematically divided into two groups: one will receive feedback from both instructors and AI tools, while a control group will receive feedback exclusively from instructors. The study will meticulously analyze the revisions made to texts after receiving feedback, with a particular focus on enhancements in the quality of content and language proficiency. This investigation seeks to ascertain whether AI tools can not only augment the efficiency of teaching practices but also foster autonomous learning among students and substantially improve the overall quality of their written work.

Keywords: AI-generated feedback, Chinese writing, non-fiction writing, student receptiveness

Procedia PDF Downloads 0
1437 African Folklore for Critical Self-Reflection, Reflective Dialogue, and Resultant Attitudinal and Behaviour Change: University Students’ Experiences

Authors: T. M. Buthelezi, E. O. Olagundoye, R. G. L. Cele

Abstract:

This article argues that whilst African folklore has mainly been used for entertainment, it also has an educational value that has power to change young people’s attitudes and behavior. The paper is informed by the findings from the data that was generated from 154 university students who were coming from diverse backgrounds. The qualitative data was thematically analysed. Referring to the six steps of the behaviour change model, we found that African Folklore provides relevant cultural knowledge and instills values that enable young people to engage on self-reflection that eventually leads them towards attitudinal changes and behaviour modification. Using the transformative learning theory, we argue that African Folklore in itself is a pedagogical strategy that integrates cultural knowledge, values with entertainment elements concisely enough to take the young people through a transformative phase which encompasses psychological, convictional and life-style adaptation. During data production stage all ethical considerations were observed including obtaining gatekeeper’s permission letter and ethical clearance certificate from the Ethics Committee of the University. The paper recommends that African Folklore approach should be incorporated into the school curriculum particularly in life skills education with aims to change behaviour.

Keywords: African folklore, young people, attitudinal, behavior change, university students

Procedia PDF Downloads 267
1436 An Investigation on Smartphone-Based Machine Vision System for Inspection

Authors: They Shao Peng

Abstract:

Machine vision system for inspection is an automated technology that is normally utilized to analyze items on the production line for quality control purposes, it also can be known as an automated visual inspection (AVI) system. By applying automated visual inspection, the existence of items, defects, contaminants, flaws, and other irregularities in manufactured products can be easily detected in a short time and accurately. However, AVI systems are still inflexible and expensive due to their uniqueness for a specific task and consuming a lot of set-up time and space. With the rapid development of mobile devices, smartphones can be an alternative device for the visual system to solve the existing problems of AVI. Since the smartphone-based AVI system is still at a nascent stage, this led to the motivation to investigate the smartphone-based AVI system. This study is aimed to provide a low-cost AVI system with high efficiency and flexibility. In this project, the object detection models, which are You Only Look Once (YOLO) model and Single Shot MultiBox Detector (SSD) model, are trained, evaluated, and integrated with the smartphone and webcam devices. The performance of the smartphone-based AVI is compared with the webcam-based AVI according to the precision and inference time in this study. Additionally, a mobile application is developed which allows users to implement real-time object detection and object detection from image storage.

Keywords: automated visual inspection, deep learning, machine vision, mobile application

Procedia PDF Downloads 125
1435 Whole Coding Genome Inter-Clade Comparison to Predict Global Cancer-Protecting Variants

Authors: Lamis Naddaf, Yuval Tabach

Abstract:

In this research, we identified the missense genetic variants that have the potential to enhance resistance against cancer. Such field has not been widely explored, as researchers tend to investigate mutations that cause diseases, in response to the suffering of patients, rather than those mutations that protect from them. In conjunction with the genomic revolution, and the advances in genetic engineering and synthetic biology, identifying the protective variants will increase the power of genotype-phenotype predictions and can have significant implications on improved risk estimation, diagnostics, prognosis and even for personalized therapy and drug discovery. To approach our goal, we systematically investigated the sites of the coding genomes and picked up the alleles that showed a correlation with the species’ cancer resistance. We predicted 250 protecting variants (PVs) with a 0.01 false discovery rate and more than 20 thousand PVs with a 0.25 false discovery rate. Cancer resistance in Mammals and reptiles was significantly predicted by the number of PVs a species has. Moreover, Genes enriched with the protecting variants are enriched in pathways relevant to tumor suppression like pathways of Hedgehog signaling and silencing, which its improper activation is associated with the most common form of cancer malignancy. We also showed that the PVs are more abundant in healthy people compared to cancer patients within different human races.

Keywords: comparative genomics, machine learning, cancer resistance, cancer-protecting alleles

Procedia PDF Downloads 98
1434 The Optimum Mel-Frequency Cepstral Coefficients (MFCCs) Contribution to Iranian Traditional Music Genre Classification by Instrumental Features

Authors: M. Abbasi Layegh, S. Haghipour, K. Athari, R. Khosravi, M. Tafkikialamdari

Abstract:

An approach to find the optimum mel-frequency cepstral coefficients (MFCCs) for the Radif of Mirzâ Ábdollâh, which is the principal emblem and the heart of Persian music, performed by most famous Iranian masters on two Iranian stringed instruments ‘Tar’ and ‘Setar’ is proposed. While investigating the variance of MFCC for each record in themusic database of 1500 gushe of the repertoire belonging to 12 modal systems (dastgâh and âvâz), we have applied the Fuzzy C-Mean clustering algorithm on each of the 12 coefficient and different combinations of those coefficients. We have applied the same experiment while increasing the number of coefficients but the clustering accuracy remained the same. Therefore, we can conclude that the first 7 MFCCs (V-7MFCC) are enough for classification of The Radif of Mirzâ Ábdollâh. Classical machine learning algorithms such as MLP neural networks, K-Nearest Neighbors (KNN), Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machine (SVM) have been employed. Finally, it can be realized that SVM shows a better performance in this study.

Keywords: radif of Mirzâ Ábdollâh, Gushe, mel frequency cepstral coefficients, fuzzy c-mean clustering algorithm, k-nearest neighbors (KNN), gaussian mixture model (GMM), hidden markov model (HMM), support vector machine (SVM)

Procedia PDF Downloads 448
1433 Experiences and Aspirations of Hearing Impaired Learners in Inclusive Classrooms

Authors: Raymon P. Española

Abstract:

Hearing impaired students are admitted to regular high schools in the context of inclusive education. In this setting, several academic difficulties and social struggles are disregarded by many educators. The study aimed to describe the aspirations and lived experiences in mainstream classrooms of hearing impaired students. In the research process, the participants were interviewed using sign language. Thematic analysis of interview responses was done, supplemented by interviews with teachers and classroom observations. The study revealed four patterns of experiences: academic difficulties, coping mechanisms, identification with hearing peers, and impression management. This means that these learners were struggling in inclusive classrooms, where identification with and modeling the positive qualities of hearing peers were done to cope with academic difficulties and alter negative impressions about them. By implication, these learners tended to socially immerse themselves rather than resort to isolation. Along with this tendency was the aspiration for achievement as they were eager to finish post-secondary technical-vocational education. This means aspiring for continuing social immersion into the mainstream. All these findings provide insights to K-12 educators to increase the use of collaborative techniques and experiential learning strategies, as well as to adequately address the special educational needs of these students.

Keywords: descriptive, experiences and aspirations of hearing impaired learners, inclusive classrooms, Surigao City Philippines

Procedia PDF Downloads 411
1432 Transitioning towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Mozhdeh Khalili Kordabadi

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. By adopting these strategies, the textile industry can contribute to a more sustainable and environmentally friendly future. Introduction: Textiles, particularly clothing, are essential to human existence. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion: The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension.

Procedia PDF Downloads 97
1431 Automated Human Balance Assessment Using Contactless Sensors

Authors: Justin Tang

Abstract:

Balance tests are frequently used to diagnose concussions on the sidelines of sporting events. Manual scoring, however, is labor intensive and subjective, and many concussions go undetected. This study institutes a novel approach to conducting the Balance Error Scoring System (BESS) more quantitatively using Microsoft’s gaming system Kinect, which uses a contactless sensor and several cameras to receive data and estimate body limb positions. Using a machine learning approach, Visual Gesture Builder, and a deterministic approach, MATLAB, we tested whether the Kinect can differentiate between “correct” and erroneous stances of the BESS. We created the two separate solutions by recording test videos to teach the Kinect correct stances and by developing a code using Java. Twenty-two subjects were asked to perform a series of BESS tests while the Kinect was collecting data. The Kinect recorded the subjects and mapped key joints onto their bodies to obtain angles and measurements that are interpreted by the software. Through VGB and MATLAB, the videos are analyzed to enumerate the number of errors committed during testing. The resulting statistics demonstrate a high correlation between manual scoring and the Kinect approaches, indicating the viability of the use of remote tracking devices in conducting concussion tests.

Keywords: automated, concussion detection, contactless sensors, microsoft kinect

Procedia PDF Downloads 319
1430 The Relationship between Organizational Silence and Voice with the Quality of Work Life among Employees of the Youth and Sports Departments of Tehran Province

Authors: Soodabeh Dehghan, Siavash Hamidzadeh, Naqshbandi Seyyed Salahedin, Ali Mohammad Safania

Abstract:

The present research with the aim of the relationship between organizational silence and organizational voice with quality of work-life among employees of the sport and youth departments of Tehran Province was done. The statistical population of this research includes all employees of the sport and youth departments of Tehran province, and considering the not very large number of society, the sample and society were considered to be the same, and the sample was considered as the whole number. To measure each of these variables, a questionnaire was used. The research questionnaire was presented in four sections. The results showed that, since the extension of the process of organizational silence is usually done by managers, their attitude and attitudes toward this phenomenon are prioritized and also because silence reduces learning due to lack of knowledge sharing, makes it less effective and makes changes more difficult, it is necessary to take steps to break the silence and to further urge the staff (employees) to express their beliefs (organizational voices) and to share them in the organization's fate individuals, whose beliefs are respected and so called taken into account in the organization, would be dependent on the organization and feel obliged to remain with the organization during the hardships. This affects employees' quality of work life and their satisfaction too much.

Keywords: organizational silence, organizational voice, quality of work life, the sports and youth departments of Tehran province

Procedia PDF Downloads 149
1429 Predicting Destination Station Based on Public Transit Passenger Profiling

Authors: Xuyang Song, Jun Yin

Abstract:

The smart card has been an extremely universal tool in public transit. It collects a large amount of data on buses, urban railway transit, and ferries and provides possibilities for passenger profiling. This paper combines offline analysis of passenger profiling and real-time prediction to propose a method that can accurately predict the destination station in real-time when passengers tag on. Firstly, this article constructs a static database of user travel characteristics after identifying passenger travel patterns based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN). The dual travel passenger habits are identified: OD travel habits and D station travel habits. Then a rapid real-time prediction algorithm based on Transit Passenger Profiling is proposed, which can predict the destination of in-board passengers. This article combines offline learning with online prediction, providing a technical foundation for real-time passenger flow prediction, monitoring and simulation, and short-term passenger behavior and demand prediction. This technology facilitates the efficient and real-time acquisition of passengers' travel destinations and demand. The last, an actual case was simulated and demonstrated feasibility and efficiency.

Keywords: travel behavior, destination prediction, public transit, passenger profiling

Procedia PDF Downloads 21
1428 Learn Better to Earn Better: Importance of CPD in Dentistry

Authors: Junaid Ahmed, Nandita Shenoy

Abstract:

Maintaining lifelong knowledge and skills is essential for safe clinical practice. Continuing Professional Development (CPD) is an established method that can facilitate lifelong learning. It focuses on maintaining or developing knowledge, skills and relationships to ensure competent practice.To date, relatively little has been done to comprehensively and systematically synthesize evidence to identify subjects of interest among practising dentist. Hence the aim of our study was to identify areas in clinical practice that would be favourable for continuing professional dental education amongst practicing dentists. Participants of this study consisted of the practicing dental surgeons of Mangalore, a city in Dakshina Kannada, Karnataka. 95% of our practitioners felt that regular updating as a one day program once in 3-6 months is required, to keep them abreast in clinical practice. 60% of subjects feel that CPD programs enrich their theoretical knowledge and helps in patient care. 27% of them felt that CPD programs should be related to general dentistry. Most of them felt that CPD programs should not be charged nominally between one to two thousand rupees. The acronym ‘CPD’ should be seen in a broader view in which professionals continuously enhance not only their knowledge and skills, but also their thinking,understanding and maturity; they grow not only as professionals, but also as persons; their development is not restricted to their work roles, but may also extend to new roles and responsibilities.

Keywords: continuing professional development, competent practice, dental education, practising dentist

Procedia PDF Downloads 262
1427 PsyVBot: Chatbot for Accurate Depression Diagnosis using Long Short-Term Memory and NLP

Authors: Thaveesha Dheerasekera, Dileeka Sandamali Alwis

Abstract:

The escalating prevalence of mental health issues, such as depression and suicidal ideation, is a matter of significant global concern. It is plausible that a variety of factors, such as life events, social isolation, and preexisting physiological or psychological health conditions, could instigate or exacerbate these conditions. Traditional approaches to diagnosing depression entail a considerable amount of time and necessitate the involvement of adept practitioners. This underscores the necessity for automated systems capable of promptly detecting and diagnosing symptoms of depression. The PsyVBot system employs sophisticated natural language processing and machine learning methodologies, including the use of the NLTK toolkit for dataset preprocessing and the utilization of a Long Short-Term Memory (LSTM) model. The PsyVBot exhibits a remarkable ability to diagnose depression with a 94% accuracy rate through the analysis of user input. Consequently, this resource proves to be efficacious for individuals, particularly those enrolled in academic institutions, who may encounter challenges pertaining to their psychological well-being. The PsyVBot employs a Long Short-Term Memory (LSTM) model that comprises a total of three layers, namely an embedding layer, an LSTM layer, and a dense layer. The stratification of these layers facilitates a precise examination of linguistic patterns that are associated with the condition of depression. The PsyVBot has the capability to accurately assess an individual's level of depression through the identification of linguistic and contextual cues. The task is achieved via a rigorous training regimen, which is executed by utilizing a dataset comprising information sourced from the subreddit r/SuicideWatch. The diverse data present in the dataset ensures precise and delicate identification of symptoms linked with depression, thereby guaranteeing accuracy. PsyVBot not only possesses diagnostic capabilities but also enhances the user experience through the utilization of audio outputs. This feature enables users to engage in more captivating and interactive interactions. The PsyVBot platform offers individuals the opportunity to conveniently diagnose mental health challenges through a confidential and user-friendly interface. Regarding the advancement of PsyVBot, maintaining user confidentiality and upholding ethical principles are of paramount significance. It is imperative to note that diligent efforts are undertaken to adhere to ethical standards, thereby safeguarding the confidentiality of user information and ensuring its security. Moreover, the chatbot fosters a conducive atmosphere that is supportive and compassionate, thereby promoting psychological welfare. In brief, PsyVBot is an automated conversational agent that utilizes an LSTM model to assess the level of depression in accordance with the input provided by the user. The demonstrated accuracy rate of 94% serves as a promising indication of the potential efficacy of employing natural language processing and machine learning techniques in tackling challenges associated with mental health. The reliability of PsyVBot is further improved by the fact that it makes use of the Reddit dataset and incorporates Natural Language Toolkit (NLTK) for preprocessing. PsyVBot represents a pioneering and user-centric solution that furnishes an easily accessible and confidential medium for seeking assistance. The present platform is offered as a modality to tackle the pervasive issue of depression and the contemplation of suicide.

Keywords: chatbot, depression diagnosis, LSTM model, natural language process

Procedia PDF Downloads 73
1426 Demotivation-Reducing Strategies Employed by Turkish EFL Learners in L2 Writing

Authors: kaveh Jalilzadeh, Maryam Rastgari

Abstract:

Motivation for learning a foreign language is needed for learners of any foreign language to effectively learn language skills. However, there are some factors that lead to the learners’ demotivation. Therefore, teachers of foreign languages, most notably English language which turned out to be an international language for academic and business purposes, need to be well aware of the demotivation sources and know how to reduce learners’ demotivation. This study is an attempt to explore demotivation-reducing strategies employed by Turkish EFL learners in L2 writing. The researchers used a qualitative case study and employed semi-structured interviews to collect data. The informants recruited in this study were 20 English writing lecturers who were selected through purposive sampling among university lecturers/instructors at the state and non-state universities in Istanbul and Ankara. Interviews were transcribed verbatim, and MAXQDA software (version 2022) was used for performing coding and thematic analysis of the data. Findings revealed that Turkish EFL teachers use 18 strategies to reduce language learners’ demotivation. The most frequently reported strategies were: writing in a group, writing about interesting topics, writing about new topics, writing about familiar topics, writing about simple topics, and writing about relevant topics. The findings have practical implications for writing teachers and learners of the English language.

Keywords: phenomenological study, emotional vulnerability, motivation, digital Settings

Procedia PDF Downloads 71
1425 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: artificial immune system, breast cancer diagnosis, Euclidean function, Gaussian function

Procedia PDF Downloads 436
1424 Domain specific Ontology-Based Knowledge Extraction Using R-GNN and Large Language Models

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology mapping, R-GNN, knowledge extraction, large language models, NER, knowlege graph

Procedia PDF Downloads 21
1423 Implementing Search-Based Activities in Mathematics Instruction, Grounded in Intuitive Reasoning

Authors: Zhanna Dedovets

Abstract:

Fostering a mathematical style of thinking is crucial for cultivating intellectual personalities capable of thriving in modern society. Intuitive thinking stands as a cornerstone among the components of mathematical cognition, playing a pivotal role in grasping mathematical truths across various disciplines. This article delves into the exploration of leveraging search activities rooted in students' intuitive thinking, particularly when tackling geometric problems. Emphasizing both student engagement with the task and their active involvement in the search process, the study underscores the importance of heuristic procedures and the freedom for students to chart their own problem-solving paths. Spanning several years (2019-2023) at the Physics and Mathematics Lyceum of Dushanbe, the research engaged 17 teachers and 78 high school students. After assessing the initial levels of intuitive thinking in both control and experimental groups, the experimental group underwent training following the authors' methodology. Subsequent analysis revealed a significant advancement in thinking levels among the experimental group students. The methodological approaches and teaching materials developed through this process offer valuable resources for mathematics educators seeking to enhance their students' learning experiences effectively.

Keywords: teaching of mathematics, intuitive thinking, heuristic procedures, geometric problem, students.

Procedia PDF Downloads 51
1422 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 166
1421 Importance of Positive Education: A Focus on the Importance of Character Strength Building

Authors: Hajra Hussain

Abstract:

Positive education, the inclusion of social, emotional and intellectual skills across a curriculum, is fundamental to the optimal functioning of young people in any society because it combines the best teaching practices with the principles of positive psychology. While learning institutions foster academic skills, little attention is being paid to the identification and development of character strengths and their integration into teaching. There is an increasing recognition of the important role education plays in equipping today’s youth with 21st century social skills. For youth to succeed in this highly competitive environment, there is a need for positive education that is focused on character strengths such as the growth of social, emotional and intellectual skills that promote the flourishing of well-rounded individuals. Character strength programs and awareness are a necessity if the human capital within a region is to be competitive, productive and happy. The Counselling & Wellbeing Centre at Amity University Dubai has consistently implemented Character Strength awareness workshops and has found that such workshops have increased student life satisfaction due to individual awareness of signature strengths. A positive education/positive psychology framework with its key focus on the development of character strengths can be fundamental to individual's confidence and self-awareness; thus allowing both optimum flourishing and functioning.

Keywords: positive psychology, positive education, strengths, youth, happiness

Procedia PDF Downloads 275
1420 Survey of Related Field for Artificial Intelligence Window Development

Authors: Young Kwon Yang, Bo Rang Park, Hyo Eun Lee, Tea Won Kim, Eun Ji Choi, Jin Chul Park

Abstract:

To develop an artificial intelligence based automatic ventilation system, recent research trends were analyzed and analyzed. This research method is as follows. In the field of architecture and window technology, the use of artificial intelligence, the existing study of machine learning model and the theoretical review of the literature were carried out. This paper collected journals such as Journal of Energy and Buildings, Journal of Renewable and Sustainable Energy Reviews, and articles published on Web-sites. The following keywords were searched for articles from 2000 to 2016. We searched for the above keywords mainly in the title, keyword, and abstract. As a result, the global artificial intelligence market is expected to grow at a CAGR of 14.0% from USD127bn in 2015 to USD165bn in 2017. Start-up investments in artificial intelligence increased from the US $ 45 million in 2010 to the US $ 310 million in 2015, and the number of investments increased from 6 to 54. Although AI is making efforts to advance to advanced countries, the level of technology is still in its infant stage. Especially in the field of architecture, artificial intelligence (AI) is very rare. Based on the data of this study, it is expected that the application of artificial intelligence and the application of architectural field will be revitalized through the activation of artificial intelligence in the field of architecture and window.

Keywords: artificial intelligence, window, fine dust, thermal comfort, ventilation system

Procedia PDF Downloads 276
1419 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-Nearest Neighbours Algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing colour moments on the RGB space. This compact descriptor, Colour Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, category search, relevance feedback, query point movement, standard Rocchio’s formula, adaptive shifting query, feature weighting, original KNN, incremental KNN

Procedia PDF Downloads 283
1418 Artificial Intelligence-Based Chest X-Ray Test of COVID-19 Patients

Authors: Dhurgham Al-Karawi, Nisreen Polus, Shakir Al-Zaidi, Sabah Jassim

Abstract:

The management of COVID-19 patients based on chest imaging is emerging as an essential tool for evaluating the spread of the pandemic which has gripped the global community. It has already been used to monitor the situation of COVID-19 patients who have issues in respiratory status. There has been increase to use chest imaging for medical triage of patients who are showing moderate-severe clinical COVID-19 features, this is due to the fast dispersal of the pandemic to all continents and communities. This article demonstrates the development of machine learning techniques for the test of COVID-19 patients using Chest X-Ray (CXR) images in nearly real-time, to distinguish the COVID-19 infection with a significantly high level of accuracy. The testing performance has covered a combination of different datasets of CXR images of positive COVID-19 patients, patients with viral and bacterial infections, also, people with a clear chest. The proposed AI scheme successfully distinguishes CXR scans of COVID-19 infected patients from CXR scans of viral and bacterial based pneumonia as well as normal cases with an average accuracy of 94.43%, sensitivity 95%, and specificity 93.86%. Predicted decisions would be supported by visual evidence to help clinicians speed up the initial assessment process of new suspected cases, especially in a resource-constrained environment.

Keywords: COVID-19, chest x-ray scan, artificial intelligence, texture analysis, local binary pattern transform, Gabor filter

Procedia PDF Downloads 148