Search results for: thermomechancal properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9004

Search results for: thermomechancal properties

2434 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 134
2433 Developing Pavement Structural Deterioration Curves

Authors: Gregory Kelly, Gary Chai, Sittampalam Manoharan, Deborah Delaney

Abstract:

A Structural Number (SN) can be calculated for a road pavement from the properties and thicknesses of the surface, base course, sub-base, and subgrade. Historically, the cost of collecting structural data has been very high. Data were initially collected using Benkelman Beams and now by Falling Weight Deflectometer (FWD). The structural strength of pavements weakens over time due to environmental and traffic loading factors, but due to a lack of data, no structural deterioration curve for pavements has been implemented in a Pavement Management System (PMS). International Roughness Index (IRI) is a measure of the road longitudinal profile and has been used as a proxy for a pavement’s structural integrity. This paper offers two conceptual methods to develop Pavement Structural Deterioration Curves (PSDC). Firstly, structural data are grouped in sets by design Equivalent Standard Axles (ESA). An ‘Initial’ SN (ISN), Intermediate SN’s (SNI) and a Terminal SN (TSN), are used to develop the curves. Using FWD data, the ISN is the SN after the pavement is rehabilitated (Financial Accounting ‘Modern Equivalent’). Intermediate SNIs, are SNs other than the ISN and TSN. The TSN was defined as the SN of the pavement when it was approved for pavement rehabilitation. The second method is to use Traffic Speed Deflectometer data (TSD). The road network already divided into road blocks, is grouped by traffic loading. For each traffic loading group, road blocks that have had a recent pavement rehabilitation, are used to calculate the ISN and those planned for pavement rehabilitation to calculate the TSN. The remaining SNs are used to complete the age-based or if available, historical traffic loading-based SNI’s.

Keywords: conceptual, pavement structural number, pavement structural deterioration curve, pavement management system

Procedia PDF Downloads 545
2432 Elaboration and Characterization of a Composite Based on Plant Sisal Fiber

Authors: Biskri Yasmina, Laidi Babouri, Dehas Ouided, Bougherira Nadjiba, Baghloul Rahima

Abstract:

Algeria is one of the countries which have extraordinary resources in vegetable fibers (Palmier, Alfa, Cotton, Sisal). Unfortunately, their valorization in the practical fields, among other things, in building materials, is still little exploited. Several works align with the fact that the use of plant fibers in mortar is an advantageous solution, given its abundance and its socio-economic and environmental impact. The idea of introducing plant fiber into the field of Civil Engineering is not new. Based on the work of several researchers in this field, we propose to study the mechanical behavior of mortar based on Sisal fibers. This work consists of the experimental characterization in the fresh state (workability) and in the hardened state (mechanical resistance to compression and traction by three-point bending) on the scale of mortar mortars based on sisal plant fibers. The main objective of this work is the study of the effect of fiber incorporation on mechanical properties (compressive strength and three-point bending strength). In this study, we varied two parameters, such as the length of the fiber (7cm, 10 cm) and the fibers percentage (0.25%, 0.5%, 0.75%, 1%, 1.25% and 1.5%). The results show that there is a slight increase in the compressive strength of the fiber-reinforced mortars compared to the reference mortar (mortar without fibers). With regard to the three-point bending tests, the fiber-reinforced mortars presented higher resistances compared to the reference mortar and this was for the different lengths and different percentages studied.

Keywords: mortar, plant fiber, experimentation, mechanical characterization, analysis

Procedia PDF Downloads 95
2431 Determination of Tide Height Using Global Navigation Satellite Systems (GNSS)

Authors: Faisal Alsaaq

Abstract:

Hydrographic surveys have traditionally relied on the availability of tide information for the reduction of sounding observations to a common datum. In most cases, tide information is obtained from tide gauge observations and/or tide predictions over space and time using local, regional or global tide models. While the latter often provides a rather crude approximation, the former relies on tide gauge stations that are spatially restricted, and often have sparse and limited distribution. A more recent method that is increasingly being used is Global Navigation Satellite System (GNSS) positioning which can be utilised to monitor height variations of a vessel or buoy, thus providing information on sea level variations during the time of a hydrographic survey. However, GNSS heights obtained under the dynamic environment of a survey vessel are affected by “non-tidal” processes such as wave activity and the attitude of the vessel (roll, pitch, heave and dynamic draft). This research seeks to examine techniques that separate the tide signal from other non-tidal signals that may be contained in GNSS heights. This requires an investigation of the processes involved and their temporal, spectral and stochastic properties in order to apply suitable recovery techniques of tide information. In addition, different post-mission and near real-time GNSS positioning techniques will be investigated with focus on estimation of height at ocean. Furthermore, the study will investigate the possibility to transfer the chart datums at the location of tide gauges.

Keywords: hydrography, GNSS, datum, tide gauge

Procedia PDF Downloads 266
2430 Ti-Mo-N Nano-Grains Embedded into Thin MoSₓ-Based Amorphous Matrix: A Novel Structure for Superhardness and Ultra-Low Wear

Authors: Lina Yang, Mao Wen, Jianhong Chen, Kan Zhang

Abstract:

Molybdenum disulfide (MoS₂) represents a highly sought lubricant for reducing friction based on intrinsic layered structure, but for this reason, practical applications have been greatly restricted due to the fact that its low hardness would cause severe wear. Here, a novel TiMoN/MoSₓ composite coatings with TiMoN solid solution grains embedded into MoSₓ-based amorphous matrix has been successfully designed and synthesized, through magnetron co-sputtering technology. Desirably, in virtue of such special microstructure, superhardness and excellent toughness can be well achieved, along with an ultra-low wear rate at ~2×10⁻¹¹ mm³/Nm in the air environment, simultaneously, low friction at ~0.1 is maintained. It should be noted that this wear level is almost two orders of magnitude lower than that of pure TiN coating, and is, as we know, the lowest wear rate in dry sliding. Investigations of tribofilm reveal that it is amorphous MoS₂ in nature, and its formation arises directly from the MoSₓ amorphous matrix. Which contributes to effective lubrication behavior, coupled with excellent mechanical performances of such composite coating, exceptionally low wear can be guaranteed. The findings in this work suggest that the special composite structure makes it possible for the synthesis of super-hard and super-durable lubricative coating, offering guidance to synthesize ultrahigh performance protective coating for industrial application.

Keywords: hardness, MoS₂-containing composite coatings, toughness, tribological properties

Procedia PDF Downloads 155
2429 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel

Authors: Rishabh Pandey, Umang Kumar Yadav

Abstract:

In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.

Keywords: fuel, gas, generator, water

Procedia PDF Downloads 328
2428 A pH-Activatable Nanoparticle Self-Assembly Triggered by 7-Amino Actinomycin D Demonstrating Superior Tumor Fluorescence Imaging and Anticancer Performance

Authors: Han Xiao

Abstract:

The development of nanomedicines has recently achieved several breakthroughs in the field of cancer treatment; however, the biocompatibility and targeted burst release of these medications remain a limitation, which leads to serious side effects and significantly narrows the scope of their applications. The self-assembly of intermediate filament protein (IFP) peptides was triggered by a hydrophobic cation drug 7-amino actinomycin D (7-AAD) to synthesize pH-activatable nanoparticles (NPs) that could simultaneously locate tumors and produce antitumor effects. The designed IFP peptide included a target peptide (arginine–glycine–aspartate), a negatively charged region, and an α-helix sequence. It also possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. 7-AAD molecules with excellent near-infrared fluorescence properties could be target delivered into tumor cells by NPs and released immediately in the acidic environments of tumors and endosome/lysosomes, ultimately inducing cytotoxicity by arresting the tumor cell cycle with inserted DNA. It is noteworthy that the IFP/7-AAD NPs tail vein injection approach demonstrated not only high tumor-targeted imaging potential, but also strong antitumor therapeutic effects in vivo. The proposed strategy may be used in the delivery of cationic antitumor drugs for precise imaging and cancer therapy.

Keywords: 7-amino actinomycin D, intermediate filament protein, nanoparticle, tumor image

Procedia PDF Downloads 139
2427 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90

Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov

Abstract:

A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).

Keywords: chemical composition, compost, heavy metals, oriental tobacco, quality

Procedia PDF Downloads 276
2426 The Role Collagen VI Plays in Heart Failure: A Tale Untold

Authors: Summer Hassan, David Crossman

Abstract:

Myocardial fibrosis (MF) has been loosely defined as the process occurring in the pathological remodeling of the myocardium due to excessive production and deposition of extracellular matrix (ECM) proteins, including collagen. This reduces tissue compliance and accelerates progression to heart failure, as well as affecting the electrical properties of the myocytes resulting in arrhythmias. Microscopic interrogation of MF is key to understanding the molecular orchestrators of disease. It is well-established that recruitment and stimulation of myofibroblasts result in Collagen deposition and the resulting expansion in the ECM. Many types of Collagens have been identified and implicated in scarring of tissue. In a series of experiments conducted at our lab, we aim to elucidate the role collagen VI plays in the development of myocardial fibrosis and its direct impact on myocardial function. This was investigated through an animal experiment in Rats with Collagen VI knockout diseased and healthy animals as well as Collagen VI wild diseased and healthy rats. Echocardiogram assessments of these rats ensued at four-time points, followed by microscopic interrogation of the myocardium aiming to correlate the role collagen VI plays in myocardial function. Our results demonstrate a deterioration in cardiac function as represented by the ejection fraction in the knockout healthy and diseased rats. This elucidates a potential protective role that collagen-VI plays following a myocardial insult. Current work is dedicated to the microscopic characterisation of the fibrotic process in all rat groups, with the results to follow.

Keywords: heart failure, myocardial fibrosis, collagen, echocardiogram, confocal microscopy

Procedia PDF Downloads 84
2425 Texturing of Tool Insert Using Femtosecond Laser

Authors: Ashfaq Khan, Aftab Khan, Mushtaq Khan, Sarem Sattar, Mohammad A Sheikh, Lin Li

Abstract:

Chip removal processes are one of key processes of the manufacturing industry where chip removal is conducted by tool inserts of exceptionally hard materials. Tungsten carbide has been extensively used as tool insert for machining processes involving chip removal processes. These hard materials are generally fabricated by single step sintering process as further modification after fabrication in these materials cannot be done easily. Advances in tool surface modification have revealed that advantages such as improved tribological properties and extended tool life can be harnessed from the same tool by texturing the tool rake surface. Moreover, it has been observed that the shape and location of the texture also influences the behavior. Although texturing offers plentiful advantages the challenge lies in the generation of textures on the tool surface. Extremely hard material such as diamond is required to process tungsten carbide. Laser is unique processing tool that does not have a physical contact with the material and thus does not wear. In this research the potential of utilizing laser for texturing of tungsten carbide to develop custom features would be studied. A parametric study of texturing of Tungsten Carbide with a femtosecond laser would be conducted to investigate the process parameters and establish the feasible processing window. The effect of fluence, scan speed and number of repetition would be viewed in detail. Moreover, the mechanism for the generation of features would also be reviewed.

Keywords: laser, texturing, femtosecond, tungsten carbide

Procedia PDF Downloads 660
2424 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 277
2423 Numerical Study of Jet Impingement Heat Transfer

Authors: A. M. Tiara, Sudipto Chakraborty, S. K. Pal

Abstract:

Impinging jets and their different configurations are important from the viewpoint of the fluid flow characteristics and their influence on heat transfer from metal surfaces due to their complex flow characteristics. Such flow characteristics results in highly variable heat transfer from the surface, resulting in varying cooling rates which affects the mechanical properties including hardness and strength. The overall objective of the current research is to conduct a fundamental investigation of the heat transfer mechanisms for an impinging coolant jet. Numerical simulation of the cooling process gives a detailed analysis of the different parameters involved even though employing Computational Fluid Dynamics (CFD) to simulate the real time process, being a relatively new research area, poses many challenges. The heat transfer mechanism in the current research is actuated by jet cooling. The computational tool used in the ongoing research for simulation of the cooling process is ANSYS Workbench software. The temperature and heat flux distribution along the steel strip with the effect of various flow parameters on the heat transfer rate can be observed in addition to determination of the jet impingement patterns, which is the major aim of the present analysis. Modelling both jet and air atomized cooling techniques using CFD methodology and validating with those obtained experimentally- including trial and error with different models and comparison of cooling rates from both the techniques have been included in this work. Finally some concluding remarks are made that identify some gaps in the available literature that have influenced the path of the current investigation.

Keywords: CFD, heat transfer, impinging jets, numerical simulation

Procedia PDF Downloads 237
2422 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications

Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R

Abstract:

Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.

Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays

Procedia PDF Downloads 80
2421 Antioxidant Mediated Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana, Varinder Singh

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min, followed by 24 h reperfusion, was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity were also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rose in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: allium cepa, cerebral ischemia, memory, sensorimotor

Procedia PDF Downloads 117
2420 Reducing Friction Associated with Commercial Use of Biomimetics While Increasing the Potential for Using Eco Materials and Design in Industry

Authors: John P. Ulhøi

Abstract:

Firms are faced with pressure to stay innovative and entrepreneurial while at the same time leaving lighter ecological footprints. Traditionally inspiration for new product development (NPD) has come from the creative in-house staff and from the marketplace. Often NPD offered by this approach has proven to be (far from) optimal for its purpose or highly (resource and energy) efficient. More recently, a bio-inspired NPD approach has surfaced under the banner of biomimetics. Biomimetics refers to inspiration from and translations of designs, systems, processes, and or specific properties that exist in nature. The principles and structures working in nature have evolved over a long period of time enable them to be optimized for the purpose and resource and energy-efficient. These characteristics reflect the raison d'être behind the field of biomimetics. While biological expertise is required to understand and explain such natural and biological principles and structures, engineers are needed to translate biological design and processes into synthetic applications. It can, therefore, hardly be surprising, biomimetics long has gained a solid foothold in both biology and engineering. The commercial adoption of biomimetic applications in new production development (NDP) in industry, however, does not quite reflect a similar growth. Differently put, this situation suggests that something is missing in the biomimetic-NPD-equation, thus acting as a brake towards the wider commercial application of biomimetics and thus the use of eco-materials and design in the industry. This paper closes some of that gap. Before concluding, avenues for future research and implications for practice will be briefly sketched out.

Keywords: biomimetics, eco-materials, NPD, commercialization

Procedia PDF Downloads 164
2419 Chemical Sensing Properties of Self-Assembled Film Based on an Amphiphilic Ambipolar Triple-Decker (Phthalocyaninato) (Porphyrinato) Europium Semiconductor

Authors: Kiran Abdullah, Yanli Chen

Abstract:

An amphiphilic mixed (phthalocyaninato) (porphyrinato) europium triple-decker complex Eu₂(Pc)₂(TPyP) has been synthesized and characterized. Introducing electron-withdrawing pyridyl substituents onto the meso-position of porphyrin ring in the triple-decker to ensure the sufficient hydrophilicity and suitable HOMO and LUMO energy levels and thus successfully realize amphiphilic ambipolar organic semiconductor. Importantly, high sensitive, reproducible p-type and n-type responses towards NH₃ andNO₂ respectively, based on the self-assembled film of the Eu₂(Pc)₂(TPyP) fabricated by a simple solution-based Quasi–Langmuir–Shäfer (QLS) method, have been first revealed. The good conductivity and crystallinity for the QLS film of Eu₂(Pc)₂(TPyP) render it excellent sensing property. This complex is sensitive to both electron-donating NH₃ gas in 5–30 ppm range and electron-accepting NO₂ gas 400–900 ppb range. Due to uniform nano particles there exist effective intermolecular interaction between triple decker molecules. This is the best result of Phthalocyanine–based chemical sensors at room temperature. Furthermore, the responses of the QLS film are all linearly correlated to both NH₃ and NO₂ with excellent sensitivity of 0.04% ppm⁻¹ and 31.9 % ppm⁻¹, respectively, indicating the great potential of semiconducting tetrapyrrole rare earth triple-decker compounds in the field of chemical sensors.

Keywords: ambipolar semiconductor, gas sensing, mixed (phthalocyaninato) (porphyrinato) rare earth complex, Self-assemblies

Procedia PDF Downloads 199
2418 Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study

Authors: Karthika Chandran, Pulkit Prakash, Amitabh Das, Santhosh P. N.

Abstract:

Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG

Keywords: neutron powder diffraction, rare earth orthoferrites, Rietveld analysis, spin reorientation

Procedia PDF Downloads 151
2417 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures

Authors: Mahyar Maali, Merve Sagiroglu

Abstract:

Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.

Keywords: cold-formed steel, screwed connection, connection, screw length

Procedia PDF Downloads 180
2416 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 121
2415 Iron Oxide Magnetic Nanoparticles as MRI Contrast Agents

Authors: Suhas Pednekar, Prashant Chavan, Ramesh Chaughule, Deepak Patkar

Abstract:

Iron oxide (Fe3O4) magnetic nanoparticles (MNPs) are one of the most attractive nanomaterials for various biomedical applications. An important potential medical application of polymer-coated iron oxide nanoparticles (NPs) is as imaging agents. Composition, size, morphology and surface chemistry of these nanoparticles can now be tailored by various processes to not only improve magnetic properties but also affect the behavior of nanoparticles in vivo. MNPs are being actively investigated as the next generation of magnetic resonance imaging (MRI) contrast agents. Also, there is considerable interest in developing magnetic nanoparticles and their surface modifications with therapeutic agents. Our study involves the synthesis of biocompatible cancer drug coated with iron oxide nanoparticles and to evaluate their efficacy as MRI contrast agents. A simple and rapid microwave method to prepare Fe3O4 nanoparticles has been developed. The drug was successfully conjugated to the Fe3O4 nanoparticles which can be used for various applications. The relaxivity R2 (reciprocal of the spin-spin relaxation time T2) is an important factor to determine the efficacy of Fe nanoparticles as contrast agents for MRI experiments. R2 values of the coated magnetic nanoparticles were also measured using MRI technique and the results showed that R2 of the Fe complex consisting of Fe3O4, polymer and drug was higher than that of bare Fe nanoparticles and polymer coated nanoparticles. This is due to the increase in hydrodynamic sizes of Fe NPs. The results with various amounts of iron molar concentrations are also discussed. Using MRI, it is seen that the R2 relaxivity increases linearly with increase in concentration of Fe NPs in water.

Keywords: cancer drug, hydrodynamic size, magnetic nanoparticles, MRI

Procedia PDF Downloads 493
2414 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 374
2413 Effect of Microwave Radiations on Natural Dyes’ Application on Cotton

Authors: Rafia Asghar, Abdul Hafeez

Abstract:

The current research was related with natural dyes’ extraction from the powder of Neem (Azadirachta indica) bark and studied characterization of this dye under microwave radiation’s influence. Both cotton fabric and dyeing powder were exposed to microwave rays for different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) using conventional oven. Aqueous, 60% Methanol and Ethyl Acetate solubilized extracts obtained from Neem (Azadirachta indica) bark were also exposed to different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) of microwave rays exposure. Pre, meta and post mordanting with Alum (2%, 4%, 6%, 8%, and 10%) was done to improve color strength of the extracted dye. Exposure of Neem (Azadirachta indica) bark extract and cotton to microwave rays enhanced the extraction process and dyeing process by reducing extraction time, dyeing time and dyeing temperature. Microwave rays treatment had a very strong influence on color fastness and color strength properties of cotton that was dyes using Neem (Azadirachta indica) bark for 30 minutes and dyeing cotton with that Neem bark extract for 75 minutes at 30°C. Among pre, meta and post mordanting, results indicated that 5% concentration of Alum in meta mordanting exhibited maximum color strength.

Keywords: dyes, natural dyeing, ecofriendly dyes, microwave treatment

Procedia PDF Downloads 692
2412 Ab Initio Approach to Generate a Binary Bulk Metallic Glass Foam

Authors: Jonathan Galvan-Colin, Ariel Valladares, Renela Valladares, Alexander Valladares

Abstract:

Both porous materials and bulk metallic glasses have been studied due to their potential applications and their exceptional physical and chemical properties. However, each material presents certain drawbacks which have been thought to be overcome by generating bulk metallic glass foams (BMGF). Although some experimental reports have been performed on multicomponent BMGF, still no ab initio works have been published, as far as we know. We present an approach based on the expanding lattice (EL) method to generate binary amorphous nanoporous Cu64Zr36. Starting from two different configurations: a 108-atom crystalline cubic supercell (cCu64Zr36) and a 108-atom amorphous supercell (aCu64Zr36), both with an initial density of 8.06 g/cm3, we applied EL method to halve the density and to get 50% of porosity. After the lattice expansion the supercells were subject to ab initio molecular dynamics for 500 steps at constant room temperature. Then, the samples were geometry-optimized and characterized with the pair and radial distribution functions, bond-angle distributions and a coordination number analysis. We found that pores appeared along specific spatial directions different from one to another and that they differed in size and form as well, which we think is related to the initial structure. Due to the lack of experimental counterparts our results should be considered predictive and further studies are needed in order to handle a larger number of atoms and its implication on pore topology.

Keywords: ab initio molecular dynamics, bulk mettalic glass, porous alloy

Procedia PDF Downloads 266
2411 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario

Authors: Pooja Verma, Sumana Ghosh

Abstract:

There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.

Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber

Procedia PDF Downloads 354
2410 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 278
2409 Assessment of Heavy Metals in Vegetables Grown on Irrigated Land in Butura, Bokkos LGA, Plateau State, Nigeria

Authors: Ogbole Alexandra Simi, Wuyep Solomon Zitta, Monday Seri Nentok, Boilif Yilni Edward, Ocheri Maxwell Idoko

Abstract:

Vegetables have positive antioxidative properties and are abundant in vitamins, minerals, and fiber. However, if consumed in large quantities, it may be harmful to human health. Therefore, this study assessed the effects of heavy metals on irrigated pepper, cabbage, and Irish potatoes grown in Butura. Atomic absorption spectrophotometry (AA240FS) was used to analyze cadmium (Cd), cobalt (Co), nickel (Ni), lead (Pb), zinc (Zn), copper (Cu), chromium (Cr), and arsenic (As) levels. Three samples were selected from each of the vegetables grown on nine selected farms at distances of 0 m, 10 m, and 30 m. This forms a composite sample of vegetables at each farm. The study showed that the concentrations of cobalt, chromium, cadmium, copper, arsenic, zinc and nickel were within the standard limits set by the FAO/WHO, except for lead, which is higher than the allowable limits for vegetables. These may have behavioral problems, neurological complications, and hematologic disorders for consumers. Thus, these findings could lead to a risk for the human population consuming these vegetables. It is recommended that irrigation water and agricultural soils be constantly monitored to determine the concentration of metals accumulated by crop plants to ensure that crop plants are safe for consumption by humans.

Keywords: vegetable, cabbage, heavy metals, irrigated, Irish potato, Bokkos, pepper

Procedia PDF Downloads 25
2408 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 376
2407 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake

Authors: Ahmed T. Farid, Khaled Z. Soliman

Abstract:

Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.

Keywords: acceleration, backfill, earthquake, soil, PGA

Procedia PDF Downloads 382
2406 Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline

Authors: Iman Adnan Annon, Kadhim F. Alsultan

Abstract:

This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor.

Keywords: corrosion in pipeline, inhibitors, crude oil, carbon steel, types of solvent

Procedia PDF Downloads 141
2405 Characteristic of Taro (Colocasia esculenta), Seaweed (Gracilaria Sp.), and Fishes Bone Collagens Flour Based Analog Rice

Authors: Y. S. Darmanto, P. H. Riyadi, S. Susanti

Abstract:

Recently, approximately 9.1 million people of 237.56 million of Indonesian population suffer diabetes. Such condition was caused by high rice consumption of most Indonesian people. It has been known that rice contains low amylose, high calorie, and possesses hyperglycemic properties. Through this study, we tried to solve that problem by creating a super food in order to provide an alternative healthy and balanced diet. We formulated Taro and Seaweed flour based analog rice that fortified by various fishes bone collagens. Corms of Taro contain easily digestible starch and seaweed is rich in fiber, vitamin, and mineral. That mixture was fortified with collagen-containing unique amino acids such as glysine, lysine, alanine, arginine, proline, and hydroxyprolin. Subsequently, super analog rice was characterized about its nutritional composition such are proximate analyses, water, dietary fiber and amylose content. Furthermore, its morphological structure was analyzed by using scanning electron microscopy while the level of consumer preferences was performed by hedonic test. Results demonstrated that fortification by using various fishes bone collagen into analog rice were significantly different in nutritional composition, morphological structure as well as its preferences. Thus, this study was expected as new avenue in functional food discovery especially in the treatment and prevention of diabetic diseases.

Keywords: analogue rice, taro, seaweed, collagen

Procedia PDF Downloads 266