Search results for: muscle deformation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1643

Search results for: muscle deformation

1013 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 131
1012 Seismotectonics and Seismology the North of Algeria

Authors: Djeddi Mabrouk

Abstract:

The slow coming together between the Afro-Eurasia plates seems to be the main cause of the active deformation in the whole of North Africa which in consequence come true in Algeria with a large zone of deformation in an enough large limited band, southern through Saharan atlas and northern through tell atlas. Maghrebin and Atlassian Chain along North Africa are the consequence of this convergence. In junction zone, we have noticed a compressive regime NW-SE with a creases-faults structure and structured overthrust. From a geological point of view the north part of Algeria is younger then Saharan platform, it’s changing so unstable and constantly in movement, it’s characterized by creases openly reversed, overthrusts and reversed faults, and undergo perpetually complex movement vertically and horizontally. On structural level the north of Algeria it's a part of erogenous alpine peri-Mediterranean and essentially the tertiary age It’s spread from east to the west of Algeria over 1200 km.This oogenesis is extended from east to west on broadband of 100 km.The alpine chain is shaped by 3 domains: tell atlas in north, high plateaus in mid and Saharan atlas in the south In extreme south we find the Saharan platform which is made of Precambrian bedrock recovered by Paleozoic practically not deformed. The Algerian north and the Saharan platform are separated by an important accident along of 2000km from Agadir (Morocco) to Gabes (Tunisian). The seismic activity is localized essentially in a coastal band in the north of Algeria shaped by tell atlas, high plateaus, Saharan atlas. Earthquakes are limited in the first 20km of the earth's crust; they are caused by movements along faults of inverted orientation NE-SW or sliding tectonic plates. The center region characterizes Strong Earthquake Activity who locates mainly in the basin of Mitidja (age Neogene).The southern periphery (Atlas Blidéen) constitutes the June, more Important seism genic sources in the city of Algiers and east (Boumerdes region). The North East Region is also part of the tellian area, but it is characterized by a different strain in other parts of northern Algeria. The deformation is slow and low to moderate seismic activity. Seismic activity is related to the tectonic-slip earthquake. The most pronounced is that of 27 October 1985 (Constantine) of seismic moment magnitude Mw = 5.9. North-West region is quite active and also artificial seismic hypocenters which do not exceed 20km. The deep seismicity is concentrated mainly a narrow strip along the edge of Quaternary and Neogene basins Intra Mountains along the coast. The most violent earthquakes in this region are the earthquake of Oran in 1790 and earthquakes Orléansville (El Asnam in 1954 and 1980).

Keywords: alpine chain, seismicity north Algeria, earthquakes in Algeria, geophysics, Earth

Procedia PDF Downloads 401
1011 Preliminary Study Investigating Trunk Muscle Fatigue and Cognitive Function in Event Riders during a Simulated Jumping Test

Authors: Alice Carter, Lucy Dumbell, Lorna Cameron, Victoria Lewis

Abstract:

The Olympic discipline of eventing is the triathlon of equestrian sport, consisting of dressage, cross-country and show jumping. Falls on the cross-country are common and can be serious even causing death to rider. Research identifies an increased risk of a fall with an increasing number of obstacles and for jumping efforts later in the course suggesting fatigue maybe a contributing factor. Advice based on anecdotal evidence suggests riders undertake strength and conditioning programs to improve their ‘core’, thus improving their ability to maintain and control their riding position. There is little empirical evidence to support this advice. Therefore, the aim of this study is to investigate truck muscle fatigue and cognitive function during a simulated jumping test. Eight adult riders participated in a riding test on a Racewood Event simulator for 10 minutes, over a continuous jumping programme. The SEMG activity of six trunk muscles were bilaterally measured at every minute, and normalised root mean squares (RMS) and median frequencies (MDF) were computed from the EMG power spectra. Visual analogue scales (VAS) measuring Fatigue and Pain levels and Cognitive Function ‘tapping’ tests were performed before and after the riding test. Average MDF values for all muscles differed significantly between each sampled minute (p = 0.017), however a consistent decrease from Minute 1 and Minute 9 was not found, suggesting the trunk muscles fatigued and then recovered as other muscle groups important in maintaining the riding position during dynamic movement compensated. Differences between the MDF and RMS of different muscles were highly significant (H=213.01, DF=5, p < 0.001), supporting previous anecdotal evidence that different trunk muscles carry out different roles of posture maintenance during riding. RMS values were not significantly different between the sampled minutes or between riders, suggesting the riding test produced a consistent and repeatable effect on the trunk muscles. MDF values differed significantly between riders (H=50.8, DF = 5, p < 0.001), suggesting individuals may experience localised muscular fatigue of the same test differently, and that other parameters of physical fitness should be investigated to provide conclusions. Lumbar muscles were shown to be important in maintaining the position, therefore physical training program should focus on these areas. No significant differences were found between pre- and post-riding test VAS Pain and Fatigue scores or cognitive function test scores, suggesting the riding test was not significantly fatiguing for participants. However, a near significant correlation was found between time of riding test and VAS Pain score (p = 0.06), suggesting somatic pain may be a limiting factor to performance. No other correlations were found between the factors of participant riding test time, VAS Pain and Fatigue, however a larger sample needs to be tested to improve statistical analysis. The findings suggest the simulator riding test was not sufficient to provoke fatigue in the riders, however foundations for future studies have been laid to enable methodologies in realistic eventing settings.

Keywords: eventing, fatigue, horse-rider, surface EMG, trunk muscles

Procedia PDF Downloads 186
1010 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 112
1009 Influence of Strengthening of Hip Abductors and External Rotators in Treatment of Patellofemoral Pain Syndrome

Authors: Karima Abdel Aty Hassan Mohamed, Manal Mohamed Ismail, Mona Hassan Gamal Eldein, Ahmed Hassan Hussein, Abdel Aziz Mohamed Elsingerg

Abstract:

Background: Patellofemoral pain (PFP) is a common musculoskeletal pain condition, especially in females. Decreased hip muscle strength has been implicated as a contributing factor, yet the relationships between pain, hip muscle strength and function are not known. Objective: The purpose of this study is to investigate the effects of strengthening hip abductors and lateral rotators on pain intensity, function and hip abductor and hip lateral rotator eccentric and concentric torques in patients with PFPS. Methods: Thirty patients had participated in this study; they were assigned into two experimental groups. With age ranged for eighty to thirty five years. Group A consisted of 15 patients (11females and 4 males) with mean age 20.8 (±2.73) years, received closed kinetic chain exercises program, stretching exercises for tight lower extremity soft tissues, and hip strengthening exercises .Group B consisted of 15 patients (12 females and 3 males) with mean age 21.2(±3.27) years, received closed kinetic chain exercises program and stretching exercises for tight lower extremity soft tissues. Treatment was given 2-3times/week, for 6 weeks. Patients were evaluated pre and post treatment for their pain severity, function of knee joint, hip abductors and external rotators concentric/eccentric peak torque. Result: the results revealed that there were significant differences in pain and function between both groups, while there was improvement for all values for both group. Conclusion: Six weeks rehabilitation program focusing on knee strengthening exercises either supplemented by hip strengthening exercises or not effective in improving function, reducing pain and improving hip muscles torque in patients with PFPS. However, adding hip abduction and lateral rotation strengthening exercises seem to reduce pain and improve function more efficiently.

Keywords: patellofemoral pain syndrome, hip muscles, rehabilitation, isokinetic

Procedia PDF Downloads 436
1008 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 155
1007 Investigation of the Corroded Steel Beam

Authors: Hesamaddin Khoshnoodi, Ahmad Rahbar Ranji

Abstract:

Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase.

Keywords: Abaqus, Corrosion, deformation, Steel Beam

Procedia PDF Downloads 344
1006 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200-500 µm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4,76 m/s. As ductile material steel St 37 with Brinell Hardness Number (BHN) of 245 and quenched St 37 with 510 BHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using optical microscopy and Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear was observed by ductile material at a particle impact angle of 300. On the contrary wear rate increased by brittle materials by an increase in impact angle and reached maximum value at 450. High amount of craters were detected after observation on ductile material surface Also plastic deformation zones were detected, which are typical failure modes for ductile materials. Craters formed by particles were deeper according to brittle material worn surface. Amount of craters decreased on brittle material surface. Microcracks around craters were detected which are typical failure modes of brittle materials. Deformation wear was the dominant wear mechanism on brittle material. At the end it is concluded that wear rate could not be directly related to impact angle of the hard particle due to the different responses of ductile and brittle materials.

Keywords: erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material

Procedia PDF Downloads 388
1005 Measurement of Intermediate Slip Rate of Sabzpushan Fault Zone in Southwestern Iran, Using Optically Stimulated Luminescence (OSL) Dating

Authors: Iman Nezamzadeh, Ali Faghih, Behnam Oveisi

Abstract:

In order to reduce earthquake hazards in urban areas, it is necessary to perform comprehensive studies to understand the dynamics of the active faults and identify potentially high risk areas. The fault slip-rates in Late Quaternary sediment are critical indicators of seismic hazard and also provide valuable data to recognize young crustal deformations. To measure slip-rates accurately, is needed to displacement of geomorphic markers and ages of quaternary sediment samples of alluvial deposit that deformed by movements on fault. In this study we produced information about Intermediate term slip rate of Sabzpushan Fault Zone (SPF) within the central part of the Zagros Mountains of Iran using OSL dating technique to make better analysis of seismic hazard and seismic risk reduction for Shiraz city. For this purpose identifiable geomorphic fluvial surfaces help us to provide a reference frame to determine differential or absolute horizontal and vertical deformation. Optically stimulated luminescence (OSL) is an alternative and independent method of determining the burial age of mineral grains in Quaternary sediments. Field observation and satellite imagery show geomorphic markers that deformed horizontally along the Sabzpoushan Fault. Here, drag folds is forming because of evaporites material of Miocen Formation. We estimate 2.8±0.5 mm/yr (mm/y) horizontal slip rate along the Sabzpushan fault zone, where ongoing deformation is involve with drug folding. The Soltan synclinal structure, close to the Sabzpushan fault, shows slight uplift rate due to active core-extrousion.

Keywords: slip rate, active tectonics, OSL, geomorphic markers, Sabzpushan Fault Zone, Zagros, Iran

Procedia PDF Downloads 346
1004 Effect of Dose-Dependent Gamma Irradiation on the Fatty Acid Profile of Mud Crab, Scylla Serrata: A GC-FID Study

Authors: Keethadath Arshad, Kappalli Sudha

Abstract:

Mud crab, Scylla Serrata, a commercially important shellfish with high global demand appears to be the rich source of dietary fatty acids. Its increased production through aquaculture and highly perishable nature would necessitate improved techniques for their proper preservation. Optimized irradiation has been identified as an effective method to facilitate safety and extended shelf life for a broad range of the perishable food items including finfishes and shellfishes. The present study analyzed the effects of dose-dependent gamma irradiation on the fatty acid profile of the muscle derived from the candidate species (S. serrata) at both qualitative and quantitative levels. Wild grown, average sized, intermolt male S. Serrata were gamma irradiated (^60C, 3.8kGy/ hour) at the dosage of 0.5kGy, 1.0kGy and 2.0kGy using gamma chamber. Total lipid extracted by Folch method, after methylation, were analyzed for the presence fatty acids adopting Gas Chromatograph equipped with flame ionization detector by comparing with the authentic FAME reference standards. The tissue from non-irradiated S. serrata showed the presence of 12 SFA, 6 MUFA, 8PUFA and 2 TF; PUFA includes medicinally important ω-3 FA such as C18:3, C20:5 and C22:6 and ω-6 FA such as γ- C18:3 and C20:2. Dose-dependent gamma irradiation reduced the number of detectable fatty acids (10, 8 and 8 SFA, 6, 6 and 5MUFA, 7, 7, and 6 PUFA and 1, 1, and 0 TF in 0.5kGy, 1.0kGy and 2kGy irradiated samples respectively). Major fatty acids detected in both irradiated and non-irradiated samples were as follows: SFA- C16:0, C18:0, C22:0 and C14:0; MUFA - C18:1 and C16:1and PUFA- C18:2, C20:5, C20:2 and C22:6. Irradiation doses ranging from 1-2kGy substantially reduced the ω-6 C18:3 and ω-3 C18:3. However, the omega fatty acids such as C20:5, C22:6 and C20:2 could survive even after 2kGy irradiation. Significantly, trans fat like C18:2T and C18:1T were completely disappeared upon 2kGy irradiation. From the overall observations made from the present study, it is suggested that irradiation dose up to 1kGy is optimum to maintain the fatty acid profile and eradicate the trans fat of the muscle derived from S. serrata.

Keywords: fatty acid profile, food preservation, gamma irradiation, scylla serrata

Procedia PDF Downloads 270
1003 Usability Assessment of a Bluetooth-Enabled Resistance Exercise Band among Young Adults

Authors: Lillian M. Seo, Curtis L. Petersen, Ryan J. Halter, David Kotz, John A. Batsis

Abstract:

Background: Resistance-based exercises effectively enhance muscle strength, which is especially important in older populations as it reduces the risk of disability. Our group developed a Bluetooth-enabled handle for resistance exercise bands that wirelessly transmits relative force data through low-energy Bluetooth to a local smartphone or similar device. The system has the potential to measure home-based exercise interventions, allowing health professionals to monitor compliance. Its feasibility has already been demonstrated in both clinical and field-based settings, but it remained unclear whether the system’s usability persisted upon repeated use. The current study sought to assess the usability of this system and its users’ satisfaction with repeated use by deploying the device among younger adults to gather formative information that can ultimately improve the device’s design for older adults. Methods: A usability study was conducted in which 32 participants used the above system. Participants executed 10 repetitions of four commonly performed exercises: bicep flexion, shoulder abduction, elbow extension, and triceps extension. Each completed three exercise sessions, separated by at least 24 hours to minimize muscle fatigue. At its conclusion, subjects completed an adapted version of the usefulness, satisfaction, and ease (USE) questionnaire – assessing the system across four domains: usability, satisfaction, ease of use, and ease of learning. The 20-item questionnaire examined how strongly a participant agrees with positive statements about the device on a seven-point Likert scale, with one representing ‘strongly disagree’ and seven representing ‘strongly agree.’ Participants’ data were aggregated to calculate mean response values for each question and domain, effectively assessing the device’s performance across different facets of the user experience. Summary force data were visualized using a custom web application. Finally, an optional prompt at the end of the questionnaire allowed for written comments and feedback from participants to elicit qualitative indicators of usability. Results: Of the n=32 participants, 13 (41%) were female; their mean age was 32.4 ± 11.8 years, and no participants had a physical impairment. No usability questions received a mean score < 5 of seven. The four domains’ mean scores were: usefulness 5.66 ± 0.35; satisfaction 6.23 ± 0.06; ease of use 6.25 ± 0.43; and ease of learning 6.50 ± 0.19. Representative quotes of the open-ended feedback include: ‘A non-rigid strap-style handle might be useful for some exercises,’ and, ‘Would need different bands for each exercise as they use different muscle groups with different strength levels.’ General impressions were favorable, supporting the expectation that the device would be a useful tool in exercise interventions. Conclusions: A simple usability assessment of a Bluetooth-enabled resistance exercise band supports a consistent and positive user experience among young adults. This study provides adequate formative data, assuring the next steps can be taken to continue testing and development for the target population of older adults.

Keywords: Bluetooth, exercise, mobile health, mHealth, usability

Procedia PDF Downloads 112
1002 The Investigation of Fiber Reinforcement Self-Compacting Concrete and Fiber Reinforcement Concrete

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. From the 1960s the comprehensive investigation of pile foundations during earthquake excitation indicate that, piles are subject to damage by affecting the superstructure integrity and serviceability. The main part of these research has been focused on the behavior of liquefiable soil and lateral spreading load on piles. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. And researchers have been listed the large cracks reason such as liquefaction, lateral spreading and inertial load. In the field of designing, elastic response of piles are always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. And emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: self-compacting concrete, fiber, tensile strength, post-cracking, direct and inverse technique

Procedia PDF Downloads 235
1001 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles

Authors: Tudor Deaconescu, Andrea Deaconescu

Abstract:

The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.

Keywords: pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke

Procedia PDF Downloads 337
1000 Comparative Effect of Self-Myofascial Release as a Warm-Up Exercise on Functional Fitness of Young Adults

Authors: Gopal Chandra Saha, Sumanta Daw

Abstract:

Warm-up is an essential component for optimizing performance in various sports before a physical fitness training session. This study investigated the immediate comparative effect of Self-Myofascial Release through vibration rolling (VR), non-vibration rolling (NVR), and static stretching as a part of a warm-up treatment on the functional fitness of young adults. Functional fitness is a classification of training that prepares the body for real-life movements and activities. For the present study 20male physical education students were selected as subjects. The age of the subjects was ranged from 20-25 years. The functional fitness variables undertaken in the present study were flexibility, muscle strength, agility, static and dynamic balance of the lower extremity. Each of the three warm-up protocol was administered on consecutive days, i.e. 24 hr time gap and all tests were administered in the morning. The mean and SD were used as descriptive statistics. The significance of statistical differences among the groups was measured by applying ‘F’-test, and to find out the exact location of difference, Post Hoc Test (Least Significant Difference) was applied. It was found from the study that only flexibility showed significant difference among three types of warm-up exercise. The observed result depicted that VR has more impact on myofascial release in flexibility in comparison with NVR and stretching as a part of warm-up exercise as ‘p’ value was less than 0.05. In the present study, within the three means of warm-up exercises, vibration roller showed better mean difference in terms of NVR, and static stretching exercise on functional fitness of young physical education practitioners, although the results were found insignificant in case of muscle strength, agility, static and dynamic balance of the lower extremity. These findings suggest that sports professionals and coaches may take VR into account for designing more efficient and effective pre-performance routine for long term to improve exercise performances. VR has high potential to interpret into an on-field practical application means.

Keywords: self-myofascial release, functional fitness, foam roller, physical education

Procedia PDF Downloads 127
999 The Relationship between Physical Fitness and Academic Performance among University Students

Authors: Bahar Ayberk

Abstract:

The study was conducted to determine the relationship between physical fitness and academic performance among university students. A far-famed saying ‘Sound mind in a sound body’ referring to the potential quality of increased physical fitness in the intellectual development of individuals seems to be endorsed. There is a growing body of literature the impact of physical fitness on academic achievement, especially in elementary and middle-school aged children. Even though there are numerous positive effects related to being physically active and physical fitness, their effect on academic achievement is not very much clear for university students. The subjects for this study included 25 students (20 female and 5 male) enrolled in Yeditepe University, Physiotherapy and Rehabilitation Department of Health Science Faculty. All participants filled in a questionnaire about their socio-demographic status, general health status, and physical activity status. Health-related physical fitness testing, included several core components: 1) body composition evaluation (body mass index, waist-to-hip ratio), 2) cardiovascular endurance evaluation (queen’s college step test), 3) muscle strength and endurance evaluation (sit-up test, push-up test), 4) flexibility evaluation (sit and reach test). Academic performance evaluation was based on student’s Cumulative Grade Point Average (CGPA). The prevalence of the subjects participating physical activity was found to be 40% (n = 10). CGPA scores were significantly higher among students having regular physical activity when we compared the students having regular physical activities or not (respectively 2,71 ± 0.46, 3.02 ± 0.28 scores, p = 0.076). The result of the study also revealed that there is positive correlation relationship between sit-up, push up and academic performance points (CGPA) (r = 0.43, p ≤ 0.05 ) and negative correlation relationship between cardiovascular endurance parameter (Queen's College Step Test) and academic performance points (CGPA) (r = -0.47, p ≤ 0.05). In conclusion, the findings confirmed that physical fitness level was generally associated with academic performance in the study group. Cardiovascular endurance and muscle strength and endurance were associated with student’s CGPA, whereas body composition and flexibility were unrelated to CGPA.

Keywords: academic performance, health-related physical fitness, physical activity, physical fitness testing

Procedia PDF Downloads 158
998 Numerical Modelling of Shear Zone and Its Implications on Slope Instability at Letšeng Diamond Open Pit Mine, Lesotho

Authors: M. Ntšolo, D. Kalumba, N. Lefu, G. Letlatsa

Abstract:

Rock mass damage due to shear tectonic activity has been investigated largely in geoscience where fluid transport is of major interest. However, little has been studied on the effect of shear zones on rock mass behavior and its impact on stability of rock slopes. At Letšeng Diamonds open pit mine in Lesotho, the shear zone composed of sheared kimberlite material, calcite and altered basalt is forming part of the haul ramp into the main pit cut 3. The alarming rate at which the shear zone is deteriorating has triggered concerns about both local and global stability of pit the walls. This study presents the numerical modelling of the open pit slope affected by shear zone at Letšeng Diamond Mine (LDM). Analysis of the slope involved development of the slope model by using a two-dimensional finite element code RS2. Interfaces between shear zone and host rock were represented by special joint elements incorporated in the finite element code. The analysis of structural geological mapping data provided a good platform to understand the joint network. Major joints including shear zone were incorporated into the model for simulation. This approach proved successful by demonstrating that continuum modelling can be used to evaluate evolution of stresses, strain, plastic yielding and failure mechanisms that are consistent with field observations. Structural control due to geological shear zone structure proved to be important in its location, size and orientation. Furthermore, the model analyzed slope deformation and sliding possibility along shear zone interfaces. This type of approach can predict shear zone deformation and failure mechanism, hence mitigation strategies can be deployed for safety of human lives and property within mine pits.

Keywords: numerical modeling, open pit mine, shear zone, slope stability

Procedia PDF Downloads 292
997 Lateral Torsional Buckling: Tests on Glued Laminated Timber Beams

Authors: Vera Wilden, Benno Hoffmeister, Markus Feldmann

Abstract:

Glued laminated timber (glulam) is a preferred choice for long span girders, e.g., for gyms or storage halls. While the material provides sufficient strength to resist the bending moments, large spans lead to increased slenderness of such members and to a higher susceptibility to stability issues, in particular to lateral torsional buckling (LTB). Rules for the determination of the ultimate LTB resistance are provided by Eurocode 5. The verifications of the resistance may be performed using the so called equivalent member method or by means of theory 2nd order calculations (direct method), considering equivalent imperfections. Both methods have significant limitations concerning their applicability; the equivalent member method is limited to rather simple cases; the direct method is missing detailed provisions regarding imperfections and requirements for numerical modeling. In this paper, the results of a test series on slender glulam beams in three- and four-point bending are presented. The tests were performed in an innovative, newly developed testing rig, allowing for a very precise definition of loading and boundary conditions. The load was introduced by a hydraulic jack, which follows the lateral deformation of the beam by means of a servo-controller, coupled with the tested member and keeping the load direction vertically. The deformation-controlled tests allowed for the identification of the ultimate limit state (governed by elastic stability) and the corresponding deformations. Prior to the tests, the structural and geometrical imperfections were determined and used later in the numerical models. After the stability tests, the nearly undamaged members were tested again in pure bending until reaching the ultimate moment resistance of the cross-section. These results, accompanied by numerical studies, were compared to resistance values obtained using both methods according to Eurocode 5.

Keywords: experimental tests, glued laminated timber, lateral torsional buckling, numerical simulation

Procedia PDF Downloads 226
996 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)

Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani

Abstract:

This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.

Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition

Procedia PDF Downloads 162
995 The Effect of Physical Exercise to Level of Nuclear Factor Kappa B on Serum, Macrophages and Myocytes

Authors: Eryati Darwin, Eka Fithra Elfi, Indria Hafizah

Abstract:

Background: Physical exercise induces a pattern of hormonal and immunological responses that prevent endothelial dysfunction by maintaining the availability of nitric oxide (NO). Regular and moderate exercise stimulates NO release, that can be considered as protective factor of cardiovascular diseases, while strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) triggers endothelial activation which results in an increased vascular permeability. Nuclear gene factor kappa B (NF-κB) activates biological effect of TNF-α. Aim of Study: To determine the effect of physical exercise on the endothelial and skeletal muscle, we measured the level of NF-κB on rats’ serum, macrophages, and myocytes after strenuous physical exercise. Methods: 30 male Rattus norvegicus in the age of eight weeks were randomly divided into five groups (each containing six), and there were treated groups (T) and control group (C). The treated groups obtain strenuous physical exercise by ran on treadmill at 32 m/minutes for 1 hour or until exhaustion. Blood samples, myocytes of gastrocnemius muscle, and intraperitoneal macrophages were collected sequentially. There were investigated immediately, 2 hours, 6 hours, and 24 hours (T1, T2, T3, and T4) after sacrifice. The levels of NF-κB were measured by ELISA methods. Results: From our study, we found that the levels of NF-κB on myocytes in treated group from which its specimen was taken immediately (T1), 2 hours after treadmill (T2), and 6 hours after treadmill (T3) were significantly higher than control group (p<0.05), while the group from which its specimen was taken 24 hours after treadmill, was no significantly different (p>0.05). Also on macrophages, NF-κB in treated groups T1, T2, and T3 was significantly higher than control group (p<0.05), but there was no difference between T4 and control group (p>0.05). The level of serum NF-κB was not significantly different between treatment group as well as compared to control group (p>0.05). Serum NF-κB was significantly higher than the level on macrophages and myocytes (p<0.05). Conclusion: This study demonstrated that strenuous physical exercise stimulates the activation of NF-κB that plays a role in vascular inflammation and muscular damage, and may be recovered after resting period.

Keywords: endothelial function, inflammation, NFkB, physical exercise

Procedia PDF Downloads 257
994 Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study

Authors: Oya Umit Yemisci, Nur Saracgil Cosar, Tubanur Ozturk Sisman, Selin Ozen

Abstract:

Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT.

Keywords: sympathetic skin response, simple reaction time, chronic autoimmune thyroiditis

Procedia PDF Downloads 140
993 Physical Activity, Mental Health, and Body Composition in College Students after COVID-19 Lockdown

Authors: Manuela Caciula, Luis Torres, Simion Tomoiaga

Abstract:

Introduction: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), more commonly referred to as COVID-19, has wreaked havoc on all facets of higher education since its inception in late 2019. College students, in particular, significantly reduced their daily energy expenditure and increased the time spent sitting to listen to online classes and complete their studies from home. This change, in combination with the associated COVID-19 lockdown, presumably decreased physical activity levels, increased mental health symptoms, and led to the promotion of unhealthy eating habits. Objectives: The main objective of this study was to determine the current self-reported physical activity levels, mental health symptoms, and body composition of college students after the COVID-19 lockdown in order to develop future interventions for the overall improvement of health. Methods: All participants completed pre-existing, well-validated surveys for both physical activity (International Physical Activity Questionnaire - long form) and mental health (Hospital Anxiety and Depression Scale). Body composition was assessed in person with the use of an Inbody 570 device. Results: Of the 90 American college students (M age = 22.52 ± 4.54, 50 females) who participated in this study, depressive and anxious symptom scores consistent with 58% (N = 52) heightened symptomatology, 17% (N = 15) moderate borderline symptomatology, and 25% (N = 23) asymptomatology were reported. In regard to physical activity, 79% (N = 71) of the students were highly physically active, 18% (N = 16) were moderately active, and 3% (N = 3) reported low levels of physical activity. Additionally, 46% (N = 41) of the students maintained an unhealthy body fat percentage based on World Health Organization recommendations. Strong, significant relationships were found between anxiety and depression symptomatology and body fat percentage (P = .003) and skeletal muscle mass (P = .015), with said symptomatology increasing with added body fat and decreasing with added skeletal muscle mass. Conclusions: Future health interventions for American college students should be focused on strategies to reduce stress, anxiety, and depressive characteristics, as well as nutritional information on healthy eating, regardless of self-reported physical activity levels.

Keywords: physical activity, mental health, body composition, COVID-19

Procedia PDF Downloads 92
992 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 154
991 Development and Effects of Transtheoretical Model Exercise Program for Elderly Women with Chronic Back Pain

Authors: Hyun-Ju Oh, Soon-Rim Suh, Mihan Kim

Abstract:

The steady and rapid increase of the older population is a global phenomenon. Chronic diseases and disabilities are increased due to aging. In general, exercise has been known to be most effective in preventing and managing chronic back pain. However, it is hard for the older women to initiate and maintain the exercise. Transtheoretical model (TTM) is one of the theories explain behavioral changes such as exercise. The application of the program considering the stage of behavior change is effective for the elderly woman to start and maintain the exercise. The purpose of this study was to develop TTM based exercise program and to examine its effect for elderly women with chronic back-pain. For the program evaluation, the non-equivalent control pre-posttest design was applied. The independent variable of this study is exercise intervention program. The contents of the program were constructed considering the characteristics of the elderly women with chronic low back pain, focusing on the process of change, the stage of change by the previous studies. The developed exercise program was applied to the elderly women with chronic low back pain in the planning stage and the preparation stage. The subjects were 50 older women over 65 years of age with chronic back-pain who did not practice regular exercise. The experimental group (n=25) received the 8weeks TTM based exercise program. The control group received the book which named low back pain management. Data were collected at three times: before the exercise intervention, right after the intervention, and 4weeks after the intervention. The dependent variables were the processes of change, decisional balance, exercise self-efficacy, back-pain, depression and muscle strength. The results of this study were as follows. Processes of change (<.001), pros of decisional balance (<.001), exercise self-efficacy (<.001), back pain (<.001), depression (<.001), muscle strength (<.001) were higher in the experimental group than in the control group right after the program and 4weeks after the programs. The results of this study show that applying the TTM based exercise program increases the use of the change process, increases the exercise self-efficacy, increases the stage of changing the exercise behavior and strengthens the muscular strength by lowering the degree of pain and depression Respectively. The significance of the study was to confirm the effect of continuous exercise by maintaining regular exercise habits by applying exercise program of the transtheoretical model to the chronic low back pain elderly with exercise intention.

Keywords: chronic back pain, elderly, exercise, women

Procedia PDF Downloads 249
990 The Effect of Peripheral Fatigue and Visual Feedback on Postural Control and Strength in Obese People

Authors: Elham Azimzadeh, Saeedeh Sepehri, Hamidollah Hassanlouei

Abstract:

Obesity is associated with postural instability, might influence the quality of daily life, and could be considered a potential factor for falling in obese people. The fat body mass especially in the abdominal area may increase body sway. Furthermore, loss of visual feedback may induce a larger postural sway in obese people. Moreover, Muscle fatigue may impair the work capacity of the skeletal muscle and may alter joint proprioception. So, the purpose of this study was to investigate the effect of physical fatigue and visual feedback on body sway and strength of lower extremities in obese people. 12 obese (4 female, 8 male; BMI >30 kg/m2), and 12 normal weight (4 female, 8 male; BMI: 20-25 kg/m2) subjects aged 37- 47 years participated in this study. The postural stability test on the Biodex balance system was used to characterize postural control along the anterior-posterior (AP) and mediolateral (ML) directions in eyes open and eyes closed conditions and maximal voluntary contraction (MVC) of knee extensors and flexors were measured before and after the high-intensity exhausting exercise protocol on the ergometer bike to confirm the presence of fatigue. Results indicated that the obese group demonstrated significantly greater body sway, in all indices (ML, AP, overall) compared with the normal weight group (eyes open). However, when visual feedback was eliminated, fatigue impaired the balance in the overall and AP indicators in both groups; ML sway was higher only in the obese group after exerting the fatigue in the eyes closed condition. Also, maximal voluntary contraction of knee extensors was impaired in the fatigued normal group but, there was no significant impairment in knee flexors MVC in both group. According to the findings, peripheral fatigue was associated with altered postural control in upright standing when eyes were closed, and that mechanoreceptors of the feet may be less able to estimate the position of the body COM over the base of support in the loss of visual feedback. This suggests that the overall capability of the postural control system during upright standing especially in the ML direction could be lower due to fatigue in obese individuals and could be a predictor of future falls.

Keywords: maximal voluntary contraction, obesity, peripheral fatigue, postural control, visual feedback

Procedia PDF Downloads 88
989 Levels of Heavy Metals and Arsenic in Sediment and in Clarias Gariepinus, of Lake Ngami

Authors: Nashaat Mazrui, Oarabile Mogobe, Barbara Ngwenya, Ketlhatlogile Mosepele, Mangaliso Gondwe

Abstract:

Over the last several decades, the world has seen a rapid increase in activities such as deforestation, agriculture, and energy use. Subsequently, trace elements are being deposited into our water bodies, where they can accumulate to toxic levels in aquatic organisms and can be transferred to humans through fish consumption. Thus, though fish is a good source of essential minerals and omega-3 fatty acids, it can also be a source of toxic elements. Monitoring trace elements in fish is important for the proper management of aquatic systems and the protection of human health. The aim of this study was to determine concentrations of trace elements in sediment and muscle tissues of Clarias gariepinus at Lake Ngami, in the Okavango Delta in northern Botswana, during low floods. The fish were bought from local fishermen, and samples of muscle tissue were acid-digested and analyzed for iron, zinc, copper, manganese, molybdenum, nickel, chromium, cadmium, lead, and arsenic using inductively coupled plasma optical emission spectroscopy (ICP-OES). Sediment samples were also collected and analyzed for the elements and for organic matter content. Results show that in all samples, iron was found in the greatest amount while cadmium was below the detection limit. Generally, the concentrations of elements in sediment were higher than in fish except for zinc and arsenic. While the concentration of zinc was similar in the two media, arsenic was almost 3 times higher in fish than sediment. To evaluate the risk to human health from fish consumption, the target hazard quotient (THQ) and cancer risk for an average adult in Botswana, sub-Saharan Africa, and riparian communities in the Okavango Delta was calculated for each element. All elements were found to be well below regulatory limits and do not pose a threat to human health except arsenic. The results suggest that other benthic feeding fish species could potentially have high arsenic levels too. This has serious implications for human health, especially riparian households to whom fish is a key component of food and nutrition security.

Keywords: Arsenic, African sharp tooth cat fish, Okavango delta, trace elements

Procedia PDF Downloads 187
988 Analysis and Re-Design Ergonomic Mineral Water Gallon Trolley

Authors: Dessy Laksyana Utami

Abstract:

Manual material handling activities often make it difficult for humans to work like this. Muscle injury due to incorrect posture.Workers need to facilitate their activities. One tool to assist their activities in the transportation of ordinary materials is a trolley. This tool is very useful because it can be used.It can bring many items without having to spend more energy to operate it. Very Comfortable used a trolley in the community. But the old design still have a complaint by worker, because lack of grip and capacity. After posture analysis with the REBA method, the value of risk need to be increased is obtained tool. Re design use Indonesian anthropometric data with the 50th percentile.

Keywords: Material Handling, REBA method, postural assessment, Trolley.

Procedia PDF Downloads 132
987 An Assistive Robotic Arm for Defence and Rescue Application

Authors: J. Harrison Kurunathan, R. Jayaparvathy

Abstract:

"Assistive Robotics" is the field that deals with the study of robots that helps in human motion and also empowers human abilities by interfacing the robotic systems to be manipulated by human motion. The proposed model is a robotic arm that works as a haptic interface on the basis on accelerometers and DC motors that will function with respect to the movement of the human muscle. The proposed model would effectively work as a haptic interface that would reduce human effort in the field of defense and rescue. This can be used in very critical conditions like fire accidents to avoid causalities.

Keywords: accelerometers, haptic interface, servo motors, signal processing

Procedia PDF Downloads 388
986 Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys

Authors: O. Khalaj, B. Mašek, H. Jirková, J. Svoboda

Abstract:

By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment.

Keywords: hot forming, ODS, alloys, thermomechanical, Fe-Al, Al2O3

Procedia PDF Downloads 275
985 Caffeic Acid Methyl and Ethyl Esters Exhibit Beneficial Effect on Glucose and Lipid Metabolism in Cultured Murine Insulin-Sensitive Cells

Authors: Hoda M. Eid, Abir Nachar, Farah Thong, Gary Sweeney, Pierre S. Haddad

Abstract:

Caffeic acid methyl ester (CAME) and caffeic ethyl esters (CAEE) were previously reported to potently stimulate glucose uptake in cultured C2C12 skeletal muscle cells via insulin-independent mechanisms involving the activation of adenosine monophosphate-activated protein kinase (AMPK). In the present study, we investigated the effect of the two compounds on the translocation of glucose transporter GLUT4 in L6 skeletal muscle cells. The cells were treated with the optimum non-toxic concentration (50 µM) of either CAME or CAEE for 18 h. Levels of GLUT4myc at the cell surface were measured by O-phenylenediamine dihydrochloride (OPD) assay. The effects of CAME and CAEE on GLUT1 and GLUT4 protein content were also measured by western immunoblot. Our results show that CAME and CAEE significantly increased glucose uptake, GLUT4 translocation and GLUT4 protein content. Furthermore, the effect of the two CA esters on two insulin-sensitive cell lines: H4IIE rat hepatoma and 3T3-L1 adipocytes were investigated. CAME and CAEE reduced the enzymatic activity of the key hepatic gluconeogenic enzyme glucose-6-phosphatase in a concentration-dependent manner. In addition, they exerted a concentration-dependent antiadipogenic effect on 3T3-L1 cells. Mitotic clonal expansion (MCE), a prerequisite for adipocytes differentiation was also concentration-dependently inhibited. The two compounds abrogated lipid droplet accumulation, blocked MCE and maintained cells in fibroblast-like state when applied at the maximum non-toxic concentration (100 µM). In addition, the expression of the early key adipogenic transcription factors CCAAT enhancer-binding protein beta (C/EBP-β) and the master regulator of adipogenesis peroxisome-proliferator-activated receptor gamma (PPAR-γ) were inhibited. We, therefore, conclude that CAME and CAEE exert pleiotropic benefits in several insulin-sensitive cell lines through insulin-independent mechanisms involving AMPK, hence they may treat obesity, diabetes and other metabolic diseases.

Keywords: type 2 diabetes mellitus, insulin resistance, GLUT4, Akt, AMPK.

Procedia PDF Downloads 307
984 Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity

Authors: Artur Cichowicz

Abstract:

The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events.

Keywords: inter-event time, fluid induced seismicity, mine closure, spectral parameters of seismic source

Procedia PDF Downloads 280