Search results for: genetic markers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2216

Search results for: genetic markers

1586 The Markers -mm and dämmo in Amharic: Developmental Approach

Authors: Hayat Omar

Abstract:

Languages provide speakers with a wide range of linguistic units to organize and deliver information. There are several ways to verbally express the mental representations of events. According to the linguistic tools they have acquired, speakers select the one that brings out the most communicative effect to convey their message. Our study focuses on two markers, -mm and dämmo, in Amharic (Ethiopian Semitic language). Our aim is to examine, from a developmental perspective, how they are used by speakers. We seek to distinguish the communicative and pragmatic functions indicated by means of these markers. To do so, we created a corpus of sixty narrative productions of children from 5-6, 7-8 to 10-12 years old and adult Amharic speakers. The experimental material we used to collect our data is a series of pictures without text 'Frog, Where are you?'. Although -mm and dämmo are each used in specific contexts, they are sometimes analyzed as being interchangeable. The suffix -mm is complex and multifunctional. It marks the end of the negative verbal structure, it is found in the relative structure of the imperfect, it creates new words such as adverbials or pronouns, it also serves to coordinate words, sentences and to mark the link between macro-propositions within a larger textual unit. -mm was analyzed as marker of insistence, topic shift marker, element of concatenation, contrastive focus marker, 'bisyndetic' coordinator. On the other hand, dämmo has limited function and did not attract the attention of many authors. The only approach we could find analyzes it in terms of 'monosyndetic' coordinator. The paralleling of these two elements made it possible to understand their distinctive functions and refine their description. When it comes to marking a referent, the choice of -mm or dämmo is not neutral, depending on whether the tagged argument is newly introduced, maintained, promoted or reintroduced. The presence of these morphemes explains the inter-phrastic link. The information is seized by anaphora or presupposition: -mm goes upstream while dämmo arrows downstream, the latter requires new information. The speaker uses -mm or dämmo according to what he assumes to be known to his interlocutors. The results show that -mm and dämmo, although all the speakers use them both, do not always have the same scope according to the speaker and vary according to the age. dämmo is mainly used to mark a contrastive topic to signal the concomitance of events. It is more commonly used in young children’s narratives (F(3,56) = 3,82, p < .01). Some values of -mm (additive) are acquired very early while others are rather late and increase with age (F(3,56) = 3,2, p < .03). The difficulty is due not only because of its synthetic structure but primarily because it is multi-purpose and requires a memory work. It highlights the constituent on which it operates to clarify how the message should be interpreted.

Keywords: acquisition, cohesion, connection, contrastive topic, contrastive focus, discourse marker, pragmatics

Procedia PDF Downloads 134
1585 Clinical and Chemokine Profile in Leprosy Patients During Multidrug Therapy (MDT) and Their Healthy Contacts: A Randomized Control Trial

Authors: Rohit Kothari

Abstract:

Background: Leprosyis a chronic granulomatous diseasecaused by Mycobacterium leprae (M. Lepra). Reactions may interrupt its usual chronic course.Type-1 (T1R)and type-2 lepra reaction(T2R) are acute events and signifytype-IV and type-III hypersensitivity responses, respectively. Various chemokines like CCL3, 5, 11, and CCL24 may be increased during the course of leprosy or during reactions and may serve as markers of early diagnosis, response to therapy, and prognosis. Objective: To find correlation of CCL3, 5, 11, and CCL24 in leprosy patients on multidrug therapy and their family contacts after ruling out active disease during leprosy treatment and during periods of lepra reactions. Methodology: This randomized control trial was conducted in 50 clinico-histopathologically diagnosed cases of leprosy in a tertiary care hospital in Bengaluru, India. 50 of their family contacts were adequately examined and investigated should the need be to rule out active disease. The two study-groups comprised of leprosy cases, and the age, sex, and area of residence matched healthy contactswho were given single-dose rifampicin prophylaxis, respectively. Blood samples were taken at baseline, six months, and after one yearin both the groups (on completion of MDT in leprosy cases)and also during periods of reaction if occurred in leprosy cases. Results: Our study found that at baseline, CCL5, 11, and 24 were higher in leprosy cases as compared to the healthy contacts, and the difference was statistically significant.CCL3 was also found to be higherat baseline in leprosy cases, however, the difference was not statistically significant. At six months and one year, the levels of CCL 5, 11, and 24 reduced, and the difference was statistically significant in leprosy cases, whereas it remained almost static in all the healthy contacts. Twenty patients of leprosy developed lepra reaction during the course of one year, and during reaction, the increase in CCL11 and 24 was statistically significant from baseline, whereas CCL3 and 5 did not rise significantly. One of the healthy contacts developed signs of leprosy in the form of hypopigmented numb patch and was clinico-histopathologically, and CCL11 and 24 were found to be higher with a statistically significant difference from the baseline values. Conclusion: CCL5, 11, and 24 are sensitive markers of diagnosing leprosy, response to MDT, and prognosis and are not increased in healthy contacts. CCL11 and 24 are sensitive markers of lepra reactions and may serve as one of the early diagnostic modalities for identifying lepra reaction and also leprosy in healthy contacts. To the best of our knowledge, this is the first study to evaluate these biomarkers in leprosy cases and their healthy contacts with a follow-up of upto one year with one of them developing the disease, and the same was confirmed based on these biomarkers as well.

Keywords: chemokine profile, healthy contacts, leprosy, lepra reactions

Procedia PDF Downloads 145
1584 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks

Authors: Adrian Ionita, Ana-Maria Ghimes

Abstract:

The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.

Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling

Procedia PDF Downloads 164
1583 Genodata: The Human Genome Variation Using BigData

Authors: Surabhi Maiti, Prajakta Tamhankar, Prachi Uttam Mehta

Abstract:

Since the accomplishment of the Human Genome Project, there has been an unparalled escalation in the sequencing of genomic data. This project has been the first major vault in the field of medical research, especially in genomics. This project won accolades by using a concept called Bigdata which was earlier, extensively used to gain value for business. Bigdata makes use of data sets which are generally in the form of files of size terabytes, petabytes, or exabytes and these data sets were traditionally used and managed using excel sheets and RDBMS. The voluminous data made the process tedious and time consuming and hence a stronger framework called Hadoop was introduced in the field of genetic sciences to make data processing faster and efficient. This paper focuses on using SPARK which is gaining momentum with the advancement of BigData technologies. Cloud Storage is an effective medium for storage of large data sets which is generated from the genetic research and the resultant sets produced from SPARK analysis.

Keywords: human genome project, Bigdata, genomic data, SPARK, cloud storage, Hadoop

Procedia PDF Downloads 259
1582 Cochlear Implants and the Emerging Therapies for Managing Hearing Loss

Authors: Hesham Kozou

Abstract:

Sensorineural hearing loss (SNHL) poses a significant challenge due to limited access to the inner ear for therapies. Emerging treatments such as regenerative, genetic, and pharmacotherapies offer hope for addressing this condition. This study aims to highlight the potential of cochlear implants and emerging therapies in managing sensorineural hearing loss by improving access to the inner ear. The study is conducted through a review of relevant literature and research articles in the field of cochlear implants and emerging therapies for hearing loss. It outlines how advancements in cochlear implant technologies, electrodes, and surgical techniques can facilitate the delivery of therapies to the inner ear, potentially revolutionizing the treatment of sensorineural hearing loss. The study underscores the potential of cochlear implants and emerging therapies in revolutionizing the treatment landscape for sensorineural hearing loss, emphasizing the feasibility of curing this condition by leveraging technological advancements.

Keywords: therapies for hearing loss management, future of CI as a cochlear delivery channel, regenerative, genetic and pharmacotherapeutic management of hearing loss

Procedia PDF Downloads 50
1581 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function

Procedia PDF Downloads 148
1580 Machine Vision System for Measuring the Quality of Bulk Sun-dried Organic Raisins

Authors: Navab Karimi, Tohid Alizadeh

Abstract:

An intelligent vision-based system was designed to measure the quality and purity of raisins. A machine vision setup was utilized to capture the images of bulk raisins in ranges of 5-50% mixed pure-impure berries. The textural features of bulk raisins were extracted using Grey-level Histograms, Co-occurrence Matrix, and Local Binary Pattern (a total of 108 features). Genetic Algorithm and neural network regression were used for selecting and ranking the best features (21 features). As a result, the GLCM features set was found to have the highest accuracy (92.4%) among the other sets. Followingly, multiple feature combinations of the previous stage were fed into the second regression (linear regression) to increase accuracy, wherein a combination of 16 features was found to be the optimum. Finally, a Support Vector Machine (SVM) classifier was used to differentiate the mixtures, producing the best efficiency and accuracy of 96.2% and 97.35%, respectively.

Keywords: sun-dried organic raisin, genetic algorithm, feature extraction, ann regression, linear regression, support vector machine, south azerbaijan.

Procedia PDF Downloads 73
1579 Neuroimaging Markers for Screening Former NFL Players at Risk for Developing Alzheimer's Disease / Dementia Later in Life

Authors: Vijaykumar M. Baragi, Ramtilak Gattu, Gabriela Trifan, John L. Woodard, K. Meyers, Tim S. Halstead, Eric Hipple, Ewart Mark Haacke, Randall R. Benson

Abstract:

NFL players, by virtue of their exposure to repetitive head injury, are at least twice as likely to develop Alzheimer's disease (AD) and dementia as the general population. Early recognition and intervention prior to onset of clinical symptoms could potentially avert/delay the long-term consequences of these diseases. Since AD is thought to have a long preclinical incubation period, the aim of the current research was to determine whether former NFL players, referred to a depression center, showed evidence of incipient dementia in their structural imaging prior to diagnosis of dementia. Thus, to identify neuroimaging markers of AD, against which former NFL players would be compared, we conducted a comprehensive volumetric analysis using a cohort of early stage AD patients (ADNI) to produce a set of brain regions demonstrating sensitivity to early AD pathology (i.e., the “AD fingerprint”). A cohort of 46 former NFL players’ brain MRIs were then interrogated using the AD fingerprint. Brain scans were done using a T1-weighted MPRAGE sequence. The Free Surfer image analysis suite (version 6.0) was used to obtain the volumetric and cortical thickness data. A total of 55 brain regions demonstrated significant atrophy or ex vacuo dilatation bilaterally in AD patients vs. healthy controls. Of the 46 former NFL players, 19 (41%) demonstrated a greater than expected number of atrophied/dilated AD regions when compared with age-matched controls, presumably reflecting AD pathology.

Keywords: alzheimers, neuroimaging biomarkers, traumatic brain injury, free surfer, ADNI

Procedia PDF Downloads 154
1578 Genetics of Birth and Weaning Weight of Holstein, Friesians in Sudan

Authors: Safa A. Mohammed Ali, Ammar S. Ahamed, Mohammed Khair Abdalla

Abstract:

The objectives of this study were to estimate the means and genetic parameters of birth and weaning weight of calves of pure Holstein-Friesian cows raised in Sudan. The traits studied were:*Weight at birth *Weight at weaning. The study also included some of the important factors that affected these traits. The data were analyzed using Harvey’s Least Squares and Maximum Likelihood programme. The results obtained showed that the overall mean weight at birth of the calves under study was 34.36±0.94kg. Male calves were found to be heavier than females; the difference between the sexes was highly significant (P<0.001). The mean weight at birth of male calves was 34.27±1.17 kg while that of females was 32.51±1.14kg. The effect of sex of calves, sire and parity of dam were highly significant (P<0.001). The overall mean of weight at weaning was 67.10 ± 5.05 kg, weight at weaning was significantly (p<0.001) effected by sex of calves, sire, year and season of birth have highly significant (P<0.001) effect on either trait. Also estimates heritabilities of birth weight was (0.033±0.015) lower than heritabilities of weaning weight (0.224±0.039), and genetic correlation was 0.563, the phenotypic correlation 0.281, and the environmental correlation 0.268.

Keywords: birth, weaning, weight, friesian

Procedia PDF Downloads 668
1577 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm

Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi

Abstract:

To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.

Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm

Procedia PDF Downloads 237
1576 Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm

Authors: Dipti Patra, Guguloth Uma, Smita Pradhan

Abstract:

Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy.

Keywords: image registration, genetic algorithm, particle swarm optimization, hybrid PSO-GA algorithm and mutual information

Procedia PDF Downloads 409
1575 Distangling Biological Noise in Cellular Images with a Focus on Explainability

Authors: Manik Sharma, Ganapathy Krishnamurthi

Abstract:

The cost of some drugs and medical treatments has risen in recent years, that many patients are having to go without. A classification project could make researchers more efficient. One of the more surprising reasons behind the cost is how long it takes to bring new treatments to market. Despite improvements in technology and science, research and development continues to lag. In fact, finding new treatment takes, on average, more than 10 years and costs hundreds of millions of dollars. If successful, we could dramatically improve the industry's ability to model cellular images according to their relevant biology. In turn, greatly decreasing the cost of treatments and ensure these treatments get to patients faster. This work aims at solving a part of this problem by creating a cellular image classification model which can decipher the genetic perturbations in cell (occurring naturally or artificially). Another interesting question addressed is what makes the deep-learning model decide in a particular fashion, which can further help in demystifying the mechanism of action of certain perturbations and paves a way towards the explainability of the deep-learning model.

Keywords: cellular images, genetic perturbations, deep-learning, explainability

Procedia PDF Downloads 113
1574 Investigation of Soil Slopes Stability

Authors: Nima Farshidfar, Navid Daryasafar

Abstract:

In this paper, the seismic stability of reinforced soil slopes is studied using pseudo-dynamic analysis. Equilibrium equations that are applicable to the every kind of failure surface are written using Horizontal Slices Method. In written equations, the balance of the vertical and horizontal forces and moment equilibrium is fully satisfied. Failure surface is assumed to be log-spiral, and non-linear equilibrium equations obtained for the system are solved using Newton-Raphson Method. Earthquake effects are applied as horizontal and vertical pseudo-static coefficients to the problem. To solve this problem, a code was developed in MATLAB, and the critical failure surface is calculated using genetic algorithm. At the end, comparing the results obtained in this paper, effects of various parameters and the effect of using pseudo - dynamic analysis in seismic forces modeling is presented.

Keywords: soil slopes, pseudo-dynamic, genetic algorithm, optimization, limit equilibrium method, log-spiral failure surface

Procedia PDF Downloads 339
1573 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 560
1572 Modulation of Tamoxifen-Induced Cytotoxicity in Breast Cancer Cell Lines by 3-Bromopyruvate

Authors: Yasmin M. Attia, Hanan S. El-Abhar, Mahmoud M. Al Marzabani, Samia A. Shouman

Abstract:

Background: Tamoxifen (TAM) is the most commonly used hormone therapy for the treatment of early and metastatic breast cancer. Although it significantly decreases the tumor recurrence rate and provides an overall benefit, as much as 20–30% of women still relapse during or after long-term therapy. 3-Bromopyruvate (3-BP) is a promising agent with impressive antitumor effects in several models of animal tumors and cell lines. Aim: This study was designed to investigate the combined effect of (TAM) and (3-BP) in breast cancer cells and to explore their molecular interaction via assessment of apoptotic, angiogenic, and metastatic markers. Methods: In vitro cytotoxicity study was carried out for both compounds to determine the combination regimen producing a synergistic effect and mechanistic pathways were studied using RT-PCR and western techniques. Moreover, the anti-oncolytic and anti-angiogenic potentials were assessed in mice bearing solid Ehrlich carcinoma (SEC). Results: The combined treatment significantly increased the expressions and protein levels of caspase 7, 9, and 3 and decreased of angiogenic markers VEGF, HIF-1α, and HK2 compared to cells treated with either drug individually. However, there were no significant changes in MMP-2 and MMP-9 protein levels. Interestingly, the in vivo results supported the in vitro findings; there was a decrease in the tumor volume and VEFG using immunohistochemistry in the combination-treated groups compared to either TAM or 3-BP treated one. Conclusion: 3-BP synergizes the cytotoxic effect of TAM by increasing apoptosis and decreasing angiogenesis which makes this combination a promising regimen to be applied clinically.

Keywords: tamoxifen, 3-bromopyruvate, breast cancer, cytotoxicity, angiogenesis

Procedia PDF Downloads 227
1571 The Role of Leukocyte-Derived IL-10 on Postoperative ileus and Intestinal Macrophage Differentiation in Mice

Authors: Kathy Stein, Mariola Lysson, Anja Schmidt, Beatrix Schumak, Sabine Specht, Hicham Bouabe, Jürgen Heesemann, Axel Roers, Joerg C. Kalff, Sven Wehner

Abstract:

Objective: Postoperative ileus (POI) is a common complication of abdominal surgery. Monocyte infiltration is a hallmark of POI. The polarization of macrophages/monocytes in this process is not well understood. We aimed to investigate if and how M2 macrophage/monocyte differentiation is involved in POI pathogenesis. Design: POI was induced by intestinal manipulation (IM). C57Bl/6, CCR2-/-, IL-10 reporter (ITIB), IL-10-/- and LysMcre/IL-10fl/fl mice underwent IM. At various points in time leukocyte influx, gene and protein expression of cytokines, chemokines and M2 differentiation markers and intestinal motility were analyzed. Results: IM induced the postoperative expression of the M2 markers Arginase-1 and YM-1, predominantly in F4/80+Ly6C+ monocytes. Gene expression analyses indicated an IL-10-dependent, IL-4-independent M2 polarization of these monocytes. IL-10 dependency of M2 differentiation was confirmed in IL-10 deficient mice. Leukocytes, in the order of infiltrating monocytes, neutrophils, and resident macrophages were the main IL-10 producers during POI. IL-10 producing monocytes as well as M2 marker expression were almost absent in CCR2-deficient mice. However, postoperative IL-10 expression was not altered in CCR2-/- mice. The loss of M2 polarized monocytes neither protected CCR2-/- mice from nor affected resolution of POI. In contrast, IL-10 deficiency reduced postoperative neutrophil numbers and ameliorated POI. IL-10Ra expression was strongly induced in neutrophils but not in monocytes. Conclusion: We conclude that IL-10 counteracts POI resolution by activating IL-10Ra-expressing neutrophils in the late phase of disease while IL-10-dependent M2 differentiation is not pivotal to POI manifestation and resolution.

Keywords: interleukin-10, macrophages, neutrophils, postoperative ileus

Procedia PDF Downloads 358
1570 Profile of Programmed Death Ligand-1 (PD-L1) Expression and PD-L1 Gene Amplification in Indonesian Colorectal Cancer Patients

Authors: Akterono Budiyati, Gita Kusumo, Teguh Putra, Fritzie Rexana, Antonius Kurniawan, Aru Sudoyo, Ahmad Utomo, Andi Utama

Abstract:

The presence of the programmed death ligand-1 (PD-L1) has been used in multiple clinical trials and approved as biomarker for selecting patients more likely to respond to immune checkpoint inhibitors. However, the expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence. Positive PD-L1 within tumors may result from two mechanisms, induced PD-L1 expression by T-cell presence or genetic mechanism that lead to constitutive PD-L1 expression. Amplification of PD-L1 genes was found as one of genetic mechanism which causes an increase in PD-L1 expression. In case of colorectal cancer (CRC), targeting immune checkpoint inhibitor has been recommended for patients with microsatellite instable (MSI). Although the correlation between PD-L1 expression and MSI status has been widely studied, so far the precise mechanism of PD-L1 gene activation in CRC patients, particularly in MSI population have yet to be clarified. In this present study we have profiled 61 archived formalin fixed paraffin embedded CRC specimens of patients from Medistra Hospital, Jakarta admitted in 2010 - 2016. Immunohistochemistry was performed to measure expression of PD-L1 in tumor cells as well as MSI status using antibodies against PD-L1 and MMR (MLH1, MSH2, PMS2 and MSH6), respectively. PD-L1 expression was measured on tumor cells with cut off of 1% whereas loss of nuclear MMR protein expressions in tumor cells but not in normal or stromal cells indicated presence of MSI. Subset of PD-L1 positive patients was then assessed for copy number variations (CNVs) using single Tube TaqMan Copy Number Assays Gene CD247PD-L1. We also observed KRAS mutation to profile possible genetic mechanism leading to the presence or absence of PD-L1 expression. Analysis of 61 CRC patients revealed 15 patients (24%) expressed PD-L1 on their tumor cell membranes. The prevalence of surface membrane PD-L1 was significantly higher in patients with MSI (87%; 7/8) compared to patients with microsatellite stable (MSS) (15%; 8/53) (P=0.001). Although amplification of PD-L1 gene was not found among PD-L1 positive patients, low-level amplification of PD-L1 gene was commonly observed in MSS patients (75%; 6/8) than in MSI patients (43%; 3/7). Additionally, we found 26% of CRC patients harbored KRAS mutations (16/61), so far the distribution of KRAS status did not correlate with PD-L1 expression. Our data suggest genetic mechanism through amplification of PD-L1 seems not to be the mechanism underlying upregulation of PD-L1 expression in CRC patients. However, further studies are warranted to confirm the results.

Keywords: colorectal cancer, gene amplification, microsatellite instable, programmed death ligand-1

Procedia PDF Downloads 224
1569 Transcriptome Analysis of Saffron (crocus sativus L.) Stigma Focusing on Identification Genes Involved in the Biosynthesis of Crocin

Authors: Parvaneh Mahmoudi, Ahmad Moeni, Seyed Mojtaba Khayam Nekoei, Mohsen Mardi, Mehrshad Zeinolabedini, Ghasem Hosseini Salekdeh

Abstract:

Saffron (Crocus sativus L.) is one of the most important spice and medicinal plants. The three-branch style of C. sativus flowers are the most important economic part of the plant and known as saffron, which has several medicinal properties. Despite the economic and biological significance of this plant, knowledge about its molecular characteristics is very limited. In the present study, we, for the first time, constructed a comprehensive dataset for C. sativus stigma through de novo transcriptome sequencing. We performed de novo transcriptome sequencing of C. sativus stigma using the Illumina paired-end sequencing technology. A total of 52075128 reads were generated and assembled into 118075 unigenes, with an average length of 629 bp and an N50 of 951 bp. A total of 66171unigenes were identified, among them, 66171 (56%) were annotated in the non-redundant National Center for Biotechnology Information (NCBI) database, 30938 (26%) were annotated in the Swiss-Prot database, 10273 (8.7%) unigenes were mapped to 141 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, while 52560 (44%) and 40756 (34%) unigenes were assigned to Gen Ontology (GO) categories and Eukaryotic Orthologous Groups of proteins (KOG), respectively. In addition, 65 candidate genes involved in three stages of crocin biosynthesis were identified. Finally, transcriptome sequencing of saffron stigma was used to identify 6779 potential microsatellites (SSRs) molecular markers. High-throughput de novo transcriptome sequencing provided a valuable resource of transcript sequences of C. sativus in public databases. In addition, most of candidate genes potentially involved in crocin biosynthesis were identified which could be further utilized in functional genomics studies. Furthermore, numerous obtained SSRs might contribute to address open questions about the origin of this amphiploid spices with probable little genetic diversity.

Keywords: saffron, transcriptome, NGS, bioinformatic

Procedia PDF Downloads 102
1568 Shielding Engineered Islets with Mesenchymal Stem Cells Enhance Survival under Hypoxia by Inhibiting p38 MAPK

Authors: Bhawna Chandravanshi, Ramesh Bhonde

Abstract:

In the present study, we focused on the improvisation of islet survival in hypoxia. The Islet-like cell aggregates (ICAs) derived from Wharton's jelly mesenchymal stem cells (WJ-MSC) were cultured with and without WJ-MSC for 48h in hypoxia and normoxia and tested for their direct trophic effect on β cell survival. The WJ MSCs themselves secreted insulin upon glucose challenge and expressed the pancreatic markers at both transcription and translational level (C-peptide, Insulin, Glucagon and Glut 2). Direct contact of MSCs with ICAs facilitate the highest viability under hypoxia as evidenced by fluorescein diacetate/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytokine analysis of the co-cultured ICAs revealed amplification of anti-inflammatory cytokine-like TGFβ and TNFα accompanied by depletion of pro-inflammatory cytokines. The increment in VEGF and PDGFa was also seen showing their ability to vascularize upon transplantation. This was further accompanied by reduction in total reactive oxygen species, nitric oxide, and super oxide ions and down-regulation of Caspase3, Caspase8, p53 and up regulation of Bcl2 confirming prevention of apoptosis in ICAs. There was a significant reduction in the expression of p38 protein in the presence of MSCs making the ICAs responsive to glucose. Taken together our data demonstrate for the first time that the WJ-MSC expressed pancreatic markers and their supplementation protected engineered islets against hypoxia, oxidative stress, and inflammatory cytokines by inhibiting p38 MAPK protein.

Keywords: hypoxia, islet-like cell aggregates, inflammatory cytokines, oxidative stress

Procedia PDF Downloads 263
1567 Impact of Cd and Pb Impregnation on the Health of an Adult Population Neighbouring a Landfill

Authors: M. Cabral, A. Verdin, G. Garçon, A. Touré, C. Diop, M. Fall, S. Bouhsina, D. Dewaele, F.Cazier, A. Tall Dia, P. Shirali, A. Diouf

Abstract:

This case-control study dealt with the health adverse effects within the population neighboring the Mbeubeuss waste dump, which is located near the district of Malika (Diamalaye II) in Dakar (Senegal). All the household and industrial waste arising from Dakar are stored in this open landfill without being covered and are therefore possible sources of Pb and Cd contaminated air emissions and lixiviates. The objective of this study is part of improving the health of the population neighboring Mbeubeuss by determining Pb and Cd concentrations both in environment and humans, and studying possible renal function alterations within the adults. Soil and air samples were collected in the control site (Darou Salam) and the waste dump neighboring site (Diamalaye II). Control and exposed adults were recruited as living in Darou Salam (n = 52) and in Diamalaye II (n = 77). Pb and Cd concentrations in soil, air and biological samples were determined. Moreover, we were interested in analyzing some impregnation (zinc protoporphyrin, d-aminolevulinic acid dehydratase) and oxidative stress biomarkers (malonedialdehyde, gluthatione status), in addition to several nephrotoxicity parameters (creatinuria, proteinuria, lactate dehydrogenase, CC16 protein, glutathione S-transferase-alpha and retinol binding protein) in blood and/or urine. The results showed the significant Pb and Cd contamination of the soil and air samples derived from the landfill, and therefore of the neighboring population of adults. This critical exposure to environmental Pb and Cd had some harmful consequences for their health, as shown by the reported oxidative stress and nephrotoxicity signs.

Keywords: Pb and Cd environmental exposure, impregnation markers, landfill, nephrotoxicity markers

Procedia PDF Downloads 444
1566 Bioinformatics Approach to Support Genetic Research in Autism in Mali

Authors: M. Kouyate, M. Sangare, S. Samake, S. Keita, H. G. Kim, D. H. Geschwind

Abstract:

Background & Objectives: Human genetic studies can be expensive, even unaffordable, in developing countries, partly due to the sequencing costs. Our aim is to pilot the use of bioinformatics tools to guide scientifically valid, locally relevant, and economically sound autism genetic research in Mali. Methods: The following databases, NCBI, HGMD, and LSDB, were used to identify hot point mutations. Phenotype, transmission pattern, theoretical protein expression in the brain, the impact of the mutation on the 3D structure of the protein) were used to prioritize selected autism genes. We used the protein database, Modeller, and clustal W. Results: We found Mef2c (Gly27Ala/Leu38Gln), Pten (Thr131IIle), Prodh (Leu289Met), Nme1 (Ser120Gly), and Dhcr7 (Pro227Thr/Glu224Lys). These mutations were associated with endonucleases BseRI, NspI, PfrJS2IV, BspGI, BsaBI, and SpoDI, respectively. Gly27Ala/Leu38Gln mutations impacted the 3D structure of the Mef2c protein. Mef2c protein sequences across species showed a high percentage of similarity with a highly conserved MADS domain. Discussion: Mef2c, Pten, Prodh, Nme1, and Dhcr 7 gene mutation frequencies in the Malian population will be very informative. PCR coupled with restriction enzyme digestion can be used to screen the targeted gene mutations. Sanger sequencing will be used for confirmation only. This will cut down considerably the sequencing cost for gene-to-gene mutation screening. The knowledge of the 3D structure and potential impact of the mutations on Mef2c protein informed the protein family and altered function (ex. Leu38Gln). Conclusion & Future Work: Bio-informatics will positively impact autism research in Mali. Our approach can be applied to another neuropsychiatric disorder.

Keywords: bioinformatics, endonucleases, autism, Sanger sequencing, point mutations

Procedia PDF Downloads 83
1565 The Neuropsychology of Obsessive Compulsion Disorder

Authors: Mia Bahar, Özlem Bozkurt

Abstract:

Obsessive-compulsive disorder (OCD) is a typical, persistent, and long-lasting mental health condition in which a person experiences uncontrollable, recurrent thoughts (or "obsessions") and/or activities (or "compulsions") that they feel compelled to engage in repeatedly. Obsessive-compulsive disorder is both underdiagnosed and undertreated. It frequently manifests in a variety of medical settings and is persistent, expensive, and burdensome. Obsessive-compulsive neurosis was long believed to be a condition that offered valuable insight into the inner workings of the unconscious mind. Obsessive-compulsive disorder is now recognized as a prime example of a neuropsychiatric condition susceptible to particular pharmacotherapeutic and psychotherapy therapies and mediated by pathology in particular neural circuits. An obsessive-compulsive disorder which is called OCD, usually has two components, one cognitive and the other behavioral, although either can occur alone. Obsessions are often repetitive and intrusive thoughts that invade consciousness. These obsessions are incredibly hard to control or dismiss. People who have OCD often engage in rituals to reduce anxiety associated with intrusive thoughts. Once the ritual is formed, the person may feel extreme relief and be free from anxiety until the thoughts of contamination intrude once again. These thoughts are strengthened through a manifestation of negative reinforcement because they allow the person to avoid anxiety and obscurity. These thoughts are described as autogenous, meaning they most likely come from nowhere. These unwelcome thoughts are related to actions which we can describe as Thought Action Fusion. The thought becomes equated with an action, such as if they refuse to perform the ritual, something bad might happen, and so people perform the ritual to escape the intrusive thought. In almost all cases of OCD, the person's life gets extremely disturbed by compulsions and obsessions. Studies show OCD is an estimated 1.1% prevalence, making it a challenging issue with high co-morbidities with other issues like depressive episodes, panic disorders, and specific phobias. The first to reveal brain anomalies in OCD were numerous CT investigations, although the results were inconsistent. A few studies have focused on the orbitofrontal cortex (OFC), anterior cingulate gyrus (AC), and thalamus, structures also implicated in the pathophysiology of OCD by functional neuroimaging studies, but few have found consistent results. However, some studies have found abnormalities in the basal ganglion. There have also been some discussions that OCD might be genetic. OCD has been linked to families in studies of family aggregation, and findings from twin studies show that this relationship is somewhat influenced by genetic variables. Some Research has shown that OCD is a heritable, polygenic condition that can result from de novo harmful mutations as well as common and unusual variants. Numerous studies have also presented solid evidence in favor of a significant additive genetic component to OCD risk, with distinct OCD symptom dimensions showing both common and individual genetic risks.

Keywords: compulsions, obsessions, neuropsychiatric, genetic

Procedia PDF Downloads 65
1564 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm

Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali

Abstract:

Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.

Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir

Procedia PDF Downloads 267
1563 Effect of Omega-3 Supplementation on Stunted Egyptian Children at Risk of Environmental Enteric Dysfunction: An Interventional Study

Authors: Ghada M. El-Kassas, Maged A. El Wakeel, Salwa R. El-Zayat

Abstract:

Background: Environmental enteric dysfunction (EED) is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary omega-3 might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether omega-3 supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: 100 Egyptian stunted children aged 1-5 years and 100 age and gender-matched normal children as controls. At the primary phase of the study, we assessed anthropometric measures and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED). Cognitive development was assessed (Bayley or Wechsler scores). Oral n-3 (omega-3) LC-PUFA at a dosage of 500 mg/d was supplemented to all cases and followed up for 6 months after which the 2ry phase of the study included the previous clinical, laboratory and cognitive assessment. Results: Fecal inflammatory markers were significantly higher in cases compared to controls. (MPO), (NEO) and (AAT) showed a significant decline in cases at the end of the 2ry phase (P < 0.001 for all). Omega-3 supplementation resulted also in a significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both). Cases showed significant improvement of cognitive function at phase 2 of the study. Conclusions: Omega-3 supplementation successfully improved intestinal inflammatory state related to EED. Also, some improvement of anthropometric and cognitive parameters showed obvious improvement with omega-3 supplementation.

Keywords: cognitive functions, EED, omega-3, stunting

Procedia PDF Downloads 150
1562 Association of Leptin Gene T3469C Polymorphism on Reproductive Performance of Purebred Sows

Authors: Mariedel Autriz, Angel Lambio, Renato Vega, Severino Capitan, Rita Laude

Abstract:

The study was conducted to associate genetic polymorphism of the leptin gene T3469C with reproductive performance in purebred sows. DNA were isolated from hair follicles of 29 Landrace and 24 Large White sows. Amplification of the leptin gene was done followed by Hinf1digestion to determine the base at the T3469C site. Electrophoresis of the digestion products revealed that there were 25 Landrace and 15 Large White sows with the TT genotype while there were 3 Landrace and 6 Large White TC. There was 1 CC for Landrace and 3 for Large White. Significant genotype associations were observed for total litter size born and total born alive. Significant breed differences, on the other hand, was observed for gestation length and average birth weight. Significant breed by genotype interaction was observed in litter size total born and litter size born alive.

Keywords: genetic polymorphism, leptin, swine, T3469C

Procedia PDF Downloads 419
1561 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients

Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg

Abstract:

Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.

Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis

Procedia PDF Downloads 340
1560 Multiclass Support Vector Machines with Simultaneous Multi-Factors Optimization for Corporate Credit Ratings

Authors: Hyunchul Ahn, William X. S. Wong

Abstract:

Corporate credit rating prediction is one of the most important topics, which has been studied by researchers in the last decade. Over the last decade, researchers are pushing the limit to enhance the exactness of the corporate credit rating prediction model by applying several data-driven tools including statistical and artificial intelligence methods. Among them, multiclass support vector machine (MSVM) has been widely applied due to its good predictability. However, heuristics, for example, parameters of a kernel function, appropriate feature and instance subset, has become the main reason for the critics on MSVM, as they have dictate the MSVM architectural variables. This study presents a hybrid MSVM model that is intended to optimize all the parameter such as feature selection, instance selection, and kernel parameter. Our model adopts genetic algorithm (GA) to simultaneously optimize multiple heterogeneous design factors of MSVM.

Keywords: corporate credit rating prediction, Feature selection, genetic algorithms, instance selection, multiclass support vector machines

Procedia PDF Downloads 294
1559 Reading Literacy and Methods of Improving Reading

Authors: Iva Košek Bartošová, Andrea Jokešová, Eva Kozlová, Helena Matějová

Abstract:

The paper presents results of a research team from Faculty of Education, University of Hradec Králové in the Czech Republic. It introduces with the most reading methods used in the 1st classes of a primary school and presents results of a pilot research focused on mastering reading techniques and the quality of reading comprehension of pupils in the first half of a school year during training in teaching reading by an analytic-synthetic method and by a genetic method. These methods of practicing reading skills are the most used ones in the Czech Republic. During the school year 2015/16 there has been a measurement made of two groups of pupils of the 1st year and monitoring of quantitative and qualitative parameters of reading pupils’ outputs by several methods. Both of these methods are based on different theoretical basis and each of them has a specific educational and methodical procedure. This contribution represents results during a piloting project and draws pilot conclusions which will be verified in the subsequent broader research at the end of the school year of the first class of primary school.

Keywords: analytic-synthetic method of reading, genetic method of reading, reading comprehension, reading literacy, reading methods, reading speed

Procedia PDF Downloads 259
1558 Morphological and Molecular Analysis of Selected Fast-Growing Blue Swimming Crab (Portunus pelagicus) in South of Sulawesi

Authors: Yushinta Fujaya, Andi Ivo Asphama, Andi Parenrengi, Andi Tenriulo

Abstract:

Blue Swimming crab (Portunus pelagicus) is an important commercial species throughout the subtropical waters and as such constitutes part of the fisheries resources. Data are lacking on the morphological variations of selected fast-growing crabs reared in a pond. This study aimed to analyze the morphological and molecular character of a selected fast-growing crab reared in ponds in South of Sulawesi. The crab seeds were obtained from local fish-trap and hatchery. A study on the growth was carried out in the population of crabs. The dimensions analyzed were carapace width (CW) measured after 3 months of grow out. Morphological character states were examined based on the pattern of spots on the carapace. Molecular analysis was performed using RAPD (Random Amplified Polymorphic DNA). Genetic distance was analysed using TFPGA (Tools for Population Genetic Analyses) version 1.3. The results showed that there were variations in the growth of crabs. These crabs clustered morphologically into three quite distinct groups. The crab with white spots irregularly spread over its carapace was the largest size while the crab with large white spots scattered over the carapace was the smaller size (3%). The crab with small white spots scattered over the carapace was the smallest size found in this study. Molecular analysis showed that there are morphologically and genetically different between groups of crabs. Genetic distances among crabs ranged from 0.1527 to 0.5856. Thus, this study provides information the use of white spots pattern over carapace as indicators to identify the type of blue swimming crabs.

Keywords: crab, portunus pelagicus, morphology, RAPD, Carapace

Procedia PDF Downloads 538
1557 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 547