Search results for: automated decision-making
244 A Constructivist Grounded Theory Study on the Impact of Automation on People and Gardening
Authors: Hamilton V. Niculescu
Abstract:
Following a three year study conducted on eighteen Irish people that are involved in growing vegetables in various community gardens around Dublin, Republic of Ireland, it was revealed that addition of some automated features aimed at improving agricultural practices represented a process which was regarded as potentially beneficial, and as a great tool to closely monitor climate conditions inside the greenhouses. The participants were provided with a free custom-built mobile app through which they could remotely monitor and control features such as irrigation, air ventilation, and windows to ensure optimal growing conditions for vegetables growing inside purpose-built greenhouses. While the initial interest was generally high, within weeks, the participants' level of interaction with the enclosures slowly declined. By employing a constructivist grounded theory methodology, following focus group discussions, in-depth semi-structured interviews, and observations, it was revealed that participants' trust in newer technologies, and renewables, in particular, was low. There are various reasons for this, but because the participants in this study consist of mainly working-class people, it can be argued that lack of education and knowledge are the main barriers acting against the adoption of innovations. Consequently, it was revealed that most participants eventually decided to "set and forget" the systems in automatic working mode, indicating that the immediate effect of introducing people to assisting technologies also introduced some unintended consequences into their lifestyle. It is argued that this occurrence also indicates the fact that people initially "read" newer technologies and only adopt those features that they find useful and less intrusive in regards to their current lifestyle.Keywords: automation, communication, greenhouse, sustainable
Procedia PDF Downloads 119243 Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 497242 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 356241 Mineralogy and Thermobarometry of Xenoliths in Basalt from the Chanthaburi-Trat Gem Fields, Thailand
Authors: Apichet Boonsoong
Abstract:
In the Chanthaburi-Trat basalts, xenoliths are composed of essentially ultramafic xenoliths (particularly spinel lherzolite) with a few of an aggregate of feldspar. Some 19 ultramafic xenoliths were collected from 13 different locations. They range in size from 3.5 to 60mm across. Most are weathered and oxidized on the surface but fresh samples are obtained from cut surfaces. Chemical analyses were performed on carbon-coated polished thin sections using a fully automated CAMECA SX-50 electron microprobe (EMPA) in wavelength-dispersive mode. In thin section, they are seen to consist of variable amounts of olivine, clinopyroxene, orthopyroxene with minor spinel and plagioclase, and are classed as lherzolite. Modal compositions of the ultramafic nodules vary with olivine (60-75%), clinopyroxene (20-30%), orthopyroxene (0-15%), minor spinel (1-3%) and plagioclase (<1%). The essential minerals form an equigranular, medium- to coarse-grained, granoblastic texture, and all are in mutual contact indicating attainment of equilibrium. Reaction rims are common along the nodule margins and in some are also present along grain boundaries. Zoning occurs in clinopyroxene, and to a lesser extent in orthopyroxene. The homogeneity of mineral compositions in lherzolite xenoliths suggests the attainment of equilibrium. The equilibration temperatures of these xenoliths are estimated to be in the range of 973 to 1063°C. Pressure estimates are not so easily obtained because no suitable barometer exists for garnet-free lherzolites and so an indirect method was used. The general mineral assemblage of the lherzolite xenoliths and the absence of garnet indicate a pressure range of approximately 12–19kbar, which is equivalent to depths approximately of 38 to 60km.Keywords: chanthaburi-trat basalts, spinel lherzolite, xenoliths, 973 to 1063°C, 38 to 60km
Procedia PDF Downloads 118240 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 128239 Vehicle Speed Estimation Using Image Processing
Authors: Prodipta Bhowmik, Poulami Saha, Preety Mehra, Yogesh Soni, Triloki Nath Jha
Abstract:
In India, the smart city concept is growing day by day. So, for smart city development, a better traffic management and monitoring system is a very important requirement. Nowadays, road accidents increase due to more vehicles on the road. Reckless driving is mainly responsible for a huge number of accidents. So, an efficient traffic management system is required for all kinds of roads to control the traffic speed. The speed limit varies from road to road basis. Previously, there was a radar system but due to high cost and less precision, the radar system is unable to become favorable in a traffic management system. Traffic management system faces different types of problems every day and it has become a researchable topic on how to solve this problem. This paper proposed a computer vision and machine learning-based automated system for multiple vehicle detection, tracking, and speed estimation of vehicles using image processing. Detection of vehicles and estimating their speed from a real-time video is tough work to do. The objective of this paper is to detect vehicles and estimate their speed as accurately as possible. So for this, a real-time video is first captured, then the frames are extracted from that video, then from that frames, the vehicles are detected, and thereafter, the tracking of vehicles starts, and finally, the speed of the moving vehicles is estimated. The goal of this method is to develop a cost-friendly system that can able to detect multiple types of vehicles at the same time.Keywords: OpenCV, Haar Cascade classifier, DLIB, YOLOV3, centroid tracker, vehicle detection, vehicle tracking, vehicle speed estimation, computer vision
Procedia PDF Downloads 84238 Microgravity, Hydrological and Metrological Monitoring of Shallow Ground Water Aquifer in Al-Ain, UAE
Authors: Serin Darwish, Hakim Saibi, Amir Gabr
Abstract:
The United Arab Emirates (UAE) is situated within an arid zone where the climate is arid and the recharge of the groundwater is very low. Groundwater is the primary source of water in the United Arab Emirates. However, rapid expansion, population growth, agriculture, and industrial activities have negatively affected these limited water resources. The shortage of water resources has become a serious concern due to the over-pumping of groundwater to meet demand. In addition to the deficit of groundwater, the UAE has one of the highest per capita water consumption rates in the world. In this study, a combination of time-lapse measurements of microgravity and depth to groundwater level in selected wells in Al Ain city was used to estimate the variations in groundwater storage. Al-Ain is the second largest city in Abu Dhabi Emirates and the third largest city in the UAE. The groundwater in this region has been overexploited. Relative gravity measurements were acquired using the Scintrex CG-6 Autograv. This latest generation gravimeter from Scintrex Ltd provides fast, precise gravity measurements and automated corrections for temperature, tide, instrument tilt and rejection of data noise. The CG-6 gravimeter has a resolution of 0.1μGal. The purpose of this study is to measure the groundwater storage changes in the shallow aquifers based on the application of microgravity method. The gravity method is a nondestructive technique that allows collection of data at almost any location over the aquifer. Preliminary results indicate a possible relationship between microgravity and water levels, but more work needs to be done to confirm this. The results will help to develop the relationship between monthly microgravity changes with hydrological and hydrogeological changes of shallow phreatic. The study will be useful in water management considerations and additional future investigations.Keywords: Al-Ain, arid region, groundwater, microgravity
Procedia PDF Downloads 152237 Improving Sample Analysis and Interpretation Using QIAGENs Latest Investigator STR Multiplex PCR Assays with a Novel Quality Sensor
Authors: Daniel Mueller, Melanie Breitbach, Stefan Cornelius, Sarah Pakulla-Dickel, Margaretha Koenig, Anke Prochnow, Mario Scherer
Abstract:
The European STR standard set (ESS) of loci as well as the new expanded CODIS core loci set as recommended by the CODIS Core Loci Working Group, has led to a higher standardization and harmonization in STR analysis across borders. Various multiplex PCRs assays have since been developed for the analysis of these 17 ESS or 23 CODIS expansion STR markers that all meet high technical demands. However, forensic analysts are often faced with difficult STR results and the questions thereupon. What is the reason that no peaks are visible in the electropherogram? Did the PCR fail? Was the DNA concentration too low? QIAGEN’s newest Investigator STR kits contain a novel Quality Sensor (QS) that acts as internal performance control and gives useful information for evaluating the amplification efficiency of the PCR. QS indicates if the reaction has worked in general and furthermore allows discriminating between the presence of inhibitors or DNA degradation as a cause for the typical ski slope effect observed in STR profiles of such challenging samples. This information can be used to choose the most appropriate rework strategy.Based on the latest PCR chemistry called FRM 2.0, QIAGEN now provides the next technological generation for STR analysis, the Investigator ESSplex SE QS and Investigator 24plex QS Kits. The new PCR chemistry ensures robust and fast PCR amplification with improved inhibitor resistance and easy handling for a manual or automated setup. The short cycling time of 60 min reduces the duration of the total PCR analysis to make a whole workflow analysis in one day more likely. To facilitate the interpretation of STR results a smart primer design was applied for best possible marker distribution, highest concordance rates and a robust gender typing.Keywords: PCR, QIAGEN, quality sensor, STR
Procedia PDF Downloads 495236 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 686235 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning
Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah
Abstract:
Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning
Procedia PDF Downloads 32234 Automated Detection of Targets and Retrieve the Corresponding Analytics Using Augmented Reality
Authors: Suvarna Kumar Gogula, Sandhya Devi Gogula, P. Chanakya
Abstract:
Augmented reality is defined as the collection of the digital (or) computer generated information like images, audio, video, 3d models, etc. and overlay them over the real time environment. Augmented reality can be thought as a blend between completely synthetic and completely real. Augmented reality provides scope in a wide range of industries like manufacturing, retail, gaming, advertisement, tourism, etc. and brings out new dimensions in the modern digital world. As it overlays the content, it makes the users enhance the knowledge by providing the content blended with real world. In this application, we integrated augmented reality with data analytics and integrated with cloud so the virtual content will be generated on the basis of the data present in the database and we used marker based augmented reality where every marker will be stored in the database with corresponding unique ID. This application can be used in wide range of industries for different business processes, but in this paper, we mainly focus on the marketing industry which helps the customer in gaining the knowledge about the products in the market which mainly focus on their prices, customer feedback, quality, and other benefits. This application also focuses on providing better market strategy information for marketing managers who obtain the data about the stocks, sales, customer response about the product, etc. In this paper, we also included the reports from the feedback got from different people after the demonstration, and finally, we presented the future scope of Augmented Reality in different business processes by integrating with new technologies like cloud, big data, artificial intelligence, etc.Keywords: augmented reality, data analytics, catch room, marketing and sales
Procedia PDF Downloads 237233 Determination of Identification and Antibiotic Resistance Rates of Pseudomonas aeruginosa Strains from Various Clinical Specimens in a University Hospital for Two Years, 2013-2015
Authors: Recep Kesli, Gulsah Asik, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Pseudomonas aeruginosa (P. aeruginosa) is an important nosocomial pathogen which causes serious hospital infections and is resistant to many commonly used antibiotics. P. aeruginosa can develop resistance during therapy and also it is very resistant to disinfectant chemicals. It may be found in respiratory support devices in hospitals. In this study, the antibiotic resistance of P. aeruginosa strains isolated from bronchial aspiration samples was evaluated retrospectively. Methods: Between October 2013 and September 2015, a total of 318 P. aeruginosa were isolated from clinical samples obtained from various intensive care units and inpatient patients hospitalized at Afyon Kocatepe University, ANS Practice and Research Hospital. Isolated bacteria identified by using both the conventional methods and automated identification system-VITEK 2 (bioMerieux, Marcy l’etoile France). Antibacterial resistance tests were performed by using Kirby-Bauer disc (Oxoid, Hampshire, England) diffusion method following the recommendations of CLSI. Results: Antibiotic resistance rates of identified 318 P. aeruginosa strains were found as follows for tested antibiotics; 32 % amikacin, 42% gentamicin, 43% imipenem, 43% meropenem, 50% ciprofloxacin, 57% levofloxacin, 38% cefepime, 63% ceftazidime, and 85% piperacillin/tazobactam. Conclusion: Resistance profiles change according to years and provinces for P. aeruginosa, so these findings should be considered empirical treatment choices. In this study, the highest and lowest resistance rates found against piperacillin/tazobactam % 85, and amikacin %32.Keywords: Pseudomonas aeruginosa, antibiotic resistance rates, intensive care unit, Pseudomonas spp.
Procedia PDF Downloads 289232 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 137231 Design and Synthesis of Copper-Zeolite Composite for Antimicrobial Activity and Heavy Metal Removal From Waste Water
Authors: Feleke Terefe Fanta
Abstract:
Background: The existence of heavy metals and coliform bacteria contaminants in aquatic system of Akaki river basin, a sub city of Addis Ababa, Ethiopia has become a public concern as human population increases and land development continues. Hence, it is the right time to design treatment technologies that can handle multiple pollutants. Results: In this study, we prepared a synthetic zeolites and copper doped zeolite composite adsorbents as cost effective and simple approach to simultaneously remove heavy metals and total coliforms from wastewater of Akaki river. The synthesized copper–zeolite X composite was obtained by ion exchange method of copper ions into zeolites frameworks. Iodine test, XRD, FTIR and autosorb IQ automated gas sorption analyzer were used to characterize the adsorbents. The mean concentrations of Cd, Cr, and Pb in untreated sample were 0.795, 0.654 and 0.7025 mg/L respectively. These concentrations decreased to Cd (0.005 mg/L), Cr (0.052 mg/L) and Pb (bellow detection limit, BDL) for sample treated with bare zeolite X while a further decrease in concentration of Cd (0.005 mg/L), Cr (BDL) and Pb (BDL) was observed for the sample treated with copper–zeolite composite. Zeolite X and copper-modified zeolite X showed complete elimination of total coliforms after 90 and 50 min contact time respectively. Conclusion: The results obtained in this study showed high antimicrobial disinfection and heavy metal removal efficiencies of the synthesized adsorbents. Furthermore, these sorbents are efficient in significantly reducing physical parameters such as electrical conductivity, turbidity, BOD and COD.Keywords: WASTE WATER, COPPER DOPED ZEOITE X, ADSORPITION, HEAVY METAL, DISINFECTION, AKAKI RIVER
Procedia PDF Downloads 69230 Restructuring and Revitalising School Leadership Philosophy in Nepal: Embracing Contextual and Equitable Approaches
Authors: Shankar Dhakal, Andrew Jones, Geoffrey W. Lummis
Abstract:
The Federal Democratic Republic of Nepal is a linguistically, culturally, and ethnically diverse country with approximately 123 different spoken languages that represent several ethnic, cultural, and religious groups of people. With a population of about 30 million, long-standing disparities and inequalities in access and achievement in education have constantly been challenging to provide equitable educational opportunities for all students. While the new constitution of federal Nepal (2015) stipulates that all schools serve the interests of diverse communities, leadership practices have failed to adopt local contextual sensitivities, leading to traditional, authoritarian approaches and entrenched inequalities. However, little is known about how Nepali secondary school principals can adapt and implement context-responsive and equitable strategies to ensure equity and inclusiveness in its enormously diverse socio-cultural contexts. To fill this gap, this study explores how educational leadership approaches and philosophies are transformed using a multi-case automated/ethnographic research methodology underpinned by the paradigm of critical constructivism. This paper reconstructs to see if school leadership in Nepal can produce more equitable and contextual outcomes. The results of this study highlight the need for a paradigm shift and the adoption of innovative leadership approaches that foster humility, empathy, and compassion in school leaders to achieve better school outcomes. This research provides valuable insights into existing literary gaps and provides guidance for future school leadership policies and practices at the personal, cultural, and political levels.Keywords: school leadership, auto/ethnography, equitable and context-responsive leadership, Nepal
Procedia PDF Downloads 74229 Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel
Authors: Manendra Singh Parihar, Sandip Ghosh Chowdhury
Abstract:
Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel.Keywords: variant selection, reconstruction, EBSD, austenitic stainless steel, martensitic transformation
Procedia PDF Downloads 489228 Water-Sensitive Landscaping in Desert-Located Egyptian Cities through Sheer Reductions of Turfgrass and Efficient Water Use
Authors: Sarah M. Asar, Nabeel M. Elhady
Abstract:
Egypt’s current per capita water share indicates that the country suffers and has been suffering from water poverty. The abundant utilization of turfgrass in Egypt’s new urban settlements, the reliance on freshwater for irrigation, and the inadequate plant selection increase the water demand in such settlements. Decreasing the surface area of turfgrass by using alternative landscape features such as mulching, using ornamental low-maintenance plants, increasing pathways, etc., could significantly decrease the water demand of urban landscapes. The use of Ammochloa palaestina, Cenchrus crientalis (Oriental Fountain Grass), and Cistus parviflorus (with water demands of approximately 0.005m³/m²/day) as alternatives for Cynodon dactylon (0.01m³/m²/day), which is the most commonly used grass species in Egypt’s landscape, could decrease an area’s water demand by approximately 40-50%. Moreover, creating hydro-zones of similar water demanding plants would enable irrigation facilitation rather than the commonly used uniformed irrigation. Such a practice could further reduce water consumption by 15-20%. These results are based on a case-study analysis of one of Egypt’s relatively new urban settlements, Al-Rehab. Such results emphasize the importance of utilizing native, drought-tolerant vegetation in the urban landscapes of Egypt to reduce irrigation demands. Furthermore, proper implementation, monitoring, and maintenance of automated irrigation systems could be an important factor in a space’s efficient water use. As most new urban settlements in Egypt adopt sprinkler and drip irrigation systems, the lack of maintenance leads to the manual operation of such systems, and, thereby, excessive irrigation occurs.Keywords: alternative landscape, native plants, efficient irrigation, low water demand
Procedia PDF Downloads 77227 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 19226 Application of Federated Learning in the Health Care Sector for Malware Detection and Mitigation Using Software-Defined Networking Approach
Authors: A. Dinelka Panagoda, Bathiya Bandara, Chamod Wijetunga, Chathura Malinda, Lakmal Rupasinghe, Chethana Liyanapathirana
Abstract:
This research takes us forward with the concepts of Federated Learning and Software-Defined Networking (SDN) to introduce an efficient malware detection technique and provide a mitigation mechanism to give birth to a resilient and automated healthcare sector network system by also adding the feature of extended privacy preservation. Due to the daily transformation of new malware attacks on hospital Integrated Clinical Environment (ICEs), the healthcare industry is at an undefinable peak of never knowing its continuity direction. The state of blindness by the array of indispensable opportunities that new medical device inventions and their connected coordination offer daily, a factor that should be focused driven is not yet entirely understood by most healthcare operators and patients. This solution has the involvement of four clients in the form of hospital networks to build up the federated learning experimentation architectural structure with different geographical participation to reach the most reasonable accuracy rate with privacy preservation. While the logistic regression with cross-entropy conveys the detection, SDN comes in handy in the second half of the research to stack up the initial development phases of the system with malware mitigation based on policy implementation. The overall evaluation sums up with a system that proves the accuracy with the added privacy. It is no longer needed to continue with traditional centralized systems that offer almost everything but not privacy.Keywords: software-defined network, federated learning, privacy, integrated clinical environment, decentralized learning, malware detection, malware mitigation
Procedia PDF Downloads 186225 Customer’s Choice of a Bank: An Empirical Enquiry from the Banked Ghanaian
Authors: Emmanuel Larbi Offei, Felix Agyei-Sasu, Maura Naa Densua Ashong
Abstract:
Ghana has 26 universal banks and several banking and non-banking financial institutions operating in the country. The growing number of banks has heightened competition among banks to attract and retain customers more customers to ensure sustainability. Hence the need to identify and understand factors that influences customers’ choice of banks cannot be overemphasised. This study investigates the determinants of bank selection criteria by banking customers in Ghana. Four banks were purposively sampled for this study namely Barclays, Standard Chartered, Sahel Sahara and Unibank. Convenience sampling was then used to select 114 bank customers in Accra and interviewed. Questionnaires were used to collect data that were analysed in tables and charts with the use of STATA software. The findings of the study revealed that quick/prompt services and complaint handling, safety of funds, networked branches, easy access to functional Automated Teller Machines (ATMs) and low/moderate service charges were the major determinants of customers’ choice of banks. The results further show that 89.5 percent of all deposits are held in either current or savings accounts. About 22.1 percent of the respondents indicated that they have plans of changing their banks in the near future because they are not satisfied with their banks. A gender analysis of the choice criteria showed differences between the choice criteria of the male as compared to the female. The study recommends that banks in Ghana should focus on products and policies that will not compromise on the safety of funds of their customers. Again, banks must address customer complaints and dissatisfactions as promptly as possible by taking pragmatic steps to address administrative bureaucracies and infrastructural challenges that prolong the duration of banking transactions.Keywords: Ghana, banks, determinants, customers’ choice, competition
Procedia PDF Downloads 440224 Condition Assessment of Reinforced Concrete Bridge Deck Using Ground Penetrating Radar
Authors: Azin Shakibabarough, Mojtaba Valinejadshoubi, Ashutosh Bagchi
Abstract:
Catastrophic bridge failure happens due to the lack of inspection, lack of design and extreme events like flooding, an earthquake. Bridge Management System (BMS) is utilized to diminish such an accident with proper design and frequent inspection. Visual inspection cannot detect any subsurface defects, so using Non-Destructive Evaluation (NDE) techniques remove these barriers as far as possible. Among all NDE techniques, Ground Penetrating Radar (GPR) has been proved as a highly effective device for detecting internal defects in a reinforced concrete bridge deck. GPR is used for detecting rebar location and rebar corrosion in the reinforced concrete deck. GPR profile is composed of hyperbola series in which sound hyperbola denotes sound rebar and blur hyperbola or signal attenuation shows corroded rebar. Interpretation of GPR images is implemented by numerical analysis or visualization. Researchers recently found that interpretation through visualization is more precise than interpretation through numerical analysis, but visualization is time-consuming and a highly subjective process. Automating the interpretation of GPR image through visualization can solve these problems. After interpretation of all scans of a bridge, condition assessment is conducted based on the generated corrosion map. However, this such a condition assessment is not objective and precise. Condition assessment based on structural integrity and strength parameters can make it more objective and precise. The main purpose of this study is to present an automated interpretation method of a reinforced concrete bridge deck through a visualization technique. In the end, the combined analysis of the structural condition in a bridge is implemented.Keywords: bridge condition assessment, ground penetrating radar, GPR, NDE techniques, visualization
Procedia PDF Downloads 148223 Bacteremia Caused by Nontoxigenic Vibrio cholerae in an Immunocompromised Patient in Istanbul, Turkey
Authors: Fatma Koksal Çakirlar, Si̇nem Ozdemir, Selcan Akyol, Revazi̇ye Gulesen, Murat Gunaydin, Nevri̇ye Gonullu, Belkis Levent, Nuri̇ Kiraz
Abstract:
Vibrio cholerae O1 and O139 are the causative agent of epidemic or pandemic cholera. V. cholerae O1 is generally accepted as a non-invasive enterotoxigenic organism causing gastroenteritis of various severities. Non-O1 V. cholerae can cause small outbreaks of diarrhea due to consumption of contaminated food and water. Particularly, the patients with achlorydria have a risk for vibrio infections. There are numerous case reports of bacteremia caused by vibrio in patients with predisposing conditions like cirrhosis, nephrotic syndrome, diabetes, hematologic malignancy, gastrectomy, and AIDS. We described in this study the first case of nontoxigenic, non-01/non-O139 V. cholerae isolated from the blood culture of a 77-year-old female patient with hipertension, diabetes, coronary artery disease, gout and about 9 years ago migrated breast cancer history. The patient with complaints of shortness of breath, fever and malaise admitted to our emergency clinic were evaluated. There was no diarrhea or abdominal symptoms in the patient. No growth in her urine culture, but blood culture (BACTEC 9120 system, Becton Dickinson, USA) was positive for non-01/non-O139 V. cholerae that was identified by conventional methods and Phoenix automated system (BD Diagnostic Systems, Sparks, MD). It does not secrete the cholera toxin. The agglutination test was negative with polyvalent O1 antisera and O139 antiserum. Empirically ceftriaxone was administered to the patient and she was discharged with improvement in general condition. In this study we report bacteremia by non-01/non-O139 V. cholerae that is rare in the worldwide and first in Turkey.Keywords: bacteremia, blood culture, immunocompromised patient, Non-O1 vibrio cholerae
Procedia PDF Downloads 219222 Finite Element Analysis of Resonance Frequency Shift of Laminated Composite Beam
Authors: Cheng Yang Kwa, Yoke Rung Wong
Abstract:
Laminated composite materials are widely employed in automotive, aerospace, and other industries. These materials provide distinct benefits due to their high specific strength, high specific modulus, and ability to be customized for a specific function. However, delamination of laminated composite materials is one of the main defects which can occur during manufacturing, regular operations, or maintenance. Delamination can bring about considerable internal damage, unobservable by visual check, that causes significant loss in strength and stability, leading to composite structure catastrophic failure. Structural health monitoring (SHM) is known to be the automated method for monitoring and evaluating the condition of a monitored object. There are several ways to conduct SHM in aerospace. One of the effective methods is to monitor the natural frequency shift of structure due to the presence of defect. This study investigated the mechanical resonance frequency shift of a multi-layer composite cantilever beam due to interlaminar delamination. ANSYS Workbench® was used to create a 4-plies laminated composite cantilever finite element model with [90/0]s fiber setting. Epoxy Carbon UD (230GPA) Prepreg was chosen, and the thickness was 2.5mm for each ply. The natural frequencies of the finite element model with various degree of delamination were simulated based on modal analysis and then validated by using literature. It was shown that the model without delamination had natural frequency of 40.412 Hz, which was 1.55% different from the calculated result (41.050 Hz). Thereafter, the various degree of delamination was mimicked by changing the frictional conditions at the middle ply-to-ply interface. The results suggested that delamination in the laminated composite cantilever induced a change in its stiffness which alters its mechanical resonance frequency.Keywords: structural health monitoring, NDT, cantilever, laminate
Procedia PDF Downloads 101221 Advancements in Autonomous Drones for Enhanced Healthcare Logistics
Authors: Bhaargav Gupta P., Vignesh N., Nithish Kumar R., Rahul J., Nivetha Ruvah D.
Abstract:
Delivering essential medical supplies to rural and underserved areas is challenging due to infrastructure limitations and logistical barriers, often resulting in inefficiencies and delays. Traditional delivery methods are hindered by poor road networks, long distances, and difficult terrains, compromising timely access to vital resources, especially in emergencies. This paper introduces an autonomous drone system engineered to optimize last-mile delivery. By utilizing advanced navigation and object-detection algorithms, such as region-based convolutional neural networks (R-CNN), our drones efficiently avoid obstacles, identify safe landing zones, and adapt dynamically to varying environments. Equipped with high-precision GPS and autonomous capabilities, the drones effectively navigate complex, remote areas with minimal dependence on established infrastructure. The system includes a dedicated mobile application for secure order placement and real-time tracking, and a secure payload box with OTP verification ensures tamper-resistant delivery to authorized recipients. This project demonstrates the potential of automated drone technology in healthcare logistics, offering a scalable and eco-friendly approach to enhance accessibility and service delivery in underserved regions. By addressing logistical gaps through advanced automation, this system represents a significant advancement toward sustainable, accessible healthcare in remote areas.Keywords: region-based convolutional neural network, one time password, global positioning system, autonomous drones, healthcare logistics
Procedia PDF Downloads 7220 Evaluation of Antibiotic Resistance Profiles of Staphlyococci Isolated from Various Clinical Specimens
Authors: Recep Kesli, Merih Simsek, Cengiz Demir, Onur Turkyilmaz
Abstract:
Objective: Goal of this study was to determine the antibiotic resistance of Staphylococcus aureus (S. aureus) and Methicillin resistant staphylococcus aureus (MRSA) strains isolated at Medical Microbiology Laboratory of ANS Application and Research Hospital, Afyon Kocatepe University, Turkey. Methods: S. aureus strains isolated between October 2012 and September 2016, from various clinical specimens were evaluated retrospectively. S. aureus strains were identified by both the conventional methods and automated identification system -VITEK 2 (bio-Mérieux, Marcy l’etoile, France), and Meticillin resistance was verified using oxacillin disk with disk-diffusion method. Antibiotic resistance testing was performed by Kirby-Bauer disc diffusion method according to CLSI criteria, and intermediate susceptible strains were considered as resistant. Results: Seven hundred S.aureus strains which were isolated from various clinical specimens were included in this study. These strains were mostly isolated from blood culture, tissue, wounds and bronchial aspiration. All of 306 (43,7%) were oxacillin resistant. While all the S.aureus strains were found to be susceptible to vancomycin, teicoplanin, daptomycin and linezolid, 38 (9.6 %), 77 (19.5 %), 116 (29.4 %), 152 (38.6 %) and 28 (7.1 %) were found to be resistant aganist to clindamycin, erythromycin, gentamicin, tetracycline and sulfamethoxazole/trimethoprim, retrospectively. Conclusions: Comparing to the Methicillin sensitive staphylococcus aureus (MSSA) strains, increased resistance rates of, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin, and tetracycline were observed among the MRSA strains. In this study, the most effective antibiotic on the total of strains was found to be trimethoprim-sulfamethoxazole, the least effective antibiotic on the total of strains was found to be tetracycline.Keywords: antibiotic resistance, MRSA, Staphylococcus aureus, VITEK 2
Procedia PDF Downloads 253219 MRI Quality Control Using Texture Analysis and Spatial Metrics
Authors: Kumar Kanudkuri, A. Sandhya
Abstract:
Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy
Procedia PDF Downloads 170218 Automation of Pneumatic Seed Planter for System of Rice Intensification
Authors: Tukur Daiyabu Abdulkadir, Wan Ishak Wan Ismail, Muhammad Saufi Mohd Kassim
Abstract:
Seed singulation and accuracy in seed spacing are the major challenges associated with the adoption of mechanical seeder for system of rice intensification. In this research the metering system of a pneumatic planter was modified and automated for increase precision to meet the demand of system of rice intensification SRI. The chain and sprocket mechanism of a conventional vacuum planter were now replaced with an electro mechanical system made up of a set of servo motors, limit switch, micro controller and a wheel divided into 10 equal angles. The circumference of the planter wheel was determined based on which seed spacing was computed and mapped to the angles of the metering wheel. A program was then written and uploaded to arduino micro controller and it automatically turns the seed plates for seeding upon covering the required distance. The servo motor was calibrated with the aid of labVIEW. The machine was then calibrated using a grease belt and varying the servo rpm through voltage variation between 37 rpm to 47 rpm until an optimum value of 40 rpm was obtained with a forward speed of 5 kilometers per hour. A pressure of 1.5 kpa was found to be optimum under which no skip or double was recorded. Precision in spacing (coefficient of variation), miss index, multiple index, doubles and skips were investigated. No skip or double was recorded both at laboratory and field levels. The operational parameters under consideration were both evaluated at laboratory and field. Even though there was little variation between the laboratory and field values of precision in spacing, multiple index and miss index, the different is not significant as both laboratory and field values fall within the acceptable range.Keywords: automation, calibration, pneumatic seed planter, system of rice intensification
Procedia PDF Downloads 642217 Prevalence of Diabetes Mellitus Among Human Immune Deficiency Virus-Positive Patients Under Anti-retroviral Attending in Rwanda, a Case Study of University Teaching Hospital of Butare
Authors: Venuste Kayinamura, V. Iyamuremye, A. Ngirabakunzi
Abstract:
Anti-retroviral therapy (ART) for HIV patient can cause a deficiency in glucose metabolism by promoting insulin resistance, glucose intolerance, and diabetes, diabetes mellitus keep increasing among HIV-infected patients worldwide but there is limited data on levels of blood glucose and its relationship with antiretroviral drugs (ARVs) and HIV-infection worldwide, particularly in Rwanda. A convenient sampling strategy was used in this study and it involved 323 HIV patients (n=323). Patients who are HIV positive under ARVs were involved in this study. The patient’s blood glucose was analyzed using an automated machine or glucometer (COBAS C 311). Data were analyzed using Microsoft Excel and SPSS V. 20.0 and presented in percentages. The highest diabetes mellitus prevalence was 93.33 % in people aged >40 years while the lowest diabetes mellitus prevalence was 6.67% in people aged between 21-and 40 years. The P-value was (0.021). Thus, there is a significant association between age and diabetes occurrence. The highest diabetes mellitus prevalence was 28.2% in patients under ART treatment for more than 10 years, 16.7% were <5years while 20% of patients were on ART treatment between 5-10 years. The P-value here is (0.03), thus the incidence of diabetes is associated with long-term ART use in HIV-infected patients. This study assessed the prevalence of diabetes among HIV-infected patients under ARVs attending the University Teaching Hospital of Butare (CHUB), it shows that the prevalence of diabetes is high in HIV-infected patients under ARTs. This study found no significant relationship between gender and diabetes mellitus growth. Therefore, regular assessment of diabetes mellitus especially among HIV-infected patients under ARVs is highly recommended to control other health issues caused by diabetes mellitus.Keywords: anti-retroviral, diabetes mellitus, antiretroviral therapy, human immune deficiency virus
Procedia PDF Downloads 113216 Information Extraction for Short-Answer Question for the University of the Cordilleras
Authors: Thelma Palaoag, Melanie Basa, Jezreel Mark Panilo
Abstract:
Checking short-answer questions and essays, whether it may be paper or electronic in form, is a tiring and tedious task for teachers. Evaluating a student’s output require wide array of domains. Scoring the work is often a critical task. Several attempts in the past few years to create an automated writing assessment software but only have received negative results from teachers and students alike due to unreliability in scoring, does not provide feedback and others. The study aims to create an application that will be able to check short-answer questions which incorporate information extraction. Information extraction is a subfield of Natural Language Processing (NLP) where a chunk of text (technically known as unstructured text) is being broken down to gather necessary bits of data and/or keywords (structured text) to be further analyzed or rather be utilized by query tools. The proposed system shall be able to extract keywords or phrases from the individual’s answers to match it into a corpora of words (as defined by the instructor), which shall be the basis of evaluation of the individual’s answer. The proposed system shall also enable the teacher to provide feedback and re-evaluate the output of the student for some writing elements in which the computer cannot fully evaluate such as creativity and logic. Teachers can formulate, design, and check short answer questions efficiently by defining keywords or phrases as parameters by assigning weights for checking answers. With the proposed system, teacher’s time in checking and evaluating students output shall be lessened, thus, making the teacher more productive and easier.Keywords: information extraction, short-answer question, natural language processing, application
Procedia PDF Downloads 428215 Evaluation of the Analytic for Hemodynamic Instability as a Prediction Tool for Early Identification of Patient Deterioration
Authors: Bryce Benson, Sooin Lee, Ashwin Belle
Abstract:
Unrecognized or delayed identification of patient deterioration is a key cause of in-hospitals adverse events. Clinicians rely on vital signs monitoring to recognize patient deterioration. However, due to ever increasing nursing workloads and the manual effort required, vital signs tend to be measured and recorded intermittently, and inconsistently causing large gaps during patient monitoring. Additionally, during deterioration, the body’s autonomic nervous system activates compensatory mechanisms causing the vital signs to be lagging indicators of underlying hemodynamic decline. This study analyzes the predictive efficacy of the Analytic for Hemodynamic Instability (AHI) system, an automated tool that was designed to help clinicians in early identification of deteriorating patients. The lead time analysis in this retrospective observational study assesses how far in advance AHI predicted deterioration prior to the start of an episode of hemodynamic instability (HI) becoming evident through vital signs? Results indicate that of the 362 episodes of HI in this study, 308 episodes (85%) were correctly predicted by the AHI system with a median lead time of 57 minutes and an average of 4 hours (240.5 minutes). Of the 54 episodes not predicted, AHI detected 45 of them while the episode of HI was ongoing. Of the 9 undetected, 5 were not detected by AHI due to either missing or noisy input ECG data during the episode of HI. In total, AHI was able to either predict or detect 98.9% of all episodes of HI in this study. These results suggest that AHI could provide an additional ‘pair of eyes’ on patients, continuously filling the monitoring gaps and consequently giving the patient care team the ability to be far more proactive in patient monitoring and adverse event management.Keywords: clinical deterioration prediction, decision support system, early warning system, hemodynamic status, physiologic monitoring
Procedia PDF Downloads 187