Search results for: conductive properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9113

Search results for: conductive properties

2573 Horn Snail (Telescopium Telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing

Authors: Patricia N. Baguio, Angel Amy M. Bunag, Paul Bryan E. Ornopia, John Paul C. Suel

Abstract:

This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with Calcium Carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium Carbonate) to 46.02 N (70g CaCO3) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles with Calcium Carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium Carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes.

Keywords: Horn snail shell, calcium carbonate, breaking strength, flexural strength

Procedia PDF Downloads 63
2572 Horn Snail (Telescopium telescopium) Shells Waste as an Alternative for Ceramic Tile Manufacturing

Authors: Patricia N. Baguio, Angel Amy M. Buñag, Paul Bryan E. Ornopia, John Paul C. Suel

Abstract:

This research investigates the viability and efficiency of employing ceramic tile additives derived from horn snail shell material, specifically calcium carbonate (CaCO₃). The study aims to evaluate the mechanical properties of ceramic tiles with calcium carbonate with varying amounts of CaCO₃, focusing on breaking and flexural strength. The research employs a comprehensive methodology, including material collection, slurry forming, shaping, drying, firing, and statistical analysis using paired sample T-tests. The result indicates a positive correlation between calcium carbonate (CaCO₃) application and ceramic tile strength, revealing increased breaking strength from 29.41 N (non-calcium carbonate) to 46.02 N (70g CaCO₃) and a substantial enhancement to 82.61 N with 150g CaCO₃. Comparative analyses show higher breaking and flexural strength in tiles calcium carbonate with 150g CaCO₃ analysis (p = 0.011), indicating its feasibility for ceramic tile manufacturing, while 70g CaCO₃ shows no significant difference from non-calcium carbonate tiles (p = 0.135). The addition of horn snail shells shows potential for improving ceramic tile quality and contributes positively to waste management in standard tile production processes.

Keywords: horn snail shell, calcium carbonate, breaking strength, flexural strength

Procedia PDF Downloads 66
2571 Pinch Technology for Minimization of Water Consumption at a Refinery

Authors: W. Mughees, M. Alahmad

Abstract:

Water is the most significant entity that controls local and global development. For the Gulf region, especially Saudi Arabia, with its limited potable water resources, the potential of the fresh water problem is highly considerable. In this research, the study involves the design and analysis of pinch-based water/wastewater networks. Multiple water/wastewater networks were developed using pinch analysis involving direct recycle/material recycle method. Property-integration technique was adopted to carry out direct recycle method. Particularly, a petroleum refinery was considered as a case study. In direct recycle methodology, minimum water discharge and minimum fresh water resource targets were estimated. Re-design (or retrofitting) of water allocation in the networks was undertaken. Chemical Oxygen Demand (COD) and hardness properties were taken as pollutants. This research was based on single and double contaminant approach for COD and hardness and the amount of fresh water was reduced from 340.0 m3/h to 149.0 m3/h (43.8%), 208.0 m3/h (61.18%) respectively. While regarding double contaminant approach, reduction in fresh water demand was 132.0 m3/h (38.8%). The required analysis was also carried out using mathematical programming technique. Operating software such as LINGO was used for these studies which have verified the graphical method results in a valuable and accurate way. Among the multiple water networks, the one possible water allocation network was developed based on mass exchange.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 476
2570 Impact of Welding Distortion on the Design of Fabricated T-Girders Using Finite Element Modeling

Authors: Ahmed Hammad, Yehia Abdel-Nasser, Mohamed Shamma

Abstract:

The main configuration of ship construction consists of standard and fabricated stiffening members which are commonly used in shipbuilding such as fabricated T-sections. During the welding process, the non-uniform heating and rapid cooling lead to the inevitable presence of out-of-plane distortion and welding induced residual stresses. Because of these imperfections, the fabricated structural members may not attain their design load to be carried. The removal of these imperfections will require extra man-hours. In the present work, controlling these imperfections has been investigated at both design and fabrication stages. A typical fabricated T-girder is selected to investigate the problem of these imperfections using double-side welding. A numerical simulation based on finite element (FE) modeling has been used to investigate the effect of different parameters of the selected fabricated T-girder such as geometrical properties and welding sequences on the magnitude of welding imperfections. FE results were compared with the results of experimental model of a double-side fillet weld. The present work concludes that: Firstly, in the design stage, the optimum geometry of the fabricated T- girder is determined based on minimum steel weight and out- of- plane distortion. Secondly, in the fabrication stage, the best welding sequence is determined on the basis of minimum welding out- of- plane distortion.

Keywords: fabricated T-girder, FEM, out-of-plane distortion, section modulus, welding residual stresses

Procedia PDF Downloads 120
2569 Akt: Isoform-Specific Regulation of Cellular Signaling in Cancer

Authors: Bhumika Wadhwa, Fayaz Malik

Abstract:

The serine/threonine protein kinase B (PKB) also known as Akt, is one of the multifaceted kinase in human kinome, existing in three isoforms. Akt plays a vital role in phosphoinositide 3-kinase (PI3K) mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. The functional significance of an individual isoform of Akt is not redundant in cancer cell proliferation and metastasis instead Akt isoforms play distinct roles during metastasis; thereby regulating EMT. This study aims to determine isoform specific functions of Akt in cancer. The results obtained suggest that Akt1 restrict tumor invasion, whereas Akt2 promotes cell migration and invasion by various techniques like MTT, wound healing and invasion assay. Similarly, qRT-PCR also revealed that Akt3 has shown promising results in promoting cancer cell migration. Contrary to pro-oncogenic properties attributed to Akt, it is to be understood how various isoforms of Akt compensates each other in the regulation of common pathways during cancer progression and drug resistance. In conclusion, this study aims to target selective isoforms which is essential to inhibit cancer. However, the question now is whether, and how much, Akt inhibition will be tolerated in the clinic remains to be answered and the experiments will have to address the question of which combinations of newly devised Akt isoform specific inhibitors exert a favourable therapeutic effect in in vivo models of cancer to provide the therapeutic window with minimal toxicity.

Keywords: Akt isoforms, cancer, drug resistance, epithelial mesenchymal transition

Procedia PDF Downloads 255
2568 Membrane Bioreactor versus Activated Sludge Process for Aerobic Wastewater Treatment and Recycling

Authors: Sarra Kitanou

Abstract:

Membrane bioreactor (MBR) systems are one of the most widely used wastewater treatment processes for various municipal and industrial waste streams. It is based on complex interactions between biological processes, filtration process and rheological properties of the liquid to be treated. Its complexity makes understanding system operation and optimization more difficult, and traditional methods based on experimental analysis are costly and time consuming. The present study was based on an external membrane bioreactor pilot scale with ceramic membranes compared to conventional activated sludge process (ASP) plant. Both systems received their influent from a domestic wastewater. The membrane bioreactor (MBR) produced an effluent with much better quality than ASP in terms of total suspended solids (TSS), organic matter such as biological oxygen demand (BOD) and chemical oxygen demand (COD), total Phosphorus and total Nitrogen. Other effluent quality parameters also indicate substantial differences between ASP and MBR. This study leads to conclude that in the case domestic wastewater, MBR treatment has excellent effluent quality. Hence, the replacement of the ASP by the MBRs may be justified on the basis of their improved removal of solids, nutrients, and micropollutants. Furthermore, in terms of reuse the great quality of the treated water allows it to be reused for irrigation.

Keywords: aerobic wastewater treatment, conventional activated sludge process, membrane bioreactor, reuse for irrigation

Procedia PDF Downloads 76
2567 Urban Networks as Model of Sustainable Design

Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose

Abstract:

This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.

Keywords: graphs, complexity sciences, urban networks, urban design

Procedia PDF Downloads 153
2566 The Impact of Temperature on the Threshold Capillary Pressure of Fine-Grained Shales

Authors: Talal Al-Bazali, S. Mohammad

Abstract:

The threshold capillary pressure of shale caprocks is an important parameter in CO₂ storage modeling. A correct estimation of the threshold capillary pressure is not only essential for CO₂ storage modeling but also important to assess the overall economical and environmental impact of the design process. A standard step by step approach has to be used to measure the threshold capillary pressure of shale and non-wetting fluids at different temperatures. The objective of this work is to assess the impact of high temperature on the threshold capillary pressure of four different shales as they interacted with four different oil based muds, air, CO₂, N₂, and methane. This study shows that the threshold capillary pressure of shale and non-wetting fluid is highly impacted by temperature. An empirical correlation for the dependence of threshold capillary pressure on temperature when different shales interacted with oil based muds and gasses has been developed. This correlation shows that the threshold capillary pressure decreases exponentially as the temperature increases. In this correlation, an experimental constant (α) appears, and this constant may depend on the properties of shale and non-wetting fluid. The value for α factor was found to be higher for gasses than for oil based muds. This is consistent with our intuition since the interfacial tension for gasses is higher than those for oil based muds. The author believes that measured threshold capillary pressure at ambient temperature is misleading and could yield higher values than those encountered at in situ conditions. Therefore one must correct for the impact of temperature when measuring threshold capillary pressure of shale at ambient temperature.

Keywords: capillary pressure, shale, temperature, thresshold

Procedia PDF Downloads 369
2565 Phase Behavior Modelling of Libyan Near-Critical Gas-Condensate Field

Authors: M. Khazam, M. Altawil, A. Eljabri

Abstract:

Fluid properties in states near a vapor-liquid critical region are the most difficult to measure and to predict with EoS models. The principal model difficulty is that near-critical property variations do not follow the same mathematics as at conditions far away from the critical region. Libyan NC98 field in Sirte basin is a typical example of near critical fluid characterized by high initial condensate gas ratio (CGR) greater than 160 bbl/MMscf and maximum liquid drop-out of 25%. The objective of this paper is to model NC98 phase behavior with the proper selection of EoS parameters and also to model reservoir depletion versus gas cycling option using measured PVT data and EoS Models. The outcomes of our study revealed that, for accurate gas and condensate recovery forecast during depletion, the most important PVT data to match are the gas phase Z-factor and C7+ fraction as functions of pressure. Reasonable match, within -3% error, was achieved for ultimate condensate recovery at abandonment pressure of 1500 psia. The smooth transition from gas-condensate to volatile oil was fairly simulated by the tuned PR-EoS. The predicted GOC was approximately at 14,380 ftss. The optimum gas cycling scheme, in order to maximize condensate recovery, should not be performed at pressures less than 5700 psia. The contribution of condensate vaporization for such field is marginal, within 8% to 14%, compared to gas-gas miscible displacement. Therefore, it is always recommended, if gas recycle scheme to be considered for this field, to start it at the early stage of field development.

Keywords: EoS models, gas-condensate, gas cycling, near critical fluid

Procedia PDF Downloads 317
2564 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei

Abstract:

Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack

Procedia PDF Downloads 204
2563 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation

Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar

Abstract:

In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.

Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment

Procedia PDF Downloads 430
2562 Poli4SDG: An Application for Environmental Crises Management and Gender Support

Authors: Angelica S. Valeriani, Lorenzo Biasiolo

Abstract:

In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e., exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, the implementation features and properties of the prototype are discussed.

Keywords: crowdsourcing, social media, SDG, climate change, natural disasters, gender equality

Procedia PDF Downloads 108
2561 Production of Novel Antibiotics by Importing eryK and eryG Genes in Streptomyces fradiae

Authors: Neda Gegar Goshe, Hossein Rassi

Abstract:

The antibacterial properties of macrolide antibiotics (such as erythromycin and tylosin) depend ultimately on the glycosylation of otherwise inactive polyketide lactones. Among the sugars commonly found in such macrolides are various 6-deoxyhexoses including the 3-dimethylamino sugars mycaminose and desosamine (4-deoxymycaminose). Some macrolides (such as tylosin) possess multiple sugar moieties, whereas others (such as erythromycin) have two sugar substituents. Streptomyces fradiae is an ideal host for development of generic polyketide-overproducing strains because it contains three of the most common precursors-malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA-used by modular PKS, and is a host that is amenable to genetic manipulation. As patterns of glycosylation markedly influence a macrolide's drug activity, there is considerable interest in the possibility of using combinatorial biosynthesis to generate new pairings of polyketide lactones with sugars, especially 6-deoxyhexoses. Here, we report a successful attempt to alter the aminodeoxyhexose-biosynthetic capacity of Streptomyces fradiae (a producer of tylosin) by importing genes from the erythromycin producer Saccharopolyspora erythraea. The biotransformation of erythromycin-D into the desired major component erythromycin-A involves two final enzymatic reactions, EryK-catalyzed hydroxylation at the C-12 position of the aglycone and EryG-catalyzed O methylation at the C-3 position of macrose .This engineered S. fradiae produced substantial amounts of two potentially useful macrolides that had not previously been obtained by fermentation.

Keywords: Streptomyces fradiae, eryK and eryG genes, tylosin, antibiotics

Procedia PDF Downloads 324
2560 Neuroprotective Effects of Allium Cepa Extract Against Ischemia Reperfusion Induced Cognitive Dysfunction and Brain Damage in Mice

Authors: Jaspal Rana

Abstract:

Oxidative stress has been identified as an underlying cause of ischemia-reperfusion (IR) related cognitive dysfunction and brain damage. Therefore, antioxidant based therapies to treat IR injury are being investigated. Allium cepa L. (onion) is used as culinary medicine and is documented to have marked antioxidant effects. Hence, the present study was designed to evaluate the effect of A. cepa outer scale extract (ACE) against IR induced cognition and biochemical deficit in mice. ACE was prepared by maceration with 70% methanol and fractionated into ethylacetate and aqueous fractions. Bilateral common carotid artery occlusion for 10 min followed by 24 h reperfusion was used to induce cerebral IR injury. Following IR injury, ACE (100 and 200 mg/kg) was administered orally to animals for 7 days once daily. Behavioral outcomes (memory and sensorimotor functions) were evaluated using Morris water maze and neurological severity score. Cerebral infarct size, brain thiobarbituric acid reactive species, reduced glutathione, and superoxide dismutase activity was also determined. Treatment with ACE significantly ameliorated IR mediated deterioration of memory and sensorimotor functions and rise in brain oxidative stress in animals. The results of the present investigation revealed that ACE improved functional outcomes after cerebral IR injury which may be attributed to its antioxidant properties.

Keywords: ischemia-reperfusion, neuroprotective, stroke, antioxidant

Procedia PDF Downloads 112
2559 Fabrication of Porous Materials for the Removal of Lead from Waste Water

Authors: Marcia Silva, Jayme Kolarik, Brennon Garthwait, William Lee, Hai-Feng Zhang

Abstract:

Adsorption of lead by a natural porous material was studied to establish a baseline for the removal of heavy metals from drinking and waste water. Samples were examined under different conditions such as solution pH, solution concentration, solution temperature, and exposure time. New materials with potentially enhanced adsorption properties were developed by functionalizing the surface of the natural porous material to fabricate graphene based coated and sulfide based treated porous material. The functionalized materials were characterized with Fourier Transform Infrared Spectroscopy (FTIR), Raman, Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) techniques. Solution pH effect on removal efficiency has been investigated in acidic (pH = 4), neutral (pH = 6) and basic (pH = 10) pH levels. All adsorbent materials showed highest adsorption capacities at neutral pH levels. Batch experiment was employed to assess the efficacy for the removal of lead with the sorption kinetics and the adsorption isotherms being determined for the natural and treated porous materials. The addition of graphene-based and sulfide-based materials increased the lead removal capacity of the natural clean porous material. Theoretical calculations confirmed pseudo-second order model as kinetic mechanism for lead adsorption for all adsorbents.

Keywords: heavy metals, ion exchange, adsorption, water remediation

Procedia PDF Downloads 247
2558 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)

Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo

Abstract:

High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.

Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound

Procedia PDF Downloads 533
2557 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 152
2556 Aquatic Intervention Research for Children with Autism Spectrum Disorders

Authors: Mehmet Yanardag, Ilker Yilmaz

Abstract:

Children with autism spectrum disorders (ASD) enjoy and success the aquatic-based exercise and play skills in a pool instead of land-based exercise in a gym. Some authors also observed that many children with ASD experience more success in attaining movement skills in aquatic environment. Properties of the water and hydrodynamic principles cause buoyancy of the water and decrease effects of gravity and it leads to allow a child to practice important aquatic skills with limited motor skills. Also, some authors experience that parents liked the effects of the aquatic intervention program on children with ASD such as improving motor performance, movement capacity and learning basic swimming skills. The purpose of this study was to investigate the effects of aquatic exercise training on water orientation and underwater working capacity were measured in the pool. This study included in four male children between 5 and 7 years old with ASD and 6.25±0.5 years old. Aquatic exercise skills were applied by using one of the error less teaching which is called the 'most to least prompt' procedure during 12-week, three times a week and 60 minutes a day. The findings of this study indicated that there were improvements test results both water orientation skill and underwater working capacity of children with ASD after 12-weeks exercise training. It was seen that the aquatic exercise intervention would be affected to improve working capacity and orientation skills with the special education approaches applying children with ASD in multidisciplinary team-works.

Keywords: aquatic, autism, orientation, ASD, children

Procedia PDF Downloads 431
2555 Tillage and Manure Effects on Water Retention and Van Genuchten Parameters in Western Iran

Authors: Azadeh Safadoust, Ali Akbar Mahboubi, Mohammad Reza Mosaddeghi, Bahram Gharabaghi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha⁻¹] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha⁻¹). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha⁻¹). This was due to the increase in the total pore size and continuity.

Keywords: corn, manure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 77
2554 A Review on the Future Canadian RADARSAT Constellation Mission and Its Capabilities

Authors: Mohammed Dabboor

Abstract:

Spaceborne Synthetic Aperture Radar (SAR) systems are active remote sensing systems independent of weather and sun illumination, two factors which usually inhibit the use of optical satellite imagery. A SAR system could acquire single, dual, compact or fully polarized SAR imagery. Each SAR imagery type has its advantages and disadvantages. The sensitivity of SAR images is a function of the: 1) band, polarization, and incidence angle of the transmitted electromagnetic signal, and 2) geometric and dielectric properties of the radar target. The RADARSAT-1 (launched on November 4, 1995), RADARSAT-2 ((launched on December 14, 2007) and RADARSAT Constellation Mission (to be launched in July 2018) are three past, current, and future Canadian SAR space missions. Canada is developing the RADARSAT Constellation Mission (RCM) using small satellites to further maximize the capability to carry out round-the-clock surveillance from space. The Canadian Space Agency, in collaboration with other government-of-Canada departments, is leading the design, development and operation of the RADARSAT Constellation Mission to help addressing key priorities. The purpose of our presentation is to give an overview of the future Canadian RCM SAR mission with its satellites. Also, the RCM SAR imaging modes along with the expected SAR products will be described. An emphasis will be given to the mission unique capabilities and characteristics, such as the new compact polarimetry SAR configuration. In this presentation, we will summarize the RCM advancement from previous RADARSAT satellite missions. Furthermore, the potential of the RCM mission for different Earth observation applications will be outlined.

Keywords: compact polarimetry, RADARSAT, SAR mission, SAR applications

Procedia PDF Downloads 183
2553 Fuzzy Logic Modeling of Evaluation the Urban Skylines by the Entropy Approach

Authors: Murat Oral, Seda Bostancı, Sadık Ata, Kevser Dincer

Abstract:

When evaluating the aesthetics of cities, an analysis of the urban form development depending on design properties with a variety of factors is performed together with a study of the effects of this appearance on human beings. Different methods are used while making an aesthetical evaluation related to a city. Entropy, in its preliminary meaning, is the mathematical representation of thermodynamic results. Measuring the entropy is related to the distribution of positional figures of a message or information from the probabilities standpoint. In this study, analysis of evaluation the urban skylines by the entropy approach was modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between application data and RBMTF is done by using absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of evaluation the urban skylines by the entropy approach. As a result, RBMTF model has shown satisfying relation with experimental results, which suggests an alternative method to evaluation of the urban skylines by the entropy approach.

Keywords: urban skylines, entropy, rule-based Mamdani type, fuzzy logic

Procedia PDF Downloads 288
2552 Analysis of Spectral Radiative Entropy Generation in a Non-Gray Participating Medium with Heat Source (Furnaces)

Authors: Asadollah Bahrami

Abstract:

In the present study, spectral radiative entropy generation is analyzed in a furnace filled with a mixture of H₂O, CO₂ and soot at radiative equilibrium. For the angular and spatial discretization of the radiative transfer equation and radiative entropy generation equations, the discrete ordinates method and the finite volume method are used, respectively. Spectral radiative properties are obtained using the correlated-k (CK) non-gray model with updated parameters based on the HITEMP2010 high-resolution database. In order to evaluate the effects of the location of the heat source, boundary condition and wall emissivity on radiative entropy generation, five cases are considered with different conditions. The spectral and total radiative entropy generation in the system are calculated for all cases and the effects of mentioned parameters on radiative entropy generation are attentively analyzed and finally, the optimum condition is especially presented. The most important results can be stated as follows: Results demonstrate that the wall emissivity has a considerable effect on the radiative entropy generation. Also, irreversible radiative transfer at the wall with lower temperatures is the main source of radiative entropy generation in the furnaces. In addition, the effect of the location of the heat source on total radiative entropy generation is less than other factors. Eventually, it can be said that characterizing the effective parameters of radiative entropy generation provides an approach to minimizing the radiative entropy generation and enhancing the furnace's performance practicality.

Keywords: spectral radiative entropy generation, non-gray medium, correlated k(CK) model, heat source

Procedia PDF Downloads 99
2551 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations

Authors: James Adewale, Joshua Sunday

Abstract:

In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.

Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent

Procedia PDF Downloads 498
2550 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system

Procedia PDF Downloads 152
2549 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives

Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović

Abstract:

In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).

Keywords: benzimidazoles, QSAR, ADME, in silico

Procedia PDF Downloads 373
2548 In vitro Antioxidant Scavenging of Root Fraction of Bryonia dioica

Authors: Yamani Amal, Lazaae Jamila, Elachouri Mostafa

Abstract:

Plants and their active agents – especially polyphenols – may have a principal role in the treatment of diseases that result from the defect of physiological antioxidant mechanisms. Bryonia dioica is well known in Moroccan traditional medicine for alleviatin pain and traiting many diseases. We have focused on plant belonging to Cucurbitaceae Family from around the world to understand their therapeutic uses and their potential antioxidant activities Although several biological activities and Chemical composition of Bryonia dioica are well characterized, no direct, in vitro study, of this natural product examined the antioxydant effect of the extract from the roots of Bryonia dioica. The aim of this study was to determine in vitro antioxidant activity of the B.dioica root, using antioxidant analysis methods based on determination of Hydroxyradical Scavenging, 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging, Hydrogenperoxide Scavenging and Nitric Oxide Scavenging. In this study, it was demonstrated, that, B. dioica root extract showed excellent antioxidant properties. This investigation showed that the roots of this plant contain potent natural scavengers R. It may represent an interesting source of antioxidant phenolics that may favour the extension of their cultivation as new source of natural antioxidants in addition to containing high quality proteins for human or animal nutrition. Therefore, there is need for all stakeholders on the Morocco to strive towards taking advantage of our enormous biodiversity resources to free our people from diseases, abject poverty and stagnation.

Keywords: Morocco, bryoniadioica, in vitro, antioxydant

Procedia PDF Downloads 383
2547 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 111
2546 Improving Swelling Performance Using Industrial Waste Products

Authors: Mohieldin Elmashad, Salwa Yassin

Abstract:

Expansive soils regarded as one of the most problematic unsaturated formations in the Egyptian arid zones and present a great challenge in civil engineering, in general, and geotechnical engineering, in particular. Severe geotechnical complications and consequent structural damages have been arising due to an excessive and differential volumetric change upon wetting and change in water content. Different studies have been carried out concerning the swelling performance of the expansive soils using different additives including phospho-gypsum as an industrial waste product. However, this paper describes the results of a comprehensive testing programme that was carried out to investigate the effect of phospho-gypsum (PG) and sodium chloride (NaCl), as an additive mixture, on the swelling performance of constituent samples of swelling soils. The constituent samples comprise commercial bentonite collected from a natural site, mixed with different percentages of PG-NaCl mixture. The testing programme had been scoped to cover the physical and chemical properties of the constituent samples. In addition, a mineralogical study using x-ray diffraction (XRD) was performed on the collected bentonite and the mixed bentonite with PG-NaCl mixture samples. The obtained results of this study showed significant improvement in the swelling performance of the tested samples with the increase of the proposed PG-NaCl mixture content.

Keywords: expansive soils, industrial waste, mineralogical study, swelling performance, X-ray diffraction

Procedia PDF Downloads 269
2545 Experimental Modeling and Simulation of Zero-Surface Temperature of Controlled Water Jet Impingement Cooling System for Hot-Rolled Steel Plates

Authors: Thomas Okechukwu Onah, Onyekachi Marcel Egwuagu

Abstract:

Zero-surface temperature, which controlled the cooling profile, was modeled and used to investigate the effect of process parameters on the hot-rolled steel plates. The parameters include impingement gaps of 40mm to 70mm; pipe diameters of 20mm to 45mm feeding jet nozzle with 30 holes of 8mm diameters each; and flow rates within 2.896x10-⁶m³/s and 3.13x10-⁵m³/s. The developed simulation model of the Zero-Surface Temperature, upon validation, showed 99% prediction accuracy with dimensional homogeneity established. The evaluated Zero-Surface temperature of Controlled Water Jet Impingement Steel plates showed a high cooling rate of 36.31 Celsius degree/sec at an optimal cooling nozzle diameter of 20mm, impingement gap of 70mm and a flow rate of 1.77x10-⁵m³/s resulting in Reynold's number 2758.586, in the turbulent regime was obtained. It was also deduced that as the nozzle diameter was increasing, the impingement gap was reducing. This achieved a faster rate of cooling to an optimum temperature of 300oC irrespective of the starting surface cooling temperature. The results additionally showed that with a tested-plate initial temperature of 550oC, a controlled cooling temperature of about 160oC produced a film and nucleated boiling heat extraction that was particularly beneficial at the end of controlled cooling and influenced the microstructural properties of the test plates.

Keywords: temperature, mechanistic-model, plates, impingements, dimensionless-numbers

Procedia PDF Downloads 43
2544 Influence of Exfoliated Graphene Nanoplatelets on Thermal Stability of Polypropylene Reinforced Hybrid Graphen-rice Husk Nanocomposites

Authors: Obinna Emmanuel Ezenkwa, Sani Amril Samsudin, Azman Hassan, Ede Anthony

Abstract:

A major challenge of polypropylene (PP) in high-heat application areas is its poor thermal stability. Under high temperature, PP burns readily with high degradation temperature and can self-ignite. In this study, PP is reinforced with hybrid filler of graphene (xGNP) and rice husk (RH) with RH at 15 wt%, and xGNP varied at 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 parts per hundred (phr) of the composite. Compatibilizer MAPP was also added in each sample at 4phr of the composite. Sample formulations were melt-blended using twin screw extruder and injection moulding machine. At xGNP optimum content of 1.5 phr, hybrid PP/RH/G1.5/MAPP nanocomposite increased in thermal stability by 24 °C and 30 °C compared to pure PP and unhybridized PP/RH composite respectively; char residue increased by 513% compared to pure PP and degree of crystallization (Xc) increased from 35.4% to 36.4%. The observed thermal properties enhancement in the hybrid nanocomposites can be related to the high surface area, gap-filling effect and exfoliation characteristics of the graphene nanofiller which worked in synergy with rice husk fillers in reinforcing PP. This study therefore, shows that graphene nanofiller inclusion in polymer composites fabrication can enhance the thermal stability of polyolefins for high heat applications.

Keywords: polymer nanocomposites, thermal stability, exfoliation, hybrid fillers, polymer reinforcement

Procedia PDF Downloads 38