Search results for: low molecular weight organic acids
1942 2-Dimensional Kinematic Analysis on Sprint Start with Sprinting Performance of Novice Athletes
Authors: Satpal Yadav, Biswajit Basumatary, Arvind S. Sajwan, Ranjan Chakravarty
Abstract:
The purpose of the study was to assess the effect of 2D kinematical selected variables on sprint start with sprinting performance of novice athletes. Six (3 National and 3 State level) athletes of sports authority of India, Guwahati has been selected for this study. The mean (M) and standard deviation (SD) of sprinters were age (17.44, 1.55), height (1.74m, .84m), weight (62.25 kg, 4.55), arm length (65.00 cm, 3.72) and leg length (96.35 cm, 2.71). Biokin-2D motion analysis system V4.5 can be used for acquiring two-dimensional kinematical data/variables on sprint start with Sprinting Performance. For the purpose of kinematic analysis a standard motion driven camera which frequency of the camera was 60 frame/ second i.e. handy camera of Sony Company were used. The sequence of photographic was taken under controlled condition. The distance of the camera from the athletes was 12 mts away and was fixed at 1.2-meter height. The result was found that National and State level athletes significant difference in there, trajectory knee, trajectory ankle, displacement knee, displacement ankle, linear velocity knee, linear velocity ankle, and linear acceleration ankle whereas insignificant difference was found between National and State level athletes in their linear acceleration knee joint on sprint start with sprinting performance. For all the Statistical test the level of significance was set at p<0.05.Keywords: 2D kinematic analysis, sprinting performance, novice athletes, sprint start
Procedia PDF Downloads 3231941 Nanopriming Potential of Metal Nanoparticles against Internally Seed Borne Pathogen Ustilago triciti
Authors: Anjali Sidhu, Anju Bala, Amit Kumar
Abstract:
Metal nanoparticles have the potential to revolutionize the agriculture owing to sizzling interdisciplinary nano-technological application domain. Numerous patents and products incorporating engineered nanoparticles (NPs) entered into agro-applications with the collective goal to promote proficiency as well as sustainability with lower input and generating meager waste than conventional products and approaches. Loose smut of wheat caused by Ustilago segetum tritici is an internally seed-borne pathogen. It is dormant in the seed unless the seed germinates and its symptoms are expressed at the reproductive stage of the plant only. Various seed treatment agents are recommended for this disease but due to the inappropriate methods of seed treatments used by farmers, each and every seed may not get treated, and the infected seeds escape the fungicidal action. The antimicrobial potential and small size of nanoparticles made them the material of choice as they could enter each seed and restrict the pathogen inside the seed due to the availability of more number of nanoparticles per unit volume of the nanoformulations. Nanoparticles of diverse nature known for their in vitro antimicrobial activity viz. ZnO, MgO, CuS and AgNPs were synthesized, surface modified and characterized by traditional methods. They were applied on infected wheat seeds which were then grown in pot conditions, and their mycelium was tracked in the shoot and leaf region of the seedlings by microscopic staining techniques. Mixed responses of inhibition of this internal mycelium were observed. The time and method of application concluded to be critical for application, which was optimised in the present work. The results implicated that there should be field trails to get final fate of these pot trails up to commercial level. The success of their field trials could be interpreted as a revolution to replace high dose organic fungicides of high residue behaviour.Keywords: metal nanoparticles, nanopriming, seed borne pathogen, Ustilago segetum tritici
Procedia PDF Downloads 1441940 Spino-Pelvic Alignment with SpineCor Brace Use in Adolescent Idiopathic Scoliosis
Authors: Reham H. Diab, Amira A. A. Abdallah, Eman A. Embaby
Abstract:
Background: The effectiveness of bracing on preventing spino-pelvic alignment deterioration in idiopathic scoliosis has been extensively studied especially in the frontal plane. Yet, there is lack of knowledge regarding the effect of soft braces on spino-pelvic alignment in the sagittal plane. Achieving harmonious sagittal plane spino-pelvic balance is critical for the preservation of physiologic posture and spinal health. Purpose: This study examined the kyphotic angle, lordotic angle and pelvic inclination in the sagittal plane and trunk imbalance in the frontal plane before and after a six-month rehabilitation period. Methods: Nineteen patients with idiopathic scoliosis participated in the study. They were divided into two groups; experimental and control. The experimental group (group I) used the SpineCor brace in addition to a rehabilitation exercise program while the control group (group II) had the exercise program only. The mean ±SD age, weight and height were 16.89±2.15 vs. 15.3±2.5 years; 59.78±6.85 vs. 62.5±8.33 Kg and 162.78±5.76 vs. 159±5.72 cm for group I vs. group II. Data were collected using for metric Π system. Results: Mixed design MANOVA showed that there were significant (p < 0.05) decreases in all the tested variables after the six-month period compared with “before” in both groups. Moreover, there was a significant decrease in the kyphotic angle in group I compared with group II after the six-month period. Interpretation and conclusion: SpineCor brace is beneficial in reducing spino-pelvic alignment deterioration in both sagittal and frontal planes.Keywords: adolescent idiopathic scoliosis, SpineCor, spino-pelvic alignment, biomechanics
Procedia PDF Downloads 3401939 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications
Abstract:
Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate
Procedia PDF Downloads 1531938 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform
Authors: Shih-Wen Hsiao, Yi-Cheng Tsao
Abstract:
In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor
Procedia PDF Downloads 3661937 Rheological Properties of Polymer Systems in Magnetic Field
Authors: T. S. Soliman, A. G. Galyas, E. V. Rusinova, S. A. Vshivkov
Abstract:
The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum.Keywords: rheology, liquid crystals, magnetic field, cellulose ethers
Procedia PDF Downloads 3481936 The Effects of Topically-Applied Skin Moisturizer on Striae Gravidarum in East Indian Women
Authors: Dipanshu Sur, Ratnabali Chakravorty
Abstract:
Background: Striae result from rapid expansion of the underlying tissue, e.g. during puberty, pregnancy or rapid weight gain. Prior data indicate that the incidence of stretch marks in Indian women is 77%.The hormonal and genetic factors are associated with their appearance. Recently that has been found skin extensibility, elasticity and rupture were strongly influenced by the water content of dermis and epidermis cells. Objective: The objectives were to assess the effects of topical treatments applied during pregnancy on the later development of stretch marks. Materials and methods: An open, prospective, randomized study was done on 120 pregnant women in whom skin elasticity and hydration as well as striae presence or apparition were measured at baseline and periodically until delivery. Patients were randomly assigned to application in wet skin cream, or in dry skin conditions. Results: The average basal hydration was 42 ±13 IU and the final was 46 ± 6 IU (P = 0.0325; 95% CI: -7.66 to -0.34), which difference was statistically significant. By measuring the moisture in the control region (forearm) a basal reading of 40 ± 9 IU and end of study of 38 ± 6; (p = 0.1547; 95% CI: -0.77 to 4.77) and this difference was considered to be not statistically significant. It was observed that at the end of the study, 55% women without ridges; mild ridges 5%; 36% moderate, and 4%, severe ridges. The proportion of women without grooves was 54% when the cream was applied studied wet skin and 45% when the cream was applied on dry skin. Conclusion: It was shown that cream under study increased hydration and elasticity of abdominal skin consequently in all subjects. This effect is more significant (54%) when the cream is applied to damp skin.Keywords: striae gravidarum, skin moisturizer, skin hydration, skin elasticity
Procedia PDF Downloads 2181935 Intimate Partner Violence and the Risk of Children’s Growth and Development
Authors: Fatemeh Abdollahi, Munn-Sann Lye, Jamshid Yazdani Charati, Mehran Zarghami
Abstract:
Background: The negative consequences of intimate partner violence (IPV) on children have not been studied extensively. This study aimed to determine the prevalence of different types of IPV and its association with children’s growth and developmental problems. Methods: In a descriptive-analytical study, 596 mothers of one-year-old children referred to the primary health centers in Gonbad-e- Kavoos city were recruited (2018). The data were collected using the World Health Organization Domestic Violence, Ages and Stages Questionnaire-12 and the socio-economic, obstetrics, demographic and anthropometric characteristics related questionnaire. BMI Z-Score was categorized into three grades; thin (Z<-2), normal (-2≤Z<1), and overweight-obese (Z≥1). The data were analyzed using descriptive analysis, chi-square test, and regression. Results: The prevalence of physical, psychological, and sexual IPV was 7.4%, 29.5%, and 2.4%, respectively. Most of the children were of normal weight at one-year-old (91.7%). Similarly, the prevalence of overweight and obese was 13.3% and 8%, respectively. 2% of children had developmental problems at age one. There was a significant relationship between the father’s education and occupation and IPV and children’s delay in growth, respectively. There was no significant difference between BMI Z-Score and developmental disabilities in the children in women exposed and not exposed to all types of IPV. Conclusions: The prevalence of psychological IPV was common. IPV and children’s growth problems were influenced by the father’s socio-economic status. Preventing psychological IPV as a forerunner of other types of IPV and improving the economic situation may help in the reduction of these difficulties.Keywords: children, development, growth, intimate partner violence
Procedia PDF Downloads 841934 Evaluation of the Gasification Process for the Generation of Syngas Using Solid Waste at the Autónoma de Colombia University
Authors: Yeraldin Galindo, Soraida Mora
Abstract:
Solid urban waste represents one of the largest sources of global environmental pollution due to the large quantities of these that are produced every day; thus, the elimination of such waste is a major problem for the environmental authorities who must look for alternatives to reduce the volume of waste with the possibility of obtaining an energy recovery. At the Autónoma de Colombia University, approximately 423.27 kg/d of solid waste are generated mainly paper, cardboard, and plastic. A large amount of these solid wastes has as final disposition the sanitary landfill of the city, wasting the energy potential that these could have, this, added to the emissions generated by the collection and transport of the same, has as consequence the increase of atmospheric pollutants. One of the alternative process used in the last years to generate electrical energy from solid waste such as paper, cardboard, plastic and, mainly, organic waste or biomass to replace the use of fossil fuels is the gasification. This is a thermal conversion process of biomass. The objective of it is to generate a combustible gas as the result of a series of chemical reactions propitiated by the addition of heat and the reaction agents. This project was developed with the intention of giving an energetic use to the waste (paper, cardboard, and plastic) produced inside the university, using them to generate a synthesis gas with a gasifier prototype. The gas produced was evaluated to determine their benefits in terms of electricity generation or raw material for the chemical industry. In this process, air was used as gasifying agent. The characterization of the synthesis gas was carried out by a gas chromatography carried out by the Chemical Engineering Laboratory of the National University of Colombia. Taking into account the results obtained, it was concluded that the gas generated is of acceptable quality in terms of the concentration of its components, but it is a gas of low calorific value. For this reason, the syngas generated in this project is not viable for the production of electrical energy but for the production of methanol transformed by the Fischer-Tropsch cycle.Keywords: alternative energies, gasification, gasifying agent, solid urban waste, syngas
Procedia PDF Downloads 2581933 Transcriptome and Metabolome Analysis of a Tomato Solanum Lycopersicum STAYGREEN1 Null Line Generated Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 Technology
Authors: Jin Young Kim, Kwon Kyoo Kang
Abstract:
The SGR1 (STAYGREEN1) protein is a critical regulator of plant leaves in chlorophyll degradation and senescence. The functions and mechanisms of tomato SGR1 action are poorly understood and worthy of further investigation. To investigate the function of the SGR1 gene, we generated a SGR1-knockout (KO) null line via clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing and conducted RNA sequencing and gas chromatography tandem mass spectrometry (GC-MS/MS) analysis to identify the differentially expressed genes. The SlSGR1 (Solanum lycopersicum SGR1) knockout null line clearly showed a turbid brown color with significantly higher chlorophyll and carotenoid content compared to wild-type (WT) fruit. Differential gene expression analysis revealed 728 differentially expressed genes (DEGs) between WT and sgr1 #1-6 line, including 263 and 465 downregulated and upregulated genes, respectively, for which fold change was >2, and the adjusted p-value was <0.05. Most of the DEGs were related to photosynthesis and chloroplast function. In addition, the pigment, carotenoid changes in sgr1 #1-6 line was accumulated of key primary metabolites such as sucrose and its derivatives (fructose, galactinol, raffinose), glycolytic intermediates (glucose, G6P, Fru6P) and tricarboxylic acid cycle (TCA) intermediates (malate and fumarate). Taken together, the transcriptome and metabolite profiles of SGR1-KO lines presented here provide evidence for the mechanisms underlying the effects of SGR1 and molecular pathways involved in chlorophyll degradation and carotenoid biosynthesis.Keywords: tomato, CRISPR/Cas9, null line, RNA-sequencing, metabolite profiling
Procedia PDF Downloads 1211932 Development of an Auxetic Tissue Implant
Authors: Sukhwinder K. Bhullar, M. B. G. Jun
Abstract:
The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues
Procedia PDF Downloads 4591931 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery
Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper
Abstract:
Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.Keywords: acoustics, drug delivery, liposomes, surface acoustic waves
Procedia PDF Downloads 1241930 UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age
Authors: Kun Chen, Yan Wang, Yangyu Zhao, Shufang Li, Lian Chen, Xiaoyue Guo, Jue Zhang, Jing Fang
Abstract:
The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy.Keywords: uterine electromyography, fetal heart rate, coupling analysis, wavelet analysis
Procedia PDF Downloads 2021929 Liaison Psychiatry in Baixo Alentejo, Portugal: Reality and Perspectives
Authors: Mariana Mangas, Yaroslava Martins, M. Suárez, Célia Santos, Ana Matos Pires
Abstract:
Baixo Alentejo is a region of Portugal characterized by an aging population, geographic isolation, social deprivation and a lack of medical staff. It is one of the most problematic regions in regards to mental health, particularly due to the factors mentioned. The aim of this study is a presentation of liaison psychiatry in Hospital José Joaquim Fernandes; a sample of the work done, the current situation and future perspectives. The aim is to present a retrospective study of internal psychiatric emergencies from January 1st, 2016 to August 31st, 2016. Liaison psychiatry of Department of Psychiatry and Mental Health (Psychiatry Service) of ULSBA includes the following activities: internal psychiatry emergencies, HIV consultation (comprised in the general consultation) and liaison psychology (oncology and pain), consisting of a total of 111 internal psychiatry emergencies during the identified period. Gender distribution was uniform. The most prevalent age group was 71-80 years, and 66,6% of patients were 60 years old and over. The majority of the emergency observations was requested by hospital services of medicine (56,8%) and surgery (24,3%). The most frequent reasons for admission were: respiratory disease (18,0%); tumors (15.3%); other surgical and orthopedic pathology (14,5%) and stroke (11,7%). The most frequent psychiatric diagnoses were: neurotic and organic depression (24,3%); delirium (26,1%) and adjustment reaction (14,5%). Major psychiatric pathology (schizophrenia and affective disorders) was found in 10,8%. Antidepressive medication was prescribed in 37,8% patients; antipsychotics in 34,2%. In 9.9% of the cases, no psychotropic drug was prescribed, and 5,4% of patients received psychologic support. Regarding hospital discharge, 42,4% of patients were referred to the general practitioner or to the medical specialist; 22,5% to outpatient gerontopsychiatry; 17,1% to psychiatric outpatient and 14,4% deceased. A future perspective is to start liaison in areas of HIV and psycho oncology in multidisciplinary approach and to improve collaboration with colleagues of other specialties for refining psychiatric referrals.Keywords: psychiatry, liaison, internal emergency, psychiatric referral
Procedia PDF Downloads 2501928 Effect of Light Spectra, Light Intensity, and HRT on the Co-Production of Phycoerythrin and Exopolysaccharides from Poprhyridium Marinum
Authors: Rosaria Tizzani, Tomas Morosinotto, Fabrizio Bezzo, Eleonora Sforza
Abstract:
Red microalga Porphyridium marinum CCAP 13807/10 has the potential to produce a broad range of commercially valuable chemicals such as PhycoErytrin (PE) and sulphated ExoPolySaccharides (EPS). Multiple abiotic factors influence the growth of Porphyridium sp., e.g. the wavelength of the light source and different cultivation strategies (one or two steps, batch, semi-, and continuous regime). The microalga of interest is cultivated in a two-step system. First, the culture grows photoautotrophically in a controlled bioreactor with pH-dependent CO2 injection, temperature monitoring, light intensity, and LED wavelength remote control in a semicontinuous mode. In the second step, the harvested biomass is subjected to mixotrophic conditions to enhance further growth. Preliminary tests have been performed to define the suitable media, salinity, pH, and organic carbon substrate to obtain the highest biomass productivity. Dynamic light and operational conditions (e.g. HRT) are evaluated to achieve high biomass production, high PE accumulation in the biomass, and high EPS release in the medium. Porphyridium marinum is able to chromatically adapt the photosynthetic apparatus to efficiently exploit the full light spectra composition. The effect of specific narrow LED wavelengths (white W, red R, green G, blue B) and a combination of LEDs (WR, WB, WG, BR, BG, RG) are identified to understand the phenomenon of chromatic adaptation under photoautotrophic conditions. The effect of light intensity, residence time, and light quality are investigated to define optimal operational strategies for full scale commercial applications. Production of biomass, phycobiliproteins, PE, EPS, EPS sulfate content, EPS composition, Chlorophyll-a, and pigment content are monitored to determine the effect of LED wavelength on the cultivation Porphyridium marinum in order to optimize the production of these multiple, highly valuable bioproducts of commercial interest.Keywords: red microalgae, LED, exopolysaccharide, phycoerythrin
Procedia PDF Downloads 1081927 Acute and Chronic Effect of Biopesticide on Infestation of Whitefly Bemisia tabaci (Gennadius) on the Culantro Cultivation
Authors: U. Pangnakorn, S. Chuenchooklin
Abstract:
Acute and chronic effects of biopesticide from entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens), wood vinegar and fermented organic substances from plants: (neem Azadirachta indica + citronella grass Cymbopogon nardus Rendle + bitter bush Chromolaena odorata L.) were tested on culantro (Eryngium foetidum L.). The biopesticide was investigated for infestation reduction of the major insect pest whitefly (Bemisia tabaci (Gennadius)). The experimental plots were located at a farm in Nakhon Sawan Province, Thailand. This study was undertaken during the drought season (late November to May). Effectiveness of the treatment was evaluated in terms of acute and chronic effect. The populations of whitefly were observed and recorded every hour up to 3 hours with insect nets and yellow sticky traps after the treatments were applied for the acute effect. The results showed that bacteria ISR had the highest effectiveness for controlling whitefly infestation on culantro; the whitefly numbers on insect nets were 12.5, 10.0 and 7.5 after 1 hr, 2 hr, and 3 hr, respectively while the whitefly on yellow sticky traps showed 15.0, 10.0 and 10.0 after 1 hr, 2 hr, and 3 hr, respectively. For chronic effect, the whitefly was continuously collected and recorded at weekly intervals; the result showed that treatment of bacteria ISR found the average whitefly numbers only 8.06 and 11.0 on insect nets and sticky traps respectively, followed by treatment of nematode where the average whitefly was 9.87 and 11.43 on the insect nets and sticky traps, respectively. In addition, the minor insect pests were also observed and collected. The biopesticide influenced the reduction number of minor insect pests (red spider mites, beet armyworm, short-horned grasshopper, pygmy locusts, etc.) with only a few found on the culantro cultivation.Keywords: whitefly (Bemisia tabaci Gennadius), culantro (Eryngium foetidum L.), acute and chronic effect, entomopathogenic nematode (Steinernema thailandensis n. sp.), bacteria ISR (Pseudomonas fluorescens)
Procedia PDF Downloads 2811926 CYP2D6*4 Allele Frequency and Extrapyramidal Side Effects during Haloperidol Therapy Among Russians and Tatars: A Pilot Study
Authors: Irina S. Burashnikova, Dmitriy A. Sychev, Ruslan Y. Kazakov
Abstract:
Сytochrome P450 CYP2D6 activity affects antipsychotic therapy safety. CYP2D6*4 polymorphism frequency varies among different ethnic groups. We studied CYP2D6*4 polymorphism frequency in Tatar and Russian schizophrenic patients and association of CYP2D6*4 polymorphism and extrapyramidal disorders (EPD) frequency in schizophrenic patients on haloperidol monotherapy in daily doses up to 20 mg. Results: Heterozygous CYP2D6*4 allele carrier frequency among Tatars was lower (23.8% vs 32.4% in Russians), but the differences did not reach statistical significance. CYP2D6*4 allele frequency among Tatars was also lower (11.9% vs 24.3% in Russians), but the difference was not quite significant (p=0.0592). Average daily haloperidol dose in the group without EPD was significantly higher than in the group with EPD (11.35±4.6 vs 13.87±3.3 mg, p=0.0252), but average daily haloperidol dose/weight ratios in the compared groups had no significant differences. Statistically significant association between EPD development and heterozygous CYP2D6*1/*4 genotype and CYP2D6*4 allele carrier frequency was revealed among all schizophrenic patients and among those of Tatar nationality. Further well designed pharmacogenetic studies in different Russian regions are needed to improve psychotropic therapy safety and to establish evidence-based indications for pharmacogenetic testing in clinical practice.Keywords: antipsychotic, CYP2D6 polymorphism, ethnic differences of CYP2D6*4 allele frequency, extrapyramidal side effects/disorder, schizophrenia, pharmacogenetics, Russians, Tatars
Procedia PDF Downloads 3241925 Pedagogy to Involve Research Process in an Undergraduate Physical Fitness Course: A Case Study
Authors: Indhumathi Gopal
Abstract:
Undergraduate research is well documented in Science, Technology, Engineering, and Mathematics (STEM), neurosciences, and microbiology disciplines, though it is hardly part of a physical fitness & wellness discipline. However, students need experiential learning opportunities, like internships and research assistantships, to get ahead with graduate schools and be gainfully employed. The first step towards this goal is to have students do a simple research project in a semester-long course. The value of research experiences and how to integrate research activity in a physical fitness & wellness course are discussed. The investigator looks into a mini research project, “Awareness of Obesity among College Students” and explains how to guide students through the research process, including journal search, data collection, and basic statistics. Besides, students will be introduced to the statistical package program SPSS 22.0 to assist with data evaluation. The lab component of the combined lecture-physical activity course could include the measurement of student’s weight with respect to their height to obtain body mass index (BMI). Students could categorize themselves in accordance with the World Health Organization’s guidelines. Results obtained after completing the data analysis help students be aware of their own potential health risks associated with overweight and obesity. Overweight and obesity are risk factors for hypertension, hypercholesterolemia, heart disease, stroke, diabetes, and certain types of cancer. It is hoped that this experience will get students interested in scientific studies, gain confidence, think critically, and develop problem-solving and good communication skills.Keywords: physical fitness, undergraduate research experience, obesity, BMI
Procedia PDF Downloads 811924 A Study of the Effects of Temperatures and Optimum pH on the Specific Methane Production of Perennial Ryegrass during Anaerobic Digestion Process under a Discontinuous Daily Feeding Condition
Authors: Uchenna Egwu, Paul Jonathan Sallis
Abstract:
Perennial ryegrass is an abundant renewable lignocellulosic biofuel feedstock for biomethane production through anaerobic digestion (AD). In this study, six anaerobic continuously stirred tank reactors (CSTRs) were set up in three pairs. Each pair of the CSTRs was then used to study the effects of operating temperatures – psychrophilic, mesophilic, and thermophilic, and optimum pH on the specific methane production (SMP) of the ryegrass during AD under discontinuous daily feeding conditions. The reactors were fed at an organic loading rate (OLR) ranging from 1-1.5 kgVS.L⁻¹d⁻¹ and hydraulic residence time, HRT=20 days for 140 days. The pH of the digesters was maintained at the range of 6.8-7.2 using 1 M NH₄HCO₃ solution, but this was replaced with biomass ash-extracts from day 105-140. The results obtained showed that the mean SMP of ryegrass measured between HRT 3 and 4 were 318.4, 425.4 and 335 N L CH₄ kg⁻¹VS.d⁻¹ for the psychrophilic (25 ± 2°C), mesophilic (40 ± 1°C) and thermophilic (60 ± 1°C) temperatures respectively. It was also observed that the buffering ability of the reactors increased with operating temperature, probably due to an increase in the solubility of ammonium bicarbonate (NH₄HCO₃) with temperature. The reactors also achieved a mean VS destruction of 61.9, 68.5 and 63.5%, respectively, which signifies that the mesophilic reactors achieved the highest specific methane production (SMP), while the psychrophilic reactors achieved the lowest. None of the reactors attained steady-state condition due to the discontinuous daily feeding times, and therefore, such feeding practice may not be the most effective for maximum biogas production over long periods of time. The addition of NH₄HCO₃ as supplement provided a good buffering condition in these AD digesters, but the digesters failed in the long run due to inhibition from the accumulation of free ammonia, which later led to decrease in pH, acidification, and souring of the digesters. However, the addition of biomass ash extracts was shown to potentially revive failed AD reactors by providing an adequate buffering and essential trace nutrient supplements necessary for optimal bacterial growth.Keywords: anaerobic digestion, discontinuous feeding, perennial ryegrass, specific methane production, supplements, temperature
Procedia PDF Downloads 1271923 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure
Authors: Y. L. Hor, H. S. Chu, V. P. Bui
Abstract:
Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization
Procedia PDF Downloads 1761922 Antitumor Activity of Gold Nanorods against Mammary Gland and Skin Carcinoma in Dogs and Cats
Authors: Abdoon A.S., El Ashkar E.A., Kandil O.M., Wael H. Eisa, Shaban A.M., Khaled H.M., El Ashkar M.R., El Shaer M., Hussein H., Shaalan A.H., El Sayed M.
Abstract:
Cancer is a major obstacle to human health and development worldwide. Conventional strategies for cancer intervention include surgery, chemotherapy, and radiation therapy. Recently, plasmon photothermal therapy (PPTT) was introduced as a promising treatment for the management of cancer and several non-cancerous diseases that are generally characterized by overgrowth of abnormal cells. The present work was conducted to evaluate the cytotoxic efficacy and toxicity of gold nanorods (AuNRs) in dogs and cats suffering from spontaneous mammary gland. AuNRs was injected intratumoral (IT, n=10, dose of 75 p.p.m/kg body weight) or by using spray method after surgical removal of cancer tissue (n=2) in dogs and cats. Then exposed to laser light after 60 min. Treated animals were observed every 2 days and the morphological changes in tumor size and shape were recorded. Blood samples were collected before and after treatment for checking CBC, liver and kidney functions. Results revealed that AuNRs successfully treat mammary gland tumor in dogs and cats (adenocarcinoma type 1 to IV). AuNRs induced sloughing of carcinogenic tissue within 5 to 15 days. AuNRs have no toxic effect on blood profile and the toxicity studies still under evaluation. Conclusion, AuNRs can be used for treatment of mammary gland carcinoma in dogs and cats.Keywords: pet animals, mammary gland tumor, AuNRs, photothermal therapy, toxicity studies
Procedia PDF Downloads 3841921 Heat: A Healthy Eating Programme
Authors: Osagbai Joshua Eriki, Ngozi Agunwamba, Alice Hill, Lorna Almond, Maniya Duffy, Devashini Naidoo, David Ho, Raman Deo
Abstract:
Aims: To evaluate the baseline eating pattern in a psychiatric hospital through quantifying purchases of food and drink items at the hospital shop and to implement a traffic light healthy eating labeling system. Method: A electronic till with reporting capabilities was purchased. A two-week period of baseline data collection was conducted. Thereafter, a system for labeling items based on the nutritional value of the food items at the hospital shop was implemented. Green labeling represented the items with the lowest calories and red the most. Further data was collated on the number and types of items purchased by patients according to the category, and the initial effectiveness of the system was evaluated. Result: Despite the implementation of the traffic light system, the red category had the highest number of items purchased by patients, highlighting the importance of promoting healthy eating choices. However, the study also showed that the system was effective in promoting healthy options, as the number of items purchased from the green category increased during the study period. Conclusion: The implementation of a traffic light labeling system for items sold at the hospital shop offers a promising approach to promoting healthy eating habits and choices. This is likely to contribute to a toolkit of measures when considering the multifactorial challenges that obesity and weight issues pose for long-stay psychiatric inpatientsKeywords: mental health, nutrition, food, healthy
Procedia PDF Downloads 991920 Estimation of Genetic Diversity in Sorghum Accessions Using Agro-Mophological and Nutritional Traits
Authors: Maletsema Alina Mofokeng, Nemera Shargie
Abstract:
Sorghum is one of the most important cereal crops grown as a source of calories for many people in tropics and sub-tropics of the world. Proper characterisation and evaluation of crop germplasm is an important component for effective management of genetic resources and their utilisation in the improvement of the crop through plant breeding. The objective of the study was to estimate the genetic diversity present in sorghum accessions grown in South Africa using agro-morphological traits and some nutritional contents. The experiment was carried out in Potchefstroom. Data were subjected to correlations, principal components analysis, and hierarchical clustering using GenStat statistical software. There were highly significance differences among the accessions based on agro-morphological and nutritional quality traits. Grain yield was highly positively correlated with panicle weight. Plant height was highly significantly correlated with internode length, leaf length, leaf number, stem diameter, the number of nodes and starch content. The Principal component analysis revealed three most important PCs with a total variation of 78.6%. The protein content ranged from 7.7 to 14.7%, and starch ranged from 58.52 to 80.44%. The accessions that had high protein and starch content were AS16cyc and MP4277. There was vast genetic diversity observed among the accessions assessed that can be used by plant breeders to improve yield and nutritional traits.Keywords: accessions, genetic diversity, nutritional quality, sorghum
Procedia PDF Downloads 2631919 Possible Neuroprotective Mechanism of Remote Limb Ischemic Post Conditioning against Global Cerebral Ischemic Injury
Authors: Sruthi Ramagiri, Rajeev Taliyan
Abstract:
Background and purpose: Recent investigations on ischemia and reperfusion injury postulate that transient ischemia of remote organs after a prolonged ischemic insult confers neuroprotection. However, the molecular mechanisms of the remote limb ischemic post-conditioning (RIPOC) are yet to be elucidated. The current study was designed to investigate the protective mechanism of RIPOC against cerebral ischemic injury using global model of stroke. Materials and methods: Global ischemic reperfusion injury (IR) was achieved by 30 minutes ischemia of cerebral artery, followed by reperfusion for 24 hours. Induction of global ischemia was followed by 4 brief episodes (30 seconds each) of ischemia and reperfusion of femoral artery to accomplish RIPOC. 5-Hydroxy Decanoic acid (5-HD), a KATP channel blocker (20 mg/kg) was administered after induction of global ischemia and RIPOC intervention. Results: IR injury ensue significant behavioural deficits as manifested by rotarod performance and spontaneous locomotor activity when compared to sham control. Furthermore, IR injury significantly increased oxidonitrative stress and infarct volume as evidenced by biochemical parameters (MDA, GSH, Nitrite, SOD) and 2,3,5-triphenyltetrazolium chloride (TTC) staining respectively. Moreover, RIPOC intervention ameliorated the behavioural performance, attenuated the oxidative stress and infarct volume when compared to IR injury group. However, administration of 5-HD increased the oxidative stress and infarct size while deteriorating the behavioural parameters when compared to RIPOC group. Conclusions: In a nutshell, cerebral IR injury has significantly induced the neuronal damage, whereas RIPOC intervention decreased the neuronal injury. Moreover, 5-HD abolished the neuroprotection offered by RIPOC indicating the putative role of KATP channel opening in RIPOC against cerebral ischemic injury.Keywords: RIPOC, cerebral injury, KATP channel, neuroprotection
Procedia PDF Downloads 4701918 Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan
Authors: Mohammad Aladwan, Adelia Skripova
Abstract:
Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil.Keywords: bioremediation, 16S rDNA gene, oil-degrading bacteria, hydrocarbons
Procedia PDF Downloads 1271917 Microwave Assisted Solvent-free Catalytic Transesterification of Glycerol to Glycerol Carbonate
Authors: Wai Keng Teng, Gek Cheng Ngoh, Rozita Yusoff, Mohamed Kheireddine Aroua
Abstract:
As a by-product of the biodiesel industries, glycerol has been vastly generated which surpasses the market demand. It is imperative to develop an efficient glycerol valorization processes in minimizing the net energy requirement and intensifying the biodiesel production. In this study, base-catalyzed transesterification of glycerol with dimethyl carbonate using microwave irradiation as heating method to produce glycerol carbonate was conducted by varing grades of glycerol i.e. 70%, 86% and 99% purity that obtained from biodiesel plant. Metal oxide catalysts were used with varying operating parameters including reaction time, DMC/glycerol molar ratio, catalyst weight %, temperature and stirring speed. From the study on the effect of different operating parameters; it was found that the type of catalyst used has the most significant effect on the transesterification reaction. Admist the metal oxide catalysts examined, CaO gave the best performance. This study indicates the feasibility of producing glycerol carbonate using different grade of glycerol in both conventional thermal activation and microwave irradiation with CaO as catalyst. Microwave assisted transesterification (MAT) of glycerol into glycerol carbonate has demostrated itself as an energy efficient route by achieving 94.3% yield of GC at 65°C, 5 minutes reaction time, 1 wt% CaO and DMC/glycerol molar ratio of 2. The advantages of MAT transesterification route has made the direct utilization of bioglycerol from biodiesel production without the need of purification. This has marked a more economical and less-energy intensive glycerol carbonate synthesis route.Keywords: base-catalyzed transesterification, glycerol, glycerol carbonate, microwave irradiation
Procedia PDF Downloads 2871916 Pollution Associated with Combustion in Stove to Firewood (Eucalyptus) and Pellet (Radiate Pine): Effect of UVA Irradiation
Authors: Y. Vásquez, F. Reyes, P. Oyola, M. Rubio, J. Muñoz, E. Lissi
Abstract:
In several cities in Chile, there is significant urban pollution, particularly in Santiago and in cities in the south where biomass is used as fuel in heating and cooking in a large proportion of homes. This has generated interest in knowing what factors can be modulated to control the level of pollution. In this project was conditioned and set up a photochemical chamber (14m3) equipped with gas monitors e.g. CO, NOX, O3, others and PM monitors e.g. dustrack, DMPS, Harvard impactors, etc. This volume could be exposed to UVA lamps, producing a spectrum similar to that generated by the sun. In this chamber, PM and gas emissions associated with biomass burning were studied in the presence and absence of radiation. From the comparative analysis of wood stove (eucalyptus globulus) and pellet (radiata pine), it can be concluded that, in the first approximation, 9-nitroanthracene, 4-nitropyrene, levoglucosan, water soluble potassium and CO present characteristics of the tracers. However, some of them show properties that interfere with this possibility. For example, levoglucosan is decomposed by radiation. The 9-nitroanthracene, 4-nitropyrene are emitted and formed under radiation. The 9-nitroanthracene has a vapor pressure that involves a partition involving the gas phase and particulate matter. From this analysis, it can be concluded that K+ is compound that meets the properties known to be tracer. The PM2.5 emission measured in the automatic pellet stove that was used in this thesis project was two orders of magnitude smaller than that registered by the manual wood stove. This has led to encouraging the use of pellet stoves in indoor heating, particularly in south-central Chile. However, it should be considered, while the use of pellet is not without problems, due to pellet stove generate high concentrations of Nitro-HAP's (secondary organic contaminants). In particular, 4-nitropyrene, compound of high toxicity, also primary and secondary particulate matter, associated with pellet burning produce a decrease in the size distribution of the PM, which leads to a depth penetration of the particles and their toxic components in the respiratory system.Keywords: biomass burning, photochemical chamber, particulate matter, tracers
Procedia PDF Downloads 1941915 Effect of Hormones Priming on Enzyme Activity and Lipid Peroxidation in Wheat Seed under Accelerated Aging
Authors: Amin Abbasi, Fariborz Shekari, Seyed Bahman Mousavi
Abstract:
Seed aging during storage is a complex biochemical and physiological processes that can lead to reduce seed germination. This phenomenon associated with increasing of total antioxidant activity during aging. To study the effects of hormones on seed aging, aged wheat seeds (control, 90 and 80% viabilities) were treated with GA3, Salicylic Acid, and paclobutrazol and antioxidant system were investigated as molecular biomarkers for seed vigor. The results showed that, seed priming treatment significantly affected germination percentage, normality seedling percentage, H2O2, MDA, CAT, APX, and GPX activates. Maximum germination percentage achieve in GA3 priming in control treatment. Germination percentage and normal seedling percentage increased in other GA3 priming treatment compared with other hormones. Also aging increased MDA, H2O2 content. MDA is considered sensitive marker commonly used for assessing membrane lipid peroxidation and H2O2result in toxicity to cellular membrane system and damages to plant cells. Amount of H2O2 and MDA declined in GA3 treatment. CAT, GPX and APX activities were reduced by increasing the aging time and at different levels of priming. The highest APX activity was observed in Salicylic Acid control treatment and the highest GPX and CAT activity was obtained in GA3 control treatment. The lowest MDA and H2O2 showed in GA3 control treatment, too. Hormone priming increased Antioxidant enzyme activity and decreased amount of reactive oxygen space and malondialdehyde (MDA) under aging treatment. Also, GA3 priming treatments have a significant effect on germination percentage and number of normal seedling. Generally aging seed, increase ROS and lipid peroxidation. Antioxidant enzymes activity of aged seeds increased after hormone priming.Keywords: hormones priming, wheat, aging seed, antioxidant, lipid peroxidation
Procedia PDF Downloads 4961914 Therapeutic Effect of 12 Weeks of Sensorimotor Exercise on Pain, Functionality and Quality of Life in Non-athlete Women With Patellofemoral Pain Syndrome
Authors: Kasbparast Mehdi, Hassani Zainab
Abstract:
Aim: The purpose of this research was to investigate the effectiveness of therapeutical sensorimotor exercise. The statistical population of women who were diagnosed with patellofemoral pain syndrome by a doctor and were between the ages of 35 and 45 and registered for the first time in a sports club in the 4th district of Tehran, 30 people by random sampling and according to The include and exclude criteria were selected and divided into 2 equal control and experimental and homogeneous groups (in terms of height, weight and BMI).In both control and experimental groups, the pain was measured using a Visual Analog Scale(VAS) functionality was measured using the step-down test and quality of life was measured using a World Health Organization Quality of Life Scale (WHOQOL-BREF) (pre-test). Then, only the experimental group performed sensorimotor exercises for 12 weeks and 3 sessions each week, a total of 24 sessions and each session for 1 hour, and during this period, the control group only continued their daily activities. After the end of the training period, the desired factors were evaluated again (post-test) in the same way as the pre-test was done for them (experimental group and control group), with the same quality. Findings: The statistical results showed that in the experimental group, the amount of pain, function and quality of life had a statistical improvement (P≤0.05). Conclusion: In general conclusion, it can be stated that using sensorimotor exercises not only improved functionality and quality of life but also reduced the amount of pain in people with patellofemoral pain syndrome.Keywords: pain, PFPS, sensori motor training, functionality
Procedia PDF Downloads 751913 Production of Friendly Environmental Material as Building Element from Plastic Waste
Authors: Dheyaa Wajid Abbood, Mohanad Salih Farhan, Awadh E. Ajeel
Abstract:
The basic goal of this study is the production of cheap building elements from plastic waste. environmentally friendly and of good thermal insulation. The study depends on the addition of plastic waste as aggregates to the mixes of concrete at different percentages by weight (12 percentages) to produce lightweight aggregate concrete the density (1095 - 1892) kg/m3.The experimental work includes 120 specimens of concrete 72 cubes (150*150*150)mm, 48 cylinder (150*300) mm. The results obtained for concrete were for local raw materials without any additional materials or treatment. The mechanical and thermal properties determined were (compressive strength, static modulus of elasticity, density, thermal conductivity (k), specific heat capacity (Cp), thermal expansion (α) after (7) days of curing at 20 0C. The increase in amount of plastic waste decreases the density of concrete which leads to decrease in the mechanical and to improvement in thermal properties. The average measured static modulus of elasticity are found less than the predicted static modulus of elasticity and splitting tensile strength (ACI 318-2008 and ACI 213R-2003). All cubes specimens when exposed to heat at (200, 400, 600 0C), the compressive strength of all mixes decreases gradually at 600 0C, the strength of lightweight aggregate concrete were disintegrated. Lightweight aggregate concrete is about 25% lighter than normal concrete in dead load, and to the improve the properties of thermal insulation of building blocks.Keywords: LWAC, plastic waste, thermal property, thermal insulation
Procedia PDF Downloads 429