Search results for: blocked-off solution procedure
1369 Psychological Capital: Convergent and Discriminant Validity of a Reconfigured Measure
Authors: Anton Grobler
Abstract:
Background: Psychological capital (PsyCap), consisting of Hope, Optimism, Resilience, and Self-efficacy, is a popular positive organisational behaviour construct utilised in the studying employee work and behavioral attitudes. Various scholars believe however that further validity research should be conducted on the PsyCap questionnaire (PCQ), outside of the founding research team and in more diverse settings, for the purpose of this paper, within the diverse South African (SA) context. Aim: The purpose of this study was to investigate the construct validity of the PCQ with specific reference to its psychometric properties within the diverse SA context. Setting: The sample includes a total of 1 749 respondents, ± 60 each from 30 organisations in South Africa. Method: This study utilised a cross-sectional design and quantitative analysis. The sample is relatively representative (in terms of race, gender) of the South African workforce. A multi-factorial model was statistically explored and confirmed (with exploratory factor analysis [EFA] and confirmatory factor analysis [CFA] respectively). Results: The study yielded a three-factor solution, with Hope and Optimism as a combined factor and Resilience and Self-efficacy made up of a reconfigured set of substantively justifiable items. Three items of the original 24 items were found not to be suitable. The three factors showed good psychometric properties, good fit (in support of construct validity) and acceptable levels of convergent and discriminant validity. Conclusion: The results support the original conceptualisation of PsyCap, although with a unique structural configuration. This resonates with the notion of scholars that further research should be conducted within diverse settings. This is necessary to ensure the valid measurement of the construct, which is considered to be one of the four criteria for a construct to be categorised as a positive organisational behaviour construct.Keywords: positive organisational behaviour, psychological capital, hope, optimism, resilience, self-efficacy, construct validity
Procedia PDF Downloads 2001368 A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90
Authors: Tamer M. Shehata
Abstract:
Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients.Keywords: mucoadhesive, microparticles, technology, diabetis
Procedia PDF Downloads 2951367 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadirachta Indica) Leaf Extract and Investigation of Its Antibacterial Activities
Authors: Emineh Tsegahun Gedif
Abstract:
Zinc oxide nanoparticles (ZnO NPs) have garnered significant attention due to their diverse applications encompassing catalytic, optical, photonic, and antibacterial properties. In this study, we successfully synthesized zinc oxide nanoparticles using a rapid, environmentally benign, and cost-effective method. Neem (Azadirachta indica) leaf extract served as the reducing agent for Zn (NO₃)₂.6H2O solution under optimized conditions (pH = 9). Qualitative screening techniques and FT-IR Spectroscopy confirmed the presence of active biomolecules such as flavonoids, phenolic groups, alkaloids, terpenoids, and tannins within the Neem leaf extract, both before and after reduction. The formation of ZnO NPs was visually evident through a distinct color change from colorless to light yellow. The biosynthesized nanoparticles underwent comprehensive characterization through UV-visible, FT-IR, and XRD spectroscopies. The reduction process proved to be straightforward and user-friendly, with UV-visible spectroscopy demonstrating a surface plasmon resonance (SPR) at 321 nm, unequivocally confirming the ZnO NP formation. X-ray diffraction analysis elucidated the crystal structure, revealing an average particle size of approximately 20 nm using Scherrer's equation based on the line width of the plane. Furthermore, the synthesized zinc oxide nanoparticles were evaluated for their antimicrobial properties against both Gram-positive and Gram-negative bacteria. The results showcased significant inhibitory activity, with the highest zone of inhibition observed against Escherichia coli (15 mm) and comparatively lower activity against Staphylococcus aureus. This research underscores the potential of Neem leaf extract-mediated synthesis of ZnO NPs as an eco-friendly and effective approach for various applications, including antibacterial agents.Keywords: zinc oxide nanoparticles (ZnO NPs), bioreducing agent, green synthesis, antibacterial activity
Procedia PDF Downloads 661366 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry
Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora
Abstract:
The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.Keywords: mild steel, impact strength, response surface, bead geometry, welding
Procedia PDF Downloads 1201365 Assessing Water Bottle Consumption on College Campus in Abu Dhabi: Towards a Sustainable Future
Authors: Ludmilla Wikkeling-Scott, Amira Karim
Abstract:
Background: In a rapidly developing environment, concerns for pollution and depletion of natural resources are challenges facing global communities. A major source of waste on university campuses is the use of plastic bottles, while cost of production and processing is high. Consumer demand stimulates popularity of plastic bottle production, but researchers agree this is not a sustainable solution. This pilot study assesses plastic water bottle used and attitude towards alternatives among Emirati college students. Methods: This study was conducted in December 2016, using an anonymous self-administered survey of 17 questions. The survey included personal characteristics, plastic water bottle used, attitude towards alternative replacement and sustainability. For statistical analysis, STATA 14C was used to determine significance of association. Results: A total of 500 Emirati students (94.6% female) completed the survey. Of the students, 82.6% preferred bottled water over tap water, and 44.6% reported disposable bottled water use in their household, 42.6% purchased disposable bottled water more than twice a week, and 44.2% purchased bottled water at least once, while on campus. Students were willing to consider switching to alternative water bottle use if it was more convenient (22.54%), cost less (55.13%) or improved the taste (22.54%), while only 7.85% students would not consider any alternatives. There was a significant difference in attitude towards alternatives to water bottle use by area of study (p < 0.005). Conclusion: The UAE strives to be at the forefront of sustainable development and protecting biodiversity. However, a major challenge is the increasing amount of waste, exacerbated by the increasing consumer demand for convenience as seen in this billion-dollar industry. Plastic bottles, for all purposes, pose a serious threat to the environment and sustainable campus initiatives can help reduce the ecological footprint, improve awareness of safe alternatives and benefits to the environment.Keywords: ecological foot print, emirati students, plastic bottle consumption, sustainable campus
Procedia PDF Downloads 1591364 Elaboration of Sustainable Luminescence Material Based on Rare Earth Complexes for Solar Energy Conversion
Authors: Othmane Essahili, Mohamed Ilsouk, Carine Duhayon, Omar Moudam
Abstract:
Due to their excellent and promising properties, a great deal of attention has recently been devoted to luminescent materials, particularly those utilizing rare earth elements. These materials play an essential role in low-cost energy conversion technology applications, such as luminescent solar concentrators (LSCs). They also have potential applications in Agri-PV systems and smart building windows. Luminescent materials based on europium (III) complexes are known for their high luminescence efficiency, long fluorescence lifetimes, and sharp emission bands. However, they present certain drawbacks related to their limited absorption capacity due to the forbidden 4f-4f electronic transitions. To address these drawbacks, using β-diketonate ligands as sensitizers appears as a promising solution to enhance luminescence intensity through the antenna effect, where the ligand's excited energy is transferred to the europium ions. In this study, we synthesized β-diketonate-based europium complexes with phenanthroline derivatives, modified with various methyl groups, to examine their effects on the complexes' stability in poly(methyl methacrylate) (PMMA) films. Our findings reveal that these complexes exhibit remarkable red emission and high photoluminescence quantum yield. Stability tests under different conditions for 1200 hours showed that complexes with a higher number of methyl substitutions offer improved photoluminescent stability and resistance to degradation, particularly in outdoor settings. This research underscores the potential of chemically tuned phenanthroline ligands in developing stable, efficient luminescent materials for future optoelectronic devices, including efficient and durable LSCs.Keywords: luminescent materials, photochemistry, luminescent solar concentrators, β-diketonate-based europium complexes
Procedia PDF Downloads 641363 Development of an Systematic Design in Evaluating Force-On-Force Security Exercise at Nuclear Power Plants
Authors: Seungsik Yu, Minho Kang
Abstract:
As the threat of terrorism to nuclear facilities is increasing globally after the attacks of September 11, we are striving to recognize the physical protection system and strengthen the emergency response system. Since 2015, Korea has implemented physical protection security exercise for nuclear facilities. The exercise should be carried out with full cooperation between the operator and response forces. Performance testing of the physical protection system should include appropriate exercises, for example, force-on-force exercises, to determine if the response forces can provide an effective and timely response to prevent sabotage. Significant deficiencies and actions taken should be reported as stipulated by the competent authority. The IAEA(International Atomic Energy Agency) is also preparing force-on-force exercise program documents to support exercise of member states. Currently, ROK(Republic of Korea) is implementing exercise on the force-on-force exercise evaluation system which is developed by itself for the nuclear power plant, and it is necessary to establish the exercise procedure considering the use of the force-on-force exercise evaluation system. The purpose of this study is to establish the work procedures of the three major organizations related to the force-on-force exercise of nuclear power plants in ROK, which conduct exercise using force-on-force exercise evaluation system. The three major organizations are composed of licensee, KINAC (Korea Institute of Nuclear Nonproliferation and Control), and the NSSC(Nuclear Safety and Security Commission). Major activities are as follows. First, the licensee establishes and conducts an exercise plan, and when recommendations are derived from the result of the exercise, it prepares and carries out a force-on-force result report including a plan for implementation of the recommendations. Other detailed tasks include consultation with surrounding units for adversary, interviews with exercise participants, support for document evaluation, and self-training to improve the familiarity of the MILES (Multiple Integrated Laser Engagement System). Second, KINAC establishes a force-on-force exercise plan review report and reviews the force-on-force exercise plan report established by licensee. KINAC evaluate force-on-force exercise using exercise evaluation system and prepare training evaluation report. Other detailed tasks include MILES training, adversary consultation, management of exercise evaluation systems, and analysis of exercise evaluation results. Finally, the NSSC decides whether or not to approve the force-on-force exercise and makes a correction request to the nuclear facility based on the exercise results. The most important part of ROK's force-on-force exercise system is the analysis through the exercise evaluation system implemented by KINAC after the exercise. The analytical method proceeds in the order of collecting data from the exercise evaluation system and analyzing the collected data. The exercise application process of the exercise evaluation system introduced in ROK in 2016 will be concretely set up, and a system will be established to provide objective and consistent conclusions between exercise sessions. Based on the conclusions drawn up, the ultimate goal is to complement the physical protection system of licensee so that the system makes licensee respond effectively and timely against sabotage or unauthorized removal of nuclear materials.Keywords: Force-on-Force exercise, nuclear power plant, physical protection, sabotage, unauthorized removal
Procedia PDF Downloads 1431362 Construction Innovation: Support for 3D Printing House
Authors: Andrea Palazzo, Daniel Macek, Veronika Malinova
Abstract:
Contour processing is the new technology challenge for architects and construction companies. The many advantages it promises make it one of the most interesting solutions for construction in terms of automation of building processes. The technology for 3D printing houses offers many application possibilities, from low-cost construction, to being considered by NASA for visionary projects as a good solution for building settlements on other planets. Another very important point is that clients, as architects, will no longer have many limits in design concerning ideas and creativity. The prices for real estate are constantly increasing and the lack of availability of construction materials as well as the speculation that has been created around it in 2021 is bringing prices to such a level that in the future real estate developers risk not being able to find customers for these ultra-expensive homes. Hence, this paper starts with the introduction of 3D printing, which now has the potential to gain an important position in the market, becoming a valid alternative to the classic construction process. This technology is not only beneficial from an economic point of view but it is also a great opportunity to have an impact on the environment by reducing CO2 emissions. Further on in the article we will also understand if, after the COP 26 (2021 United Nations Climate Change Conference), world governments could also push towards building technologies that reduce the waste materials that are needed to be disposed of and at the same time reduce emissions with the contribution of governmental funds. This paper will give us insight on the multiple benefits of 3D printing and emphasise the importance of finding new solutions for materials that can be used by the printer. Therefore, based on the type of material, it will be possible to understand the compatibility with current regulations and how the authorities will be inclined to support this technology. This will help to enable the rise and development of this technology in Europe and in the rest of the world on actual housing projects and not only on prototypes.Keywords: additive manufacturing, contour crafting, development, new regulation, printing material
Procedia PDF Downloads 1981361 '3D City Model' through Quantum Geographic Information System: A Case Study of Gujarat International Finance Tec-City, Gujarat, India
Authors: Rahul Jain, Pradhir Parmar, Dhruvesh Patel
Abstract:
Planning and drawing are the important aspects of civil engineering. For testing theories about spatial location and interaction between land uses and related activities the computer based solution of urban models are used. The planner’s primary interest is in creation of 3D models of building and to obtain the terrain surface so that he can do urban morphological mappings, virtual reality, disaster management, fly through generation, visualization etc. 3D city models have a variety of applications in urban studies. Gujarat International Finance Tec-City (GIFT) is an ongoing construction site between Ahmedabad and Gandhinagar, Gujarat, India. It will be built on 3590000 m2 having a geographical coordinates of North Latitude 23°9’5’’N to 23°10’55’’ and East Longitude 72°42’2’’E to 72°42’16’’E. Therefore to develop 3D city models of GIFT city, the base map of the city is collected from GIFT office. Differential Geographical Positioning System (DGPS) is used to collect the Ground Control Points (GCP) from the field. The GCP points are used for the registration of base map in QGIS. The registered map is projected in WGS 84/UTM zone 43N grid and digitized with the help of various shapefile tools in QGIS. The approximate height of the buildings that are going to build is collected from the GIFT office and placed on the attribute table of each layer created using shapefile tools. The Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global (30 m X 30 m) grid data is used to generate the terrain of GIFT city. The Google Satellite Map is used to place on the background to get the exact location of the GIFT city. Various plugins and tools in QGIS are used to convert the raster layer of the base map of GIFT city into 3D model. The fly through tool is used for capturing and viewing the entire area in 3D of the city. This paper discusses all techniques and their usefulness in 3D city model creation from the GCP, base map, SRTM and QGIS.Keywords: 3D model, DGPS, GIFT City, QGIS, SRTM
Procedia PDF Downloads 2481360 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage
Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo
Abstract:
Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.Keywords: kaolinite, microencapsulation, PCM, thermal energy storage
Procedia PDF Downloads 1331359 Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors
Authors: Claudia Matassa, Matthias Hohne, Dominic Ormerod, Yamini Satyawali
Abstract:
Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal.Keywords: amine donor, chiral amines, in situ product removal, transamination
Procedia PDF Downloads 1551358 The Impact of City Mobility on Propagation of Infectious Diseases: Mathematical Modelling Approach
Authors: Asrat M.Belachew, Tiago Pereira, Institute of Mathematics, Computer Sciences, Avenida Trabalhador São Carlense, 400, São Carlos, 13566-590, Brazil
Abstract:
Infectious diseases are among the most prominent threats to human beings. They cause morbidity and mortality to an individual and collapse the social, economic, and political systems of the whole world collectively. Mathematical models are fundamental tools and provide a comprehensive understanding of how infectious diseases spread and designing the control strategy to mitigate infectious diseases from the host population. Modeling the spread of infectious diseases using a compartmental model of inhomogeneous populations is good in terms of complexity. However, in the real world, there is a situation that accounts for heterogeneity, such as ages, locations, and contact patterns of the population which are ignored in a homogeneous setting. In this work, we study how classical an SEIR infectious disease spreading of the compartmental model can be extended by incorporating the mobility of population between heterogeneous cities during an outbreak of infectious disease. We have formulated an SEIR multi-cities epidemic spreading model using a system of 4k ordinary differential equations to describe the disease transmission dynamics in k-cities during the day and night. We have shownthat the model is epidemiologically (i.e., variables have biological interpretation) and mathematically (i.e., a unique bounded solution exists all the time) well-posed. We constructed the next-generation matrix (NGM) for the model and calculated the basic reproduction number R0for SEIR-epidemic spreading model with cities mobility. R0of the disease depends on the spectral radius mobility operator, and it is a threshold between asymptotic stability of the disease-free equilibrium and disease persistence. Using the eigenvalue perturbation theorem, we showed that sending a fraction of the population between cities decreases the reproduction number of diseases in interconnected cities. As a result, disease transmissiondecreases in the population.Keywords: SEIR-model, mathematical model, city mobility, epidemic spreading
Procedia PDF Downloads 1091357 Modelling, Simulation, and Experimental Validation of the Influence of Golf-Ball-Inspired Dimpled Design in Drag Reduction and Improved Fuel Efficiency of Super-Mileage Vehicle
Authors: Bibin Sagaram, Ronith Stanly, S. S. Suneesh
Abstract:
Due to the dwindling supply of fuel reserves, engineers and designers now focus on fuel efficient designs for the solution of any problem; the transportation industry is not new to this kind of approach. Though the aerodynamic benefits of the dimples on a Golf-ball are known, it has never been scientifically tested on how such a design philosophy can improve the fuel efficiency of a real-life vehicle by imparting better aerodynamic performance. The main purpose of the paper is to establish the aerodynamic benefits of the Golf-ball-Inspired Dimpled Design in improving the fuel efficiency of a Super-mileage vehicle, constructed by Team Go Viridis for ‘Shell Eco Marathon Asia 2015’, and to predict the extent to which the results can be held valid for a road car. The body design was modeled in Autodesk Inventor and the Computational Fluid Dynamics (CFD) simulations were carried out using Ansys Fluent software. The aerodynamic parameters of designs (with and without the Golf-ball-Inspired Dimples) have been studied and the results are experimentally validated against those obtained from wind tunnel tests carried out on a 1:10 scaled-down 3D printed model. Test drives of the Super-mileage vehicle were carried out, under various conditions, to compare the variation in fuel efficiency with and without the Golf-ball-Inspired design. Primary investigations reveal an aerodynamic advantage of 25% for the vehicle with the Golf Ball Inspired Dimpled Design as opposed to the normal design. Initial tests conducted by ‘Mythbusters’ on Discovery Network using a modified road car has shown positive results which has motivated us to conduct such a research work using a custom-built experimental Super-Mileage vehicle. The content of the paper becomes relevant to the present Automotive and Energy industry where improving the fuel efficiency is of the top most priority.Keywords: aerodynamics, CFD, fuel efficiency, golf ball
Procedia PDF Downloads 3341356 Implementation of Hybrid Curriculum in Canadian Dental Schools to Manage Child Abuse and Neglect
Authors: Priyajeet Kaur Kaleka
Abstract:
Introduction: A dentist is often the first responder in the battle for a patient’s healthy body and maybe the first health professional to observe signs of child abuse, be it physical, emotional, and/or sexual mistreatment. Therefore, it is an ethical responsibility for the dental clinician to detect and report suspected cases of child abuse and neglect (CAN). The main reasons for not reporting suspected cases of CAN, with special emphasis on the third: 1) Uncertainty of the diagnosis, 2) Lack of knowledge of the reporting procedure, and 3) Child abuse and neglect somewhat remained the subject of ignorance among dental professionals because of a lack of advance clinical training. Given these epidemic proportions, there is a scope of further research about dental school curriculum design. Purpose: This study aimed to assess the knowledge and attitude of dentists in Canada regarding signs and symptoms of child abuse and neglect (CAN), reporting procedures, and whether educational strategies followed by dental schools address this sensitive issue. In pursuit of that aim, this abstract summarizes the evidence related to this question. Materials and Methods: Data was collected through a specially designed questionnaire adapted and modified from the author’s previous cross-sectional study on (CAN), which was conducted in Pune, India, in 2016 and is available on the database of PubMed. Design: A random sample was drawn from the targeted population of registered dentists and dental students in Canada regarding their knowledge, professional responsibilities, and behavior concerning child abuse. Questionnaire data were distributed to 200 members. Out of which, a total number of 157 subjects were in the final sample for statistical analysis, yielding response of 78.5%. Results: Despite having theoretical information on signs and symptoms, 55% of the participants indicated they are not confident to detect child physical abuse cases. 90% of respondents believed that recognition and handling the CAN cases should be a part of undergraduate training. Only 4.5% of the participants have correctly identified all signs of abuse due to inadequate formal training in dental schools and workplaces. Although nearly 96.3% agreed that it is a dentist’s legal responsibility to report CAN, only a small percentage of the participants reported an abuse case in the past. While 72% stated that the most common factor that might prevent a dentist from reporting a case was doubt over the diagnosis. Conclusion: The goal is to motivate dental schools to deal with this critical issue and provide their students with consummate training to strengthen their capability to care for and protect children. The educational institutions should make efforts to spread awareness among dental students regarding the management and tackling of CAN. Clinical Significance: There should be modifications in the dental school curriculum focusing on problem-based learning models to assist graduates to fulfill their legal and professional responsibilities. CAN literacy should be incorporated into the dental curriculum, which will eventually benefit future dentists to break this intergenerational cycle of violence.Keywords: abuse, child abuse and neglect, dentist knowledge, dental school curriculum, problem-based learning
Procedia PDF Downloads 2011355 Crystalline Particles Dispersed Cu-Based Metallic Glassy Composites Fabricated by Spark Plasma Sintering
Authors: Sandrine Cardinal, Jean-Marc Pelletier, Guang Xie, Florian Mercier, Florent Delmas
Abstract:
Bulk metallic glasses exhibit several superior properties, compared to their corresponding crystalline counterpart, such as high strength, high elastic limit or good corrosion resistance. Therefore they can be considered as good candidates for structural applications in many sectors. However, they are generally brittle and do not exhibit plastic deformation at room temperature. These materials are mainly obtained by rapid cooling from a liquid state to prevent crystallization, which limits their size. To overcome these two drawbacks: fragility and limited dimensions, composite metallic glass matrix reinforced by a second phase whose role is to slow crack growth are developed. Concerning the limited size of the pieces, the proposed solution is to get the material from amorphous powders by densifying under load. In this study, Cu50Zr45Al5 bulk metallic glassy matrix composites (MGMCs) containing different volume fraction (Vf) of Zr crystalline particles were manufactured by spark plasma sintering (SPS). Microstructure, thermal stability and mechanical properties of the MGMCs were investigated. Matrix of the composites remains a fully amorphous phase after consolidation at 420°C under 600 MPa. A good dispersion of the particles in the glassy matrix is obtained. Results show that the compressive strength decreases with Vf : 1670 MPa (Vf=0%) to 1300MPa (Vf=30%), the elastic modulus decreases but only slighty respectively 97.3GPa and 94.5 GPa and plasticity is improved from 0 to 4%. Fractographic investigation indicates a good bonding between amorphous and crystalline particles. In conclusion, present study has demonstrated that SPS method is useful for the synthesis of the bulk glassy composites. Large controlled microstructure specimens with interesting ductility can be obtained compared with others methods.Keywords: composite, mechanical properties, metallic glasses, spark plasma sintering
Procedia PDF Downloads 2811354 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 2671353 BTEX Removal from Water: A Comparative Analysis of Efficiency of Low Cost Adsorbents and Granular Activated Carbon
Authors: Juliet Okoli
Abstract:
The removal of BTEX (Benzene, toluene, Ethylbenzene and p-Xylene) from water by orange peel and eggshell compared to GAC were investigated. The influence of various factors such as contact time, dosage and pH on BTEX removal by virgin orange peel and egg shell were accessed using the batch adsorption set-up. These were also compared to that of GAC which serves as a benchmark for this study. Further modification (preparation of Activated carbon) of these virgin low-cost adsorbents was also carried out. The batch adsorption result showed that the optimum contact time, dosage and pH for BTEX removal by virgin LCAs were 180 minutes, 0.5g and 7 and that of GAC was 30mintues, 0.2g and 7. The maximum adsorption capacity for total BTEX showed by orange peel and egg shell were 42mg/g and 59mg/g respectively while that of GAC was 864mg/g. The adsorbent preference for adsorbate were in order of X>E>T>B. A comparison of batch and column set-up showed that the batch set-up was more efficient than the column set-up. The isotherm data for the virgin LCA and GAC prove to fit the Freundlich isotherm better than the Langmuir model, which produced n values >1 in case of GAC and n< 1 in case of virgin LCAs; indicating a more appropriate adsorption of BTEX onto the GAC. The adsorption kinetics for the three studied adsorbents were described well by the pseudo-second order, suggesting chemisorption as the rate limiting step. This was further confirmed by desorption study, as low levels of BTEX (<10%) were recovered from the spent adsorbents especially for GAC (<3%). Further activation of the LCAs which was compared to the virgin LCAs, revealed that the virgin LCAs had minor higher adsorption capacity than the activated LCAs. Economic analysis revealed that the total cost required to clean-up 9,600m3 of BTEX contaminated water using LCA was just 2.8% lesser than GAC, a difference which could be considered negligible. However, this area still requires a more detailed cost-benefit analysis, and if similar conclusions are reached; a low-cost adsorbent, easy to obtain are still promising adsorbents for BTEX removal from aqueous solution; however, the GAC are still more superior to these materials.Keywords: activated carbon, BTEX removal, low cost adsorbents, water treatment
Procedia PDF Downloads 2691352 Modelling Affordable Waste Management Solutions for India
Authors: Pradip Baishya, D. K. Mahanta
Abstract:
Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste
Procedia PDF Downloads 3061351 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 1891350 A Neural Network for the Prediction of Contraction after Burn Injuries
Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen
Abstract:
A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound
Procedia PDF Downloads 561349 A New Cytoprotective Drug on the Basis of Cytisine: Phase I Clinical Trial Results
Authors: B. Yermekbayeva, A. Gulyayaev, T. Nurgozhin, C. Bektur
Abstract:
Cytisine aminophosphonate under the name "Cytafat" was approved for clinical trials in Republic of Kazakhstan as a putative liver protecting drug for the treatment of acute toxic hepatitis. A method of conducting the clinical trial is a double blind study. Total number of patients -71, aged from 16 to 56 years. Research on healthy volunteers determined the maximal tolerable doze of "Cytafat" as 200 mg/kg. Side effects when administered at high dozes (100-200 mg/kg) are tachycardia and increase of arterial blood pressure. The drug is tested in the treatment of 28 patients with a syndrome of hepatocellular failure (a poisoning with substitutes of alcohol, rat poison, or medical products). "Cytafat" was intravenously administered at a dose of 10 mg/kg in 200 ml of 5 % glucose solution once daily. The number of administrations: 1-3. In the comparison group, 23 patients were treated intravenously once a day with “Essenciale H” at a dose of 10 ml. 20 patients received a placebo (10 ml of glucose intravenously). In all cases of toxic hepatopathology the significant positive clinical effect of the testing drug distinguishable from placebo and surpassing the alternative was observed. Within a day after administration a sharp reduction of cytolitic syndrome parameters (ALT, AST, alkaline phosphatase, thymol turbidity test, GGT) was registered, a reduction of the severity of cholestatic syndrome (bilirubin decreased) was recorded, significantly decreased indices of lipid peroxidation. The following day, in all cases the positive dynamics was determined with ultrasound study (reduction of diffuse changes and events of reactive pancreatitis), hepatomegaly disappeared. Normalization of all parameters occurred in 2-3 times faster, than when using the drug "Essenciale H" and placebo. Average term of elimination of toxic hepatopathy when using the drug "Cytafat" -2,8 days, "Essenciale H" -7,2 days, and placebo -10,6 days. The new drug "Cytafat" has expressed cytoprotective properties.Keywords: cytisine, cytoprotection, hepatopathy, hepatoprotection
Procedia PDF Downloads 3691348 Microencapsulation for Enhancing the Survival of S. thermophilus and L. bulgaricus during Spray Drying of Sweetened Yoghurt
Authors: Dibyakanta Seth, Hari Niwas Mishra, Sankar Chandra Deka
Abstract:
Microencapsulation is an established method of protecting bacteria from the adverse conditions. An improved extrusion spraying technique was used to encapsulate mixed bacteria culture of S. thermophilus and L. bulgaricus using sodium alginate as the coating material. The effect of nozzle air pressure (200, 300, 400 and 500 kPa), sodium alginate concentration (1%, 1.5%, 2%, 2.5% and 3% w/v), different concentration of calcium chloride (0.1, 0.2, 1 M) and initial cell loads (10⁷, 10⁸, 10⁹ cfu/ml) on the viability of encapsulated bacteria were investigated. With the increase in air pressure the size of microcapsules decreased, however the effect was non-significant. There was no significant difference (p > 0.05) in the viability of encapsulated cells when the concentration of calcium chloride was increased. Increased level of sodium alginate significantly increased the survival ratio of encapsulated bacteria (P < 0.01). Encapsulation with 3% alginate was treated as optimum since a higher concentration of alginate increased the gel strength of the solution and thus was difficult to spray. Under optimal conditions 3% alginate, 10⁹ cfu/ml cell load, 20 min hardening time in 0.1 M CaCl2 and 400 kPa nozzle air pressure, the viability of bacteria cells was maximum compared to the free cells. The microcapsules made at the optimal condition when mixed with yoghurt and subjected to spray drying at 148°C, the survival ratio was 2.48×10⁻¹ for S. thermophilus and 7.26×10⁻¹ for L. bulgaricus. In contrast, the survival ratio of free cells of S. thermophilus and L. bulgaricus were 2.36×10⁻³ and 8.27×10⁻³, respectively. This study showed a decline in viable cells count of about 0.5 log over a period of 7 weeks while there was a decline of about 1 log in cultures which were incorporated as free cells in yoghurt. Microencapsulation provided better protection at higher acidity compared to free cells. This study demonstrated that microencapsulation of yoghurt culture in sodium alginate is an effective technique of protection against extreme drying conditions.Keywords: extrusion, microencapsulation, spray drying, sweetened yoghurt
Procedia PDF Downloads 2531347 Generating Synthetic Chest X-ray Images for Improved COVID-19 Detection Using Generative Adversarial Networks
Authors: Muneeb Ullah, Daishihan, Xiadong Young
Abstract:
Deep learning plays a crucial role in identifying COVID-19 and preventing its spread. To improve the accuracy of COVID-19 diagnoses, it is important to have access to a sufficient number of training images of CXRs (chest X-rays) depicting the disease. However, there is currently a shortage of such images. To address this issue, this paper introduces COVID-19 GAN, a model that uses generative adversarial networks (GANs) to generate realistic CXR images of COVID-19, which can be used to train identification models. Initially, a generator model is created that uses digressive channels to generate images of CXR scans for COVID-19. To differentiate between real and fake disease images, an efficient discriminator is developed by combining the dense connectivity strategy and instance normalization. This approach makes use of their feature extraction capabilities on CXR hazy areas. Lastly, the deep regret gradient penalty technique is utilized to ensure stable training of the model. With the use of 4,062 grape leaf disease images, the Leaf GAN model successfully produces 8,124 COVID-19 CXR images. The COVID-19 GAN model produces COVID-19 CXR images that outperform DCGAN and WGAN in terms of the Fréchet inception distance. Experimental findings suggest that the COVID-19 GAN-generated CXR images possess noticeable haziness, offering a promising approach to address the limited training data available for COVID-19 model training. When the dataset was expanded, CNN-based classification models outperformed other models, yielding higher accuracy rates than those of the initial dataset and other augmentation techniques. Among these models, ImagNet exhibited the best recognition accuracy of 99.70% on the testing set. These findings suggest that the proposed augmentation method is a solution to address overfitting issues in disease identification and can enhance identification accuracy effectively.Keywords: classification, deep learning, medical images, CXR, GAN.
Procedia PDF Downloads 1001346 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles
Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi
Abstract:
This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles
Procedia PDF Downloads 2811345 Geometric Nonlinear Dynamic Analysis of Cylindrical Composite Sandwich Shells Subjected to Underwater Blast Load
Authors: Mustafa Taskin, Ozgur Demir, M. Mert Serveren
Abstract:
The precise study of the impact of underwater explosions on structures is of great importance in the design and engineering calculations of floating structures, especially those used for military purposes, as well as power generation facilities such as offshore platforms that can become a target in case of war. Considering that ship and submarine structures are mostly curved surfaces, it is extremely important and interesting to examine the destructive effects of underwater explosions on curvilinear surfaces. In this study, geometric nonlinear dynamic analysis of cylindrical composite sandwich shells subjected to instantaneous pressure load is performed. The instantaneous pressure load is defined as an underwater explosion and the effects of the liquid medium are taken into account. There are equations in the literature for pressure due to underwater explosions, but these equations have been obtained for flat plates. For this reason, the instantaneous pressure load equations are arranged to be suitable for curvilinear structures before proceeding with the analyses. Fluid-solid interaction is defined by using Taylor's Plate Theory. The lower and upper layers of the cylindrical composite sandwich shell are modeled as composite laminate and the middle layer consists of soft core. The geometric nonlinear dynamic equations of the shell are obtained by Hamilton's principle, taken into account the von Kàrmàn theory of large displacements. Then, time dependent geometric nonlinear equations of motion are solved with the help of generalized differential quadrature method (GDQM) and dynamic behavior of cylindrical composite sandwich shells exposed to underwater explosion is investigated. An algorithm that can work parametrically for the solution has been developed within the scope of the study.Keywords: cylindrical composite sandwich shells, generalized differential quadrature method, geometric nonlinear dynamic analysis, underwater explosion
Procedia PDF Downloads 1951344 Establishment of an Information Platform Increases Spontaneous Reporting of Adverse Drug Reactions
Authors: Pei-Chun Chen, Chi-Ting Tseng, Lih-Chi Chen, Kai-Hsiang Yang
Abstract:
Introduction: The pharmacist is responsible for encouraging adverse drug reaction (ADR) reporting. In a local center in Northern Taiwan, promotion and rewarding of ADR reporting have continued for over six years but failed to bring significant changes. This study aims to find a solution to increase ADR reporting. Research question or hypothesis: We hypothesized that under-reporting is due to the inconvenience of the reporting system. Reports were made conventionally through printed sheets. We proposed that reports made per month will increase if they were computerized. Study design: An ADR reporting platform was established in April 2015, before which was defined as the first stage of this study (January-March, 2015) and after which the second stage. The third stage commenced in November, 2015, after adding a reporting module to physicians prescription system. ADRs could be reported simultaneously when documenting drug allergies. Methods: ADR report rates during the three stages of the study were compared. Effects of the information platform on reporting were also analyzed. Results: During the first stage, the number of ADR reports averaged 6 per month. In the second stage, the number of reports per month averaged 1.86. Introducing the information platform had little effect on the monthly number of ADR reports. The average number of reports each month during the third stage of the study was 11±3.06, with 70.43% made electronically. Reports per month increased significantly after installing the reporting module in November, 2015 (P<0.001, t-test). In the first two stages, 29.03% of ADR reports were made by physicians, as compared to 70.42% of cases in the third stage of the study. Increased physician reporting possibly account for these differences. Conclusion: Adding a reporting module to the prescription system significantly increased ADR reporting. Improved accessibility is likely the cause. The addition of similar modules to computer systems of other healthcare professions may be considered to encourage spontaneous ADR reporting.Keywords: adverse drug reactions, adverse drug reaction reporting systems, regional hospital, prescription system
Procedia PDF Downloads 3531343 Pilot Study of Determining the Impact of Surface Subsidence at The Intersection of Cave Mining with the Surface Using an Electrical Impedance Tomography
Authors: Ariungerel Jargal
Abstract:
: Cave mining is a bulk underground mining method, which allows large low-grade deposits to be mined underground. This method involves undermining the orebody to make it collapse under its own weight into a series of chambers from which the ore extracted. It is a useful technique to extend the life of large deposits previously mined by open pits, and it is a method increasingly proposed for new mines around the world. We plan to conduct a feasibility study using Electrical impedance tomography (EIT) technology to show how much subsidence there is at the intersection with the cave mining surface. EIT is an imaging technique which uses electrical measurements at electrodes attached on the body surface to yield a cross-sectional image of conductivity changes within the object. EIT has been developed in several different applications areas as a simpler, cheaper alternative to many other imaging methods. A low frequency current is injected between pairs of electrodes while voltage measurements are collected at all other electrode pairs. In the difference EIT, images are reconstructed of the change in conductivity distribution (σ) between the acquisition of the two sets of measurements. Image reconstruction in EIT requires the solution of an ill-conditioned nonlinear inverse problem on noisy data, typically requiring make simpler assumptions or regularization. It is noted that the ratio of current to voltage represents a complex value according to Ohm’s law, and that it is theoretically possible to re-express EIT. The results of the experiment were presented on the simulation, and it was concluded that it is possible to conduct further real experiments. Drill a certain number of holes in the top wall of the cave to attach the electrodes, flow a current through them, and measure and acquire the potential through these electrodes. Appropriate values should be selected depending on the distance between the holes, the frequency and duration of the measurements, the surface characteristics and the size of the study area using an EIT device.Keywords: impedance tomography, cave mining, soil, EIT device
Procedia PDF Downloads 1271342 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT
Procedia PDF Downloads 2781341 Green Synthesis of Silver Nanoparticles Mediated by Plant by-Product Extracts
Authors: Cristian Moisa, Andreea Lupitu, Adriana Csakvari, Dana G. Radu, Leonard Marian Olariu, Georgeta Pop, Dorina Chambre, Lucian Copolovici, Dana Copolovici
Abstract:
Green synthesis of nanoparticles (NPs) represents a promising, accessible, eco-friendly, and safe process with significant applications in biotechnology, pharmaceutical sciences, and farming. The aim of our study was to obtain silver nanoparticles, using plant wastes extracts resulted in the essential oils extraction process: Thymus vulgaris L., Origanum vulgare L., Lavandula angustifolia L., and in hemp processing for seed and fibre, Cannabis sativa. Firstly, we obtained aqueous extracts of thyme, oregano, lavender, and hemp (two monoicous and one dioicous varieties), all harvested in western part of Romania. Then, we determined the chemical composition of the extracts by liquid-chromatography coupled with diode array and mass spectrometer detectors. The compounds identified in the extracts were in agreement with earlier published data, and the determination of the antioxidant activity of the obtained extracts by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays confirmed their antioxidant activity due to their total polyphenolic content evaluated by Folin-Ciocalteu assay. Then, the silver nanoparticles (AgNPs) were successfully biosynthesised, as was demonstrated by UV-VIS, FT-IR spectroscopies, and SEM, by reacting AgNO₃ solution and plant extracts. AgNPs were spherical in shape, with less than 30 nm in diameter, and had a good bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens).Keywords: plant wastes extracts, chemical composition, high performance liquid chromatography mass spectrometer, HPLC-MS, scanning electron microscopy, SEM, silver nanoparticles
Procedia PDF Downloads 1801340 Comparative Analysis of in vitro Release profile for Escitalopram and Escitalopram Loaded Nanoparticles
Authors: Rashi Rajput, Manisha Singh
Abstract:
Escitalopram oxalate (ETP), an FDA approved antidepressant drug from the category of SSRI (selective serotonin reuptake inhibitor) and is used in treatment of general anxiety disorder (GAD), major depressive disorder (MDD).When taken orally, it is metabolized to S-demethylcitalopram (S-DCT) and S-didemethylcitalopram (S-DDCT) in the liver with the help of enzymes CYP2C19, CYP3A4 and CYP2D6. Hence, causing side effects such as dizziness, fast or irregular heartbeat, headache, nausea etc. Therefore, targeted and sustained drug delivery will be a helpful tool for increasing its efficacy and reducing side effects. The present study is designed for formulating mucoadhesive nanoparticle formulation for the same Escitalopram loaded polymeric nanoparticles were prepared by ionic gelation method and characterization of the optimised formulation was done by zeta average particle size (93.63nm), zeta potential (-1.89mV), TEM (range of 60nm to 115nm) analysis also confirms nanometric size range of the drug loaded nanoparticles along with polydispersibility index of 0.117. In this research, we have studied the in vitro drug release profile for ETP nanoparticles, through a semi permeable dialysis membrane. The three important characteristics affecting the drug release behaviour were – particle size, ionic strength and morphology of the optimised nanoparticles. The data showed that on increasing the particle size of the drug loaded nanoparticles, the initial burst was reduced which was comparatively higher in drug. Whereas, the formulation with 1mg/ml chitosan in 1.5mg/ml tripolyphosphate solution showed steady release over the entire period of drug release. Then this data was further validated through mathematical modelling to establish the mechanism of drug release kinetics, which showed a typical linear diffusion profile in optimised ETP loaded nanoparticles.Keywords: ionic gelation, mucoadhesive nanoparticle, semi-permeable dialysis membrane, zeta potential
Procedia PDF Downloads 295