Search results for: medi-cal data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27144

Search results for: medi-cal data

26544 Interpreting Privacy Harms from a Non-Economic Perspective

Authors: Christopher Muhawe, Masooda Bashir

Abstract:

With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.

Keywords: data breach and misuse, economic harms, privacy harms, psychological harms

Procedia PDF Downloads 195
26543 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 59
26542 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course

Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu

Abstract:

This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.

Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN

Procedia PDF Downloads 43
26541 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 69
26540 Data Access, AI Intensity, and Scale Advantages

Authors: Chuping Lo

Abstract:

This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.

Keywords: digital intensity, digital divide, international trade, scale of economics

Procedia PDF Downloads 66
26539 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data

Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju

Abstract:

Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.

Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding

Procedia PDF Downloads 410
26538 Identity Verification Using k-NN Classifiers and Autistic Genetic Data

Authors: Fuad M. Alkoot

Abstract:

DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN). 

Keywords: biometrics, genetic data, identity verification, k nearest neighbor

Procedia PDF Downloads 253
26537 A Review on Intelligent Systems for Geoscience

Authors: R Palson Kennedy, P.Kiran Sai

Abstract:

This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.

Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science

Procedia PDF Downloads 133
26536 The Relationship between Functional Movement Screening Test and Prevalence of Musculoskeletal Disorders in Emergency Nurse and Emergency Medical Services Staff Shiraz, Iran, 2017

Authors: Akram Sadat Jafari Roodbandi, Alireza Choobineh, Nazanin Hosseini, Vafa Feyzi

Abstract:

Introduction: Physical fitness and optimum functional movement are essential for efficiently performing job tasks without fatigue and injury. Functional Movement Screening (FMS) tests are used in screening of athletes and military forces. Nurses and emergency medical staff are obliged to perform many physical activities such as transporting patients, CPR operations, etc. due to the nature of their jobs. This study aimed to assess relationship between FMS test score and the prevalence of musculoskeletal disorders (MSDs) in emergency nurses and emergency medical services (EMS) staff. Methods: 134 male and female emergency nurses and EMS technicians participated in this cross-sectional, descriptive-analytical study. After video tutorial and practical training of how to do FMS test, the participants carried out the test while they were wearing comfortable clothes. The final score of the FMS test ranges from 0 to 21. The score of 14 is considered weak in the functional movement base on FMS test protocol. In addition to the demographic data questionnaire, the Nordic musculoskeletal questionnaire was also completed for each participant. SPSS software was used for statistical analysis with a significance level of 0.05. Results: Totally, 49.3% (n=66) of the subjects were female. The mean age and work experience of the subjects were 35.3 ± 8.7 and 11.4 ± 7.7, respectively. The highest prevalence of MSDs was observed at the knee and lower back with 32.8% (n=44) and 23.1% (n=31), respectively. 26 (19.4%) health worker had FMS test score of 14 and less. The results of the Spearman correlation test showed that the FMS test score was significantly associated with MSDs (r=-0.419, p < 0.0001). It meant that MSDs increased with the decrease of the FMS test score. Age, sex, and MSDs were the remaining significant factors in linear regression logistic model with dependent variable of FMS test score. Conclusion: FMS test seems to be a usable screening tool in pre-employment and periodic medical tests for occupations that require physical fitness and optimum functional movements.

Keywords: functional movement, musculoskeletal disorders, health care worker, screening test

Procedia PDF Downloads 129
26535 Decision Tree Analysis of Risk Factors for Intravenous Infiltration among Hospitalized Children: A Retrospective Study

Authors: Soon-Mi Park, Ihn Sook Jeong

Abstract:

This retrospective study was aimed to identify risk factors of intravenous (IV) infiltration for hospitalized children. The participants were 1,174 children for test and 424 children for validation, who admitted to a general hospital, received peripheral intravenous injection therapy at least once and had complete records. Data were analyzed with frequency and percentage or mean and standard deviation were calculated, and decision tree analysis was used to screen for the most important risk factors for IV infiltration for hospitalized children. The decision tree analysis showed that the most important traditional risk factors for IV infiltration were the use of ampicillin/sulbactam, IV insertion site (lower extremities), and medical department (internal medicine) both in the test sample and validation sample. The correct classification was 92.2% in the test sample and 90.1% in the validation sample. More careful attention should be made to patients who are administered ampicillin/sulbactam, have IV site in lower extremities and have internal medical problems to prevent or detect infiltration occurrence.

Keywords: decision tree analysis, intravenous infiltration, child, validation

Procedia PDF Downloads 174
26534 Risk Mapping of Road Traffic Incidents in Greater Kampala Metropolitan Area for Planning of Emergency Medical Services

Authors: Joseph Kimuli Balikuddembe

Abstract:

Road traffic incidents (RTIs) continue to be a serious public health and development burden around the globe. Compared to high-income countries (HICs), the low and middle-income countries (LMICs) bear the heaviest brunt of RTIs. Like other LMICs, Uganda, a country located in Eastern Africa, has been experiencing a worryingly high burden of RTIs and their associated impacts. Over the years, the highest number of all the total registered RTIs in Uganda has taken place in the Greater Kampala Metropolitan Area (GKMA). This places a tremendous demand on the few existing emergency medical services (EMS) to adequately respond to those affected. In this regard, the overall objective of the study was to risk map RTIs in the GKMA so as to help in the better planning of EMS for the victims of RTIs. Other objectives included: (i) identifying the factors affecting the exposure, vulnerability and EMS capacity for the victims of RTIs; (ii) identifying the RTI prone-areas and estimating their associated risk factors; (iii) identifying the weaknesses and capacities which affect the EMS systems for RTIs; and (iv) determining the strategies and priority actions that can help to improve the EMS response for RTI victims in the GKMA. To achieve these objectives, a mixed methodological approach was used in four phrases for approximately 15 months. It employed a systematic review based on the preferred reporting items for systematic reviews and meta-data analysis guidelines; a Delphi panel technique; retrospective data analysis; and a cross-sectional method. With Uganda progressing forward as envisaged in its 'Vision 2040', the GKMA, which is the country’s political and socioeconomic epicenter, is experiencing significant changes in terms of population growth, urbanization, infrastructure development, rapid motorization and other factors. Unless appropriate actions are taken, these changes are likely to worsen the already alarming rate of RTIs in Uganda, and in turn also to put pressure on the few existing EMS and facilities to render care for those affected. Therefore, road safety vis-à-vis injury prevention measures, which are needed to reduce the burden of RTIs, should be multifaceted in nature so that they closely correlate with the ongoing dynamics that contribute to RTIs, particularly in the GKMA and Uganda as a whole.

Keywords: emergency medical services, Kampala, risk mapping, road traffic incidents

Procedia PDF Downloads 116
26533 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories

Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy

Abstract:

Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.

Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography

Procedia PDF Downloads 189
26532 Lexical Collocations in Medical Articles of Non-Native vs Native English-Speaking Researchers

Authors: Waleed Mandour

Abstract:

This study presents multidimensional scrutiny of Benson et al.’s seven-category taxonomy of lexical collocations used by Egyptian medical authors and their peers of native-English speakers. It investigates 212 medical papers, all published during a span of 6 years (from 2013 to 2018). The comparison is held to the medical research articles submitted by native speakers of English (25,238 articles in total with over 103 million words) as derived from the Directory of Open Access Journals (a 2.7 billion-word corpus). The non-native speakers compiled corpus was properly annotated and marked-up manually by the researcher according to the standards of Weisser. In terms of statistical comparisons, though, deployed were the conventional frequency-based analysis besides the relevant criteria, such as association measures (AMs) in which LogDice is deployed as per the recommendation of Kilgariff et al. when comparing large corpora. Despite the terminological convergence in the subject corpora, comparison results confirm the previous literature of which the non-native speakers’ compositions reveal limited ranges of lexical collocations in terms of their distribution. However, there is a ubiquitous tendency of overusing the NS-high-frequency multi-words in all lexical categories investigated. Furthermore, Egyptian authors, conversely to their English-speaking peers, tend to embrace more collocations denoting quantitative rather than qualitative analyses in their produced papers. This empirical work, per se, contributes to the English for Academic Purposes (EAP) and English as a Lingua Franca in Academic settings (ELFA). In addition, there are pedagogical implications that would promote a better quality of medical research papers published in Egyptian universities.

Keywords: corpus linguistics, EAP, ELFA, lexical collocations, medical discourse

Procedia PDF Downloads 129
26531 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 133
26530 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 435
26529 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: data augmentation, mutex task generation, meta-learning, text classification.

Procedia PDF Downloads 91
26528 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network

Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan

Abstract:

Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.

Keywords: aggregation point, data communication, data aggregation, wireless sensor network

Procedia PDF Downloads 155
26527 Hybrid EMPCA-Scott Approach for Estimating Probability Distributions of Mutual Information

Authors: Thuvanan Borvornvitchotikarn, Werasak Kurutach

Abstract:

Mutual information (MI) is widely used in medical image registration. In the different medical images analysis, it is difficult to choose an optimal bins size number for calculating the probability distributions in MI. As the result, this paper presents a new adaptive bins number selection approach that named a hybrid EMPCA-Scott approach. This work combines an expectation maximization principal component analysis (EMPCA) and the modified Scott’s rule. The proposed approach solves the binning problem from the various intensity values in medical images. Experimental results of this work show the lower registration errors compared to other adaptive binning approaches.

Keywords: mutual information, EMPCA, Scott, probability distributions

Procedia PDF Downloads 249
26526 Spatial Econometric Approaches for Count Data: An Overview and New Directions

Authors: Paula Simões, Isabel Natário

Abstract:

This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.

Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data

Procedia PDF Downloads 591
26525 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 352
26524 Classroom Incivility Behaviours among Medical Students: A Comparative Study in Pakistan

Authors: Manal Rauf

Abstract:

Trained medical practitioners are produced from medical colleges serving in public and private sectors. Prime responsibility of teaching faculty is to inculcate required work ethic among the students by serving as role models for them. It is an observed fact that classroom incivility behaviours are providing a friction in achieving these targets. Present study aimed at identification of classroom incivility behaviours observed by teachers and students of public and private medical colleges as per Glasser’s Choice Theory, making a comparison and investigating the strategies being adopted by teachers of both sectors to control undesired class room behaviours. Findings revealed that a significant difference occurs between teacher and student incivility behaviours. Public sector teacher focussed on survival as a strong factor behind in civil behaviours whereas private sector teachers considered power as the precedent for incivility. Teachers of both sectors are required to use verbal as well as non-verbal immediacy to reach a healthy leaning environment.

Keywords: classroom incivility behaviour, glasser choice theory, Mehrabian immediacy theory

Procedia PDF Downloads 239
26523 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 188
26522 Factors Associated with Pesticides Used and Plasma Cholinesterase Level among Agricultural Workers in Rural Area, Thailand

Authors: Pirakorn Sukonthaman, Paphitchaya Temphattharachok, Warangkana Thammasanya, Kraichart Tantrakarnarpa, Tanongson Tientavorn

Abstract:

Agriculture is the main occupation in Thailand. Excessive amount of pesticides are used to increase the products but are toxic to human body. In 2009, Bureau of Epidemiology received 1,691 cases reported with pesticides toxicity (2.66:100,000) which 10.61 % of them is caused by Organophosphate. The purposes are to find factors associated with pesticides used and plasma cholinesterase level and other emerging issues that previous studies did not explain among agricultural workers in Baan Na Yao, Chachoengsao, Thailand. This research was an exploratory mixed method study. Qualitative interviews and quantitative questionnaires were used together in order to gather information from the agricultural workers (mainly cassava and rice farming) directly exposed to pesticides within 2 months simultaneously. Qualitative participants were selected by purposive sampling and a total survey for quantitative ones. The quantitative data was statistically analyzed by using multiple logistic regression model. Qualitative data was transcribed verbatim and thematically analyzed. For qualitative study, 15 participants were interviewed and 300/323 participants (92.88%) were given questionnaires, of which were 175 male and 125 female and 113 among them were spraymen. The prevalence of abnormal plasma cholinesterase level was 92.28% (Safe 7.72% Risky 49.33% and Unsafe 42.95%). Participants with inappropriate behaviors during spraying had a significant association with plasma cholinesterase level (95%CI=1.399-14.858) but other factors such as age, gender, education, attitude and knowledge had no association. They also had encountered various symptoms from pesticides such as fatigue (61%), vertigo (59.67%) and headache (58.86%), etc. Although they had high knowledge and attitude they still had poor behaviors. Moreover, our qualitative component showed that though they had worn the personal protective equipment (PPE) regularly, their PPE was not standard. Not only substandard PPE, but also there were obstacles of wearing such as the hot climate and inconvenience. They misunderstood their symptoms from using pesticides as allergy. Therefore, they did not seek for proper medical check-ups and treatment. This research revealed almost all of the participants have abnormal levels of plasma cholinesterase related especially those with poor behaviors. They also wore PPE but inadequately and misunderstood the symptoms produced by organophosphate use as allergy. Therefore, they did not seek for medical treatment. Occupation health education, modification of PPE and periodic medical checking are ways to make agricultural workers concern and know if there is any progression in a long term.

Keywords: pesticides, plasma cholinesterase level, spraymen, agricultural workers

Procedia PDF Downloads 350
26521 Recurrent Wheezing and Associated Factors among 6-Year-Old Children in Adama Comprehensive Specialized Hospital Medical College

Authors: Samrawit Tamrat Gebretsadik

Abstract:

Recurrent wheezing is a common respiratory symptom among children, often indicative of underlying airway inflammation and hyperreactivity. Understanding the prevalence and associated factors of recurrent wheezing in specific age groups is crucial for targeted interventions and improved respiratory health outcomes. This study aimed to investigate the prevalence and associated factors of recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College in Ethiopia. A cross-sectional study design was employed, involving structured interviews with parents/guardians, medical records review, and clinical examination of children. Data on demographic characteristics, environmental exposures, family history of respiratory diseases, and socioeconomic status were collected. Logistic regression analysis was used to identify factors associated with recurrent wheezing. The study included X 6-year-old children, with a prevalence of recurrent wheezing found to be Y%. Environmental exposures, including tobacco smoke exposure (OR = Z, 95% CI: X-Y), indoor air pollution (OR = Z, 95% CI: X-Y), and presence of pets at home (OR = Z, 95% CI: X-Y), were identified as significant risk factors for recurrent wheezing. Additionally, a family history of asthma or allergies (OR = Z, 95% CI: X-Y) and low socioeconomic status (OR = Z, 95% CI: X-Y) were associated with an increased likelihood of recurrent wheezing. The impact of recurrent wheezing on the quality of life of affected children and their families was also assessed. Children with recurrent wheezing experienced a higher frequency of respiratory symptoms, increased healthcare utilization, and decreased physical activity compared to their non-wheezing counterparts. In conclusion, recurrent wheezing among 6-year-old children attending Adama Comprehensive Specialized Hospital Medical College is associated with various environmental, genetic, and socioeconomic factors. These findings underscore the importance of targeted interventions aimed at reducing exposure to known triggers and improving respiratory health outcomes in this population. Future research should focus on longitudinal studies to further elucidate the causal relationships between risk factors and recurrent wheezing and evaluate the effectiveness of preventive strategies.

Keywords: wheezing, inflammation, respiratory, crucial

Procedia PDF Downloads 51
26520 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 244
26519 Mediation Models in Triadic Relationships: Illness Narratives and Medical Education

Authors: Yoko Yamada, Chizumi Yamada

Abstract:

Narrative psychology is based on the dialogical relationship between self and other. The dialogue can consist of divided, competitive, or opposite communication between self and other. We constructed models of coexistent dialogue in which self and other were positioned side by side and communicated sympathetically. We propose new mediation models for narrative relationships. The mediation models are based on triadic relationships that incorporate a medium or a mediator along with self and other. We constructed three types of mediation model. In the first type, called the “Joint Attention Model”, self and other are positioned side by side and share attention with the medium. In the second type, the “Triangle Model”, an agent mediates between self and other. In the third type, the “Caring Model”, a caregiver stands beside the communication between self and other. We apply the three models to the illness narratives of medical professionals and patients. As these groups have different views and experiences of disease or illness, triadic mediation facilitates the ability to see things from the other person’s perspective and to bridge differences in people’s experiences and feelings. These models would be useful for medical education in various situations, such as in considering the relationships between senior and junior doctors and between old and young patients.

Keywords: illness narrative, mediation, psychology, model, medical education

Procedia PDF Downloads 408
26518 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 517
26517 Influence of Well-Being and Quality of Work-Life on Quality of Care among Health Professionals in Southwest Nigeria

Authors: Adesola C. Odole, Michael O. Ogunlana, Nse A. Odunaiya, Olufemi O. Oyewole, Chidozie E. Mbada, Ogochukwu K. Onyeso, Ayomikun F. Ayodeji, Opeyemi M. Adegoke, Iyanuoluwa Odole, Comfort T. Sanuade, Moyosooreoluwa E. Odole, Oluwagbohunmi A. Awosoga

Abstract:

Purpose: The Nigerian healthcare industry is bedeviled with infrastructural decay, inadequate funding and staffing, and a dysfunctional healthcare system. This study investigated the influence of health professionals’ well-being and quality of work-life (QoWL) on the quality of care (QoC) of patients in Nigeria. Methods: The study was a multicentre cross-sectional survey conducted at four tertiary health institutions in southwest Nigeria. Participants’ demographic information, well-being, quality of work-life, and quality of care were obtained using four standardized questionnaires. Data were summarized using descriptive statistics of frequency (percentage) and mean (standard deviation). Inferential statistics included Chi-square, Pearson’s correlation, and independent samples t-test analyses. Results: Medical practitioners (n=609) and nurses (n=570) constituted 74.6% of all the health professionals, with physiotherapists, pharmacists, and medical laboratory scientists constituting 25.4%. The mean (SD) participants’ well-being = 71.65% (14.65), quality of life = 61.8% (21.31), quality of work-life = 65.73% (10.52) and quality of care = 70.14% (12.77). Participants’ quality of life had a significant negative correlation with the quality of care, while well-being and quality of work-life had a significant positive correlation with the quality of care. Conclusion: We concluded that health professionals’ well-being and quality of work-life are important factors that influence their productivity and, ultimately, the quality of care rendered to patients. The hospital management and policymakers should ensure improved work-related factors to improve the well-being of health professionals. This will enhance the quality of care given to patients and ultimately reduce brain drain and medical tourism.

Keywords: health professionals, quality of care, quality of life, quality of work-life, well-being

Procedia PDF Downloads 79
26516 A Mutually Exclusive Task Generation Method Based on Data Augmentation

Authors: Haojie Wang, Xun Li, Rui Yin

Abstract:

In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.

Keywords: mutex task generation, data augmentation, meta-learning, text classification.

Procedia PDF Downloads 141
26515 Evaluation of Persian Medical Terms Compatibility with International Naming Criteria Based on the Applied Translation Procedures

Authors: Ali Akbar Zeinali

Abstract:

Lack of appropriate equivalences for the terms or technical words is the result of ineffective translation guidelines adopted in the translation processes. The increasing number of foreign words and specific terms incorporated into the native language are due to the ongoing development of technology and science. Many problems appear in medical translation when the Persian translators try to employ non-Persian or imported words in medical texts, in which multiple equivalents may be created for one particular word based on the individual preferences of authors and translators in the target language due to lack of standardization. The study attempted to discuss the findings based on the compatibility of the international naming criteria, considering the translation procedures. About 67% of 339 equivalents under this study were grouped as incompatible words while about 33% of them were compatible terms. The similarities and differences were investigated and discussed according to the compatibility status of the equivalents with Sager’s criteria. Such equivalents have been classified into several groups through bi-dimensional descriptions that were different features of translation procedures related to the international naming criteria. In review of the frequency distribution of compatibilities, the equivalents were divided into two categories of compatibles and incompatibles, indicating the effectiveness of the applied translation procedures.

Keywords: linguistics, medical translation, naming, terminology

Procedia PDF Downloads 117