Search results for: generalized regression
3322 Full Mini Nutritional Assessment Questionnaire and the Risk of Malnutrition and Mortality in Elderly, Hospitalized Patients: A Cross-Sectional Study
Authors: Christos E. Lampropoulos, Maria Konsta, Tamta Sirbilatze, Ifigenia Apostolou, Vicky Dradaki, Konstantina Panouria, Irini Dri, Christina Kordali, Vaggelis Lambas, Georgios Mavras
Abstract:
Objectives: Full Mini Nutritional Assessment (MNA) questionnaire is one of the most useful tools in diagnosis of malnutrition in hospitalized patients, which is related to increased morbidity and mortality. The purpose of our study was to assess the nutritional status of elderly, hospitalized patients and examine the hypothesis that MNA may predict mortality and extension of hospitalization. Methods: One hundred fifty patients (78 men, 72 women, mean age 80±8.2) were included in this cross-sectional study. The following data were taken into account in analysis: anthropometric and laboratory data, physical activity (International Physical Activity Questionnaires, IPAQ), smoking status, dietary habits, cause and duration of current admission, medical history (co-morbidities, previous admissions). Primary endpoints were mortality (from admission until 6 months afterwards) and duration of admission. The latter was compared to national guidelines for closed consolidated medical expenses. Logistic regression and linear regression analysis were performed in order to identify independent predictors for mortality and extended hospitalization respectively. Results: According to MNA, nutrition was normal in 54/150 (36%) of patients, 46/150 (30.7%) of them were at risk of malnutrition and the rest 50/150 (33.3%) were malnourished. After performing multivariate logistic regression analysis we found that the odds of death decreased 20% per each unit increase of full MNA score (OR=0.8, 95% CI 0.74-0.89, p < 0.0001). Patients who admitted due to cancer were 23 times more likely to die, compared to those with infection (OR=23, 95% CI 3.8-141.6, p=0.001). Similarly, patients who admitted due to stroke were 7 times more likely to die (OR=7, 95% CI 1.4-34.5, p=0.02), while these with all other causes of admission were less likely (OR=0.2, 95% CI 0.06-0.8, p=0.03), compared to patients with infection. According to multivariate linear regression analysis, each increase of unit of full MNA, decreased the admission duration on average 0.3 days (b:-0.3, 95% CI -0.45 - -0.15, p < 0.0001). Patients admitted due to cancer had on average 6.8 days higher extension of hospitalization, compared to those admitted for infection (b:6.8, 95% CI 3.2-10.3, p < 0.0001). Conclusion: Mortality and extension of hospitalization is significantly increased in elderly, malnourished patients. Full MNA score is a useful diagnostic tool of malnutrition.Keywords: duration of admission, malnutrition, mini nutritional assessment score, prognostic factors for mortality
Procedia PDF Downloads 3133321 Analysis of Labor Behavior Effect on Occupational Health and Safety Management by Multiple Linear Regression
Authors: Yulinda Rizky Pratiwi, Fuji Anugrah Emily
Abstract:
Management of Occupational Safety and Health (OSH) are appropriately applied properly by all workers and pekarya in the company. K3 management application also has become very important to prevent accidents. Violation of the rules regarding the K3 has often occurred from time to time. By 2015 the number of occurrences of a violation of the K3 or so-called unsafe action tends to increase. Until finally in January 2016, the number increased drastically unsafe action. Trigger increase in the number of unsafe action is a decrease in the quality of management practices K3. While the application of K3 management performed by each individual thought to be influenced by the attitude and observation guide the actions of each of the individual. In addition to the decline in the quality of K3 management application may result in increased likelihood of accidents and losses for the company as well as the local co-workers. The big difference in the number of unsafe action is very significant in the month of January 2016, making the company Pertamina as the national oil company must do a lot of effort to keep track of how the implementation of K3 management on every worker and pekarya, one at PT Pertamina EP Cepu Field Asset IV. To consider the effort to control the implementation of K3 management can be seen from the attitude and observation guide the actions of the workers and pekarya. By using Multiple Linear Regression can be seen the influence of attitude and action observation guide workers and pekarya the K3 management application that has been done. The results showed that scores K3 management application of each worker and pekarya will increase by 0.764 if the score pekarya worker attitudes and increase one unit, whereas if the score Reassurance action guidelines and pekarya workers increased by one unit then the score management application K3 will increase by 0.754.Keywords: occupational safety and health, management of occupational safety and health, unsafe action, multiple linear regression
Procedia PDF Downloads 2303320 Predictors of School Safety Awareness among Malaysian Primary School Teachers
Authors: Ssekamanya, Mastura Badzis, Khamsiah Ismail, Dayang Shuzaidah Bt Abduludin
Abstract:
With rising incidents of school violence worldwide, educators and researchers are trying to understand and find ways to enhance the safety of children at school. The purpose of this study was to investigate the extent to which the demographic variables of gender, age, length of service, position, academic qualification, and school location predicted teachers’ awareness about school safety practices in Malaysian primary schools. A stratified random sample of 380 teachers was selected in the central Malaysian states of Kuala Lumpur and Selangor. Multiple regression analysis revealed that none of the factors was a good predictor of awareness about school safety training, delivery methods of school safety information, and available school safety programs. Awareness about school safety activities was significantly predicted by school location (whether the school was located in a rural or urban area). While these results may reflect a general lack of awareness about school safety among primary school teachers in the selected locations, a national study needs to be conducted for the whole country.Keywords: school safety awareness, predictors of school safety, multiple regression analysis, malaysian primary schools
Procedia PDF Downloads 4683319 Assessment of Soil Salinity through Remote Sensing Technique in the Coastal Region of Bangladesh
Abstract:
Soil salinity is a major problem for the coastal region of Bangladesh, which has been increasing for the last four decades. Determination of soil salinity is essential for proper land use planning for agricultural crop production. The aim of the research is to estimate and monitor the soil salinity in the study area. Remote sensing can be an effective tool for detecting soil salinity in data-scarce conditions. In the research, Landsat 8 is used, which required atmospheric and radiometric correction, and nine soil salinity indices are applied to develop a soil salinity map. Ground soil salinity data, i.e., EC value, is collected as a printed map which is then scanned and digitized to develop a point shapefile. Linear regression is made between satellite-based generated map and ground soil salinity data, i.e., EC value. The results show that maximum R² value is found for salinity index SI 7 = G*R/B representing 0.022. This minimal R² value refers that there is a negligible relationship between ground EC value and salinity index generated value. Hence, these indices are not appropriate to assess soil salinity though many studies used those soil salinity indices successfully. Therefore, further research is necessary to formulate a model for determining the soil salinity in the coastal of Bangladesh.Keywords: soil salinity, EC, Landsat 8, salinity indices, linear regression, remote sensing
Procedia PDF Downloads 3433318 The Olympic Games’ Effect on National Company Growth
Authors: Simon Strande Henriksen
Abstract:
When a city and country decide to undertake an Olympic Games, they do so with the notion that hosting the Olympics will provide direct financial benefits to the city, country, and national companies. Like many activities, the Olympic Games tend to be more popular when it is warm, and the athletes are known, and therefore this paper will only focus on the two latest Olympic Summer Games. Cities and countries continue to invest billions of dollars in infrastructure to secure the role of being Olympic hosts. The multiple investments expect to provide both economic growth and a lasting legacy for the citizens. This study aims to determine whether host country companies experience superior economic impact from the Olympics. Building on existing work within the Olympic field of research, it asks: Do companies in host countries of the Olympic Summer Games experience a superior increase in operating revenue and return on assets compared to other comparable countries? In this context, comparable countries are the two candidates following the host city in the bidding procedure. Based on methods used by scholars, a panel data regression was conducted on revenue growth rate and return on assets, to determine if host country companies see a positive relation with hosting the Olympic Games. Combined with an analysis of motivation behind hosting the Olympics, the regression showed no significant positive relations across all analyses, besides in one instance. Indications of a relationship between company performance and economic motivation were found to be present. With the results indicating a limited effect on company growth, it is recommended that prospective host cities and countries carefully consider possible implications the role of being an Olympic host might have on national companies.Keywords: cross-country analysis, mega-event, multiple regression, quantitative analysis
Procedia PDF Downloads 1413317 Proportion and Factors Associated with Presumptive Tuberculosis among Suspected Pediatric Tuberculosis Patients
Authors: Naima Nur, Safa Islam, Saeema Islam, Md. Faridul Alam
Abstract:
Background: The worldwide increase in pediatric presumptive tuberculosis (TB) is the most life-threatening challenge in effectively controlling TB. The objective of this study was to determine the proportion of presumptive TB and the factors associated with it. Methods: A cross-sectional study was conducted between March and November 2013 at ICDDR-Bangladesh. Two hundred twelve pulmonary and extra-pulmonary specimens were collected from 84 suspected pediatric patients diagnosed with TB based on their clinical symptoms/radiological findings. Presumptive TB and confirmed TB were considered presumptive TB and non-presumptive TB and were isolated by smear-microscopy, culture, and GeneXpert. Logistic regression was used to analyze associations between outcome and predictor variables. Results: The proportion of presumptive TB was 85.7%, and 14.3% of non-presumptive TB. In presumptive TB, vaccine scars, family TB history, and school-going children were 16.6%, 33.3%, and 56.9%, respectively. In contrast, vaccine scars and family TB history were 8.3%, and school-going children were 58.3% in non-presumptive TB. Significant factors did not appear in the logistic regression analysis. Conclusion: Despite the high proportion of presumptive TB, there was no statistically significant between presumptive TB and non-presumptive TB.Keywords: presumptive tuberculosis, confirmed tuberculosis, patient's characteristics, diagnosis
Procedia PDF Downloads 493316 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis
Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang
Abstract:
Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.Keywords: acute hepatitis, medical resource cost, artificial neural network, support vector regression
Procedia PDF Downloads 4223315 Retirement and Tourism Consumption - Evidence from the Elderly in China
Authors: Sha Fan, Renuka Mahadevan
Abstract:
In recent years, the subject of how retirement influences consumption behaviours has garnered attention in economic research. However, a significant gap persists in our understanding of how retirement precisely impacts tourism consumption patterns among the elderly demographic. To address this gap, this research conducts an in-depth exploration into the multifaceted relationship between retirement and elderly tourism consumption.To achieve this, the study employs regression discontinuity design, using three waves of panel data from China covering a span of six years. This approach aims to identify the causality between retirement and tourism consumption. Furthermore, the study scrutinizes the pathways through which retirement's impact on tourism consumption unfolds. It adopts a dual-pronged perspective, examining the roles played by economic status and the availability of leisure time. The economic dimension underscores the financial adjustments that retirees make as they transition into a new phase of life, impacting their propensity to allocate resources towards tourism activities. Meanwhile, considering leisure time recognizes that retirement often heralds an era of newfound freedom, allowing retirees the luxury to engage in leisurely pursuits like tourism.Keywords: tourism consumption, retirement, the elderly, regression discontinuity design
Procedia PDF Downloads 703314 Predicting Marital Burnout Based on Irrational Beliefs and Sexual Dysfunction of Couples
Authors: Elnaz Bandeh
Abstract:
This study aimed to predict marital burnout based on irrational beliefs and sexual dysfunction of couples. The research method was descriptive-correlational, and the statistical population included all couples who consulted to counseling clinics in the fall of 2016. The sample consisted of 200 people who were selected by convenience sampling and answered the Ahwaz Irrational Beliefs Questionnaire, Pines Couple Burnout, and Hudson Marital Satisfaction Questionnaire. The data were analyzed using regression coefficient. The results of regression analysis showed that there was a linear relationship between irrational beliefs and couple burnout and dimensions of helplessness toward change, expectation of approval from others, and emotional irresponsibility were positive and significant predictors of couple burnout. However, after avoiding the problem of power, it was not a significant predictor of marital dissatisfaction. There was also a linear relationship between sexual dysfunction and couple burnout, and sexual dysfunction was a positive and significant predictor of couple burnout. Based on the findings, it can be concluded that irrational beliefs and sexual dysfunction play a role in couple dysfunction.Keywords: couple burnout, irrational beliefs, sexual dysfunction, marital relationship
Procedia PDF Downloads 1563313 Mechanical Properties and Microstructures of the Directional Solidified Zn-Al-Cu Alloy
Authors: Mehmet Izzettin Yilmazer, Emin Cadirli
Abstract:
Zn-7wt.%Al-2.96wt.%Cu eutectic alloy was directionally solidified upwards with different temperature gradients (from 6.70 K/mm to 10.67 K/mm) at a constant growth rate (16.4 Km/s) and also different growth rate (from 8.3 micron/s to 166 micron/s) at a constant temperature gradient (10.67 K/mm) using a Bridgman–type growth apparatus.The values of eutectic spacing were measured from longitudinal and transverse sections of the samples. The dependency of microstructures on the G and V were determined with linear regression analysis and experimental equations were found as λl=8.953xVexp-0.49, λt=5.942xVexp-0.42 and λl=0.008xGexp-1.23, λt=0.024xGexp-0.93. The measurements of microhardness of directionally solidified samples were obtained by using a microhardness test device. The dependence of microhardness HV on temperature gradient and growth rate were analyzed. The dependency of microhardness on the G and V were also determined with linear regression analysis as HVl=110.66xVexp0.02, HVt=111.94xVexp0.02 and HVl=69.66xGexp0.17, HVt=68.86xGexp0.18. The experimental results show that the microhardness of the directionally solidified Zn-Al-Cu alloy increases with increasing the growth rate. The results obtained in this work were compared with the previous similar experimental results.Keywords: directional solidification, eutectic alloys, microstructure, microhardness
Procedia PDF Downloads 4513312 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 1573311 Design, Modeling, Fabrication, and Testing of a Scaled down Hybrid Rocket Engine
Authors: Pawthawala Nancy Manish, Syed Alay Hashim
Abstract:
A hybrid rocket is a rocket engine which uses propellants in two different states of matter- one is in solid and the other either gas or liquid. A hybrid rocket exhibit advantages over both liquid rockets and solid rockets especially in terms of simplicity, stop-start-restart capabilities, safety and cost. This paper deals the design and development of a hybrid rocket having paraffin wax as solid fuel and liquid oxygen as oxidizer. Due to variation of pressure in combustion chamber there is significantly change in mass flow rate, burning rate and uneven regression along the length of the grain. This project describes the working model of a hybrid propellant rocket motor. We have designed a hybrid rocket thrust chamber based on the predetermined combustion chamber pressure and the properties of hybrid propellant. This project is all ready in working condition with normal oxygen injector. Now we have planned to modify the injector design to improve the combustion property. We will use spray type injector for injecting the oxidizer. This idea will increase the performance followed by the regression rate of the solid fuel. By employing mass conservation law, oxygen mass flux, oxidizer/fuel ratio and regression rate the thrust coefficient can be obtained for our current design. CATIA V5 R20 is our design software for the complete setup. This project is fully based on experimental evaluation and the collection of combustion and flow parameters. The thrust chamber is made of stainless steel and the duration of test is around 15-20 seconds (Maximum). These experiments indicates that paraffin based fuel provides the opportunity to satisfy a broad range of mission requirements for the next generation of the hybrid rocket system.Keywords: burning rate, liquid oxygen, mass flow rate, paraffin wax and sugar
Procedia PDF Downloads 3353310 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5613309 Static Properties of Ge and Sr Isotopes in the Cluster Model
Authors: Mohammad Reza Shojaei, Mahdeih Mirzaeinia
Abstract:
We have studied the cluster structure of even-even stable isotopes of Ge and Sr. The Schrodinger equation has been solved using the generalized parametric Nikiforov-Uvarov method with a phenomenological potential. This potential is the sum of the attractive Yukawa-like potential, a Manning-Rosen-type potential, and the repulsive Yukawa potential for interaction between the cluster and the core. We have shown that the available experimental data of the first rotational band energies can be well described by assuming a binary system of the α cluster and the core and using an analytical solution. Our results were consistent with experimental values. Hence, this model can be applied to study the other even-even isotopesKeywords: cluser model, NU method, ge and Sr, potential central
Procedia PDF Downloads 763308 The Existence of a Sciatic Artery in Congenital Lower Limb Deformities
Authors: Waseem Al Talalwah, Shorok Al Dorazi, Roger Soames
Abstract:
Persistent sciatic artery is a rare anatomical vascular variation resulting from a lack of regression of the embryonic dorsal axial artery. The axial artery is the main artery supplying the lower limb during development in the first trimester. The current research includes 206 sciatic artery cases in 171 patients between 1864 and 2012. It aims to identify the risk factor of sciatic artery aneurysm in congenital limb anomalies. Sciatic artery aneurysm was diagnosed incidentally in amniotic band syndrome (ABS) existing with no congenital anomaly in 0.7% or with double knee in 0.7%, with the tibia in 0.7% and with hemihypertrophy or soft tissue hypertrophy in 1.4%. Therefore, the current study indicates a relationship the same gene responsible for the congenital limb deformities may be responsible for non-regression of the sciatic artery. Furthermore, pediatricians should refer cases of congenital limb anomalies for vascular evaluation prior to corrective surgical intervention.Keywords: amniotic band syndrome, congenital limb deformities, double knee, sciatic artery, sciatic artery aneurysm , soft tissue hypertrophy
Procedia PDF Downloads 3773307 Parents of Mentally Disabled Children in Iran: A Study of Their Parenting Stress Levels and Mental Health
Authors: Mohsen Amiri
Abstract:
This study aimed at investigating the relationship between familial functioning, child characteristics, demographic variables and parenting stress and mental health among parents of children with mental disabilities. 200 parents (130 mothers and 70 fathers) were studied and they completed the Parenting Stress Index, General Health Questionnaire, Family Assessment Device and demographic questionnaires for parents and children. Data were analyzed using correlation and regression analysis. Regression analysis showed that child characteristics, familial functioning and parents demographic factors could predict 8, 4 and 17 percent of variance in parental stress and 3.6, 16 and 10 percent of variance in mental health, respectively. Familial functioning, child characteristics and parental demographic variables correlated with mental health and parental stress and could predict them.Keywords: parenting stress, mental health, mentally disabled children, familial functioning, demographic variables
Procedia PDF Downloads 4453306 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator
Procedia PDF Downloads 1983305 Dietary Pattern derived by Reduced Rank Regression is Associated with Reduced Cognitive Impairment Risk in Singaporean Older Adults
Authors: Kaisy Xinhong Ye, Su Lin Lim, Jialiang Li, Lei Feng
Abstract:
background: Multiple healthful dietary patterns have been linked with dementia, but limited studies have looked at the role of diet in cognitive health in Asians whose eating habits are very different from their counterparts in the west. This study aimed to derive a dietary pattern that is associated with the risk of cognitive impairment (CI) in the Singaporean population. Method: The analysis was based on 719 community older adults aged 60 and above. Dietary intake was measured using a validated semi-quantitative food-frequency questionnaire (FFQ). Reduced rank regression (RRR) was used to extract dietary pattern from 45 food groups, specifying sugar, dietary fiber, vitamin A, calcium, and the ratio of polyunsaturated fat to saturated fat intake (P:S ratio) as response variables. The RRR-derived dietary patterns were subsequently investigated using multivariate logistic regression models to look for associations with the risk of CI. Results: A dietary pattern characterized by greater intakes of green leafy vegetables, red-orange vegetables, wholegrains, tofu, nuts, and lower intakes of biscuits, pastries, local sweets, coffee, poultry with skin, sugar added to beverages, malt beverages, roti, butter, and fast food was associated with reduced risk of CI [multivariable-adjusted OR comparing extreme quintiles, 0.29 (95% CI: 0.11, 0.77); P-trend =0.03]. This pattern was positively correlated with P:S ratio, vitamin A, and dietary fiber and negatively correlated with sugar. Conclusion: A dietary pattern providing high P:S ratio, vitamin A and dietary fiber, and a low level of sugar may reduce the risk of cognitive impairment in old age. The findings have significance in guiding local Singaporeans to dementia prevention through food-based dietary approaches.Keywords: dementia, cognitive impairment, diet, nutrient, elderly
Procedia PDF Downloads 823304 Determinants of Child Anthropometric Indicators: A Case Study of Mali in 2015
Authors: Davod Ahmadigheidari
Abstract:
The main objective of this study was to explore prevalence of anthropometric indicators as well the factors associated with the anthropometric indications in Mali. Data on 2015, downloaded from the website of Unicef, were analyzed. A total of 16,467 women (ages 15-49 years) and 16,467 children (ages 0-59 months) were selected for the sample. Different statistical analyses, such as descriptive, crosstabs and binary logistic regression form the basis of this study. Child anthropometric indicators (i.e., wasting, stunting, underweight and BMI for age) were used as the dependent variables. SPSS Syntax from WHO was used to create anthropometric indicators. Different factors, such as child’s sex, child’s age groups, child’s diseases symptoms (i.e., diarrhea, cough and fever), maternal education, household wealth index and area of residence were used as independent variables. Results showed more than forty percent of Malian households were in nutritional crises (stunting (42%) and underweight (34%). Findings from logistic regression analyses indicated that low score of wealth index, low maternal education and experience of diarrhea in last two weeks increase the probability of child malnutrition.Keywords: Mali, wasting, stunting, underweight, BMI for age and wealth index
Procedia PDF Downloads 1553303 Deriving an Index of Adoption Rate and Assessing Factors Affecting Adoption of an Agroforestry-Based Farming System in Dhanusha District, Nepal
Authors: Arun Dhakal, Geoff Cockfield, Tek Narayan Maraseni
Abstract:
This paper attempts to fulfil the gap in measuring adoption in agroforestry studies. It explains the derivation of an index of adoption rate in a Nepalese context and examines the factors affecting adoption of agroforestry-based land management practice (AFLMP) in the Dhanusha District of Nepal. Data about the different farm practices and the factors (bio-physical, socio-economic) influencing adoption were collected during focus group discussion and from the randomly selected households using a household survey questionnaire, respectively. A multivariate regression model was used to determine the factors. The factors (variables) found to significantly affect adoption of AFLMP were: farm size, availability of irrigation water, education of household heads, agricultural labour force, frequency of visits by extension workers, expenditure on farm inputs purchase, household’s experience in agroforestry, and distance from home to government forest. The regression model explained about 75% of variation in adoption decision. The model rejected ‘erosion hazard’, ‘flood hazard’ and ‘gender’ as determinants of adoption, which in case of single agroforestry practice were major variables and played positive role. Out of eight variables, farm size played the most powerful role in explaining the variation in adoption, followed by availability of irrigation water and education of household heads. The results of this study suggest that policies to promote the provision of irrigation water, extension services and motivation to obtaining higher education would probably provide the incentive to adopt agroforestry elsewhere in the terai of Nepal.Keywords: agroforestry, adoption index, determinants of adoption, step-wise linear regression, Nepal
Procedia PDF Downloads 5033302 Food Insecurity Determinants Amidst the Covid-19 Pandemic: An Insight from Huntsville, Texas
Authors: Peter Temitope Agboola
Abstract:
Food insecurity continues to affect a large number of U.S households during this coronavirus COVID-19 pandemic. The pandemic has threatened the livelihoods of people, making them vulnerable to severe hardship and has had an unanticipated impact on the U.S economy. This study attempts to identify the food insecurity status of households and the determinant factors driving household food insecurity. Additionally, it attempts to discover the mitigation measures adopted by households during the pandemic in the city of Huntsville, Texas. A structured online sample survey was used to collect data, with a household expenditures survey used in evaluating the food security status of the household. Most survey respondents disclosed that the COVID-19 pandemic had affected their life and source of income. Furthermore, the main analytical tool used for the study is descriptive statistics and logistic regression modeling. A logistic regression model was used to determine the factors responsible for food insecurity in the study area. The result revealed that most households in the study area are food secure, with the remainder being food insecure.Keywords: food insecurity, household expenditure survey, COVID-19, coping strategies, food pantry
Procedia PDF Downloads 2093301 Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model
Authors: Ali Soroush, Mehdi Mirzaei Alavijeh, Touraj Ahmadi Jouybari, Fazel Zinat-Motlagh, Abbas Aghaei, Mari Ataee
Abstract:
Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients.Keywords: diabetes, patients, self-care behaviors, health belief model
Procedia PDF Downloads 4683300 Empirical Investigations on Speed Differentiations of Traffic Flow: A Case Study on a Basic Freeway Segment of O-2 in Istanbul
Authors: Hamed Rashid Sarand, Kemal Selçuk Öğüt
Abstract:
Speed is one of the fundamental variables of road traffic flow that stands as an important evaluation criterion for traffic analyses in several aspects. In particular, varieties of speed variable, such as average speed, free flow speed, optimum speed (capacity speed), acceleration/deceleration speed and so on, have been explicitly considered in the analysis of not only road safety but also road capacity. In the purpose of realizing 'road speed – maximum speed difference across lanes' and 'road flow rate – maximum speed difference across lanes' relations on freeway traffic, this study presents a case study conducted on a basic freeway segment of O-2 in Istanbul. The traffic data employed in this study have been obtained from 5 remote traffic microwave sensors operated by Istanbul Metropolitan Municipality. The study stretch is located between two successive freeway interchanges: Ümraniye and Kavacık. Daily traffic data of 4 years (2011-2014) summer months, July and August are used. The speed data are analyzed into two main flow areas such as uncongested and congested flows. In this study, the regression analyses were carried out in order to examine the relationship between maximum speed difference across lanes and road speed. These investigations were implemented at uncongested and congested flows, separately. Moreover, the relationship between maximum speed difference across lanes and road flow rate were evaluated by applying regression analyses for both uncongested and congested flows separately. It is concluded that there is the moderate relationship between maximum speed difference across lanes and road speed in 50% cases. Additionally, it is indicated that there is the moderate relationship between maximum speed difference across lanes and road flow rate in 30% cases. The maximum speed difference across lanes decreases as the road flow rate increases.Keywords: maximum speed difference, regression analysis, remote traffic microwave sensor, speed differentiation, traffic flow
Procedia PDF Downloads 3673299 EarlyWarning for Financial Stress Events:A Credit-Regime Switching Approach
Abstract:
We propose a new early warning model for predicting financial stress events for a given future time. In this model, we examine whether credit conditions play an important role as a nonlinear propagator of shocks when predicting the likelihood of occurrence of financial stress events for a given future time. This propagation takes the form of a threshold regression in which a regime change occurs if credit conditions cross a critical threshold. Given the new early warning model for financial stress events, we evaluate the performance of this model and currently available alternatives, such as the model from signal extraction approach, and linear regression model. In-sample forecasting results indicate that the three types of models are useful tools for predicting financial stress events while none of them outperforms others across all criteria considered. The out-of-sample forecasting results suggest that the credit-regime switching model performs better than the two others across all criteria and all forecasting horizons considered.Keywords: cut-off probability, early warning model, financial crisis, financial stress, regime-switching model, forecasting horizons
Procedia PDF Downloads 4353298 A Mathematical Equation to Calculate Stock Price of Different Growth Model
Authors: Weiping Liu
Abstract:
This paper presents an equation to calculate stock prices of different growth model. This equation is mathematically derived by using discounted cash flow method. It has the advantages of being very easy to use and very accurate. It can still be used even when the first stage is lengthy. This equation is more generalized because it can be used for all the three popular stock price models. It can be programmed into financial calculator or electronic spreadsheets. In addition, it can be extended to a multistage model. It is more versatile and efficient than the traditional methods.Keywords: stock price, multistage model, different growth model, discounted cash flow method
Procedia PDF Downloads 4063297 Challenges in Achieving Profitability for MRO Companies in the Aviation Industry: An Analytical Approach
Authors: Nur Sahver Uslu, Ali̇ Hakan Büyüklü
Abstract:
Maintenance, Repair, and Overhaul (MRO) costs are significant in the aviation industry. On the other hand, companies that provide MRO services to the aviation industry but are not dominant in the sector, need to determine the right strategies for sustainable profitability in a competitive environment. This study examined the operational real data of a small medium enterprise (SME) MRO company where analytical methods are not widely applied. The company's customers were divided into two categories: airline companies and non-airline companies, and the variables that best explained profitability were analyzed with Logistic Regression for each category and the results were compared. First, data reduction was applied to the transformed variables that went through the data cleaning and preparation stages, and the variables to be included in the model were decided. The misclassification rates for the logistic regression results concerning both customer categories are similar, indicating consistent model performance across different segments. Less profit margin is obtained from airline customers, which can be explained by the variables part description, time to quotation (TTQ), turnaround time (TAT), manager, part cost, and labour cost. The higher profit margin obtained from non-airline customers is explained only by the variables part description, part cost, and labour cost. Based on the two models, it can be stated that it is significantly more challenging for the MRO company, which is the subject of our study, to achieve profitability from Airline customers. While operational processes and organizational structure also affect the profit from airline customers, only the type of parts and costs determine the profit for non-airlines.Keywords: aircraft, aircraft components, aviation, data analytics, data science, gini index, maintenance, repair, and overhaul, MRO, logistic regression, profit, variable clustering, variable reduction
Procedia PDF Downloads 333296 Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control
Authors: Tahir Nawaz Cheema, Dumitru Baleanu, Ali Raza
Abstract:
In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis.Keywords: mathematical models, beysian regularization, bayesian-regularization backpropagation networks, regression analysis, numerical computing
Procedia PDF Downloads 1473295 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia
Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob
Abstract:
Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support
Procedia PDF Downloads 1093294 Relation between Pavement Roughness and Distress Parameters for Highways
Authors: Suryapeta Harini
Abstract:
Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.Keywords: roughness index, network survey vehicle, regression, correlation
Procedia PDF Downloads 1763293 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 467