Search results for: automated diagnoses
464 Royal Tourism: Conscious Perspicacity of Dubai
Authors: Aarti Suryawanshi
Abstract:
Royal Tourism has always been a popular niche activity for many tourists around the world. The United Kingdom being at the heart of it, has been a pioneering nation for Royal tourists. Though many other countries with monarchies such as India, Thailand, Japan, Spain, Netherlands, and many more have attracted tourists with the motivation to see and experience the royalty to their nations, the Middle Eastern countries have never really been the attraction for Royal tourists. Royalty in the middle east is fast emerging as a tourist product and also paving way to marketing opportunity that may lead to the increased popularity of the Royal Houses of the region. Dubai has been garnering the centre stage for futuristic developments, economic growth initiatives, and continuous efforts towards urbanisation which has brought the lime light on the Royal house of the Al Maktoum globally, along with the younger royal members being extensively recognised and appreciated for their public and private adventures which are shared through various social media platforms. The objective of this paper is to analyse the popularity of His Highness Sheikh Hamdan Bin Mohammed Bin Rashid Al Maktoum through social media platforms and the possibility of inducing Royal Tourism in Dubai. An empirical study has been performed to describe the automated repositioning of the city of Dubai as a royal tourism hub.Keywords: royalty, royal tourism, monarchy, marketing strategy, repositioning
Procedia PDF Downloads 101463 Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Authors: Endrick Barnacin, Jean-Luc Henry, Jack Molinié, Jimmy Nagau, Hélène Delatte, Gérard Lebreton
Abstract:
Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.Keywords: pollen recognition, logistic model tree, expectation-maximization, local binary pattern
Procedia PDF Downloads 182462 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 81461 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis
Procedia PDF Downloads 381460 SVM-RBN Model with Attentive Feature Culling Method for Early Detection of Fruit Plant Diseases
Authors: Piyush Sharma, Devi Prasad Sharma, Sulabh Bansal
Abstract:
Diseases are fairly common in fruits and vegetables because of the changing climatic and environmental circumstances. Crop diseases, which are frequently difficult to control, interfere with the growth and output of the crops. Accurate disease detection and timely disease control measures are required to guarantee high production standards and good quality. In India, apples are a common crop that may be afflicted by a variety of diseases on the fruit, stem, and leaves. It is fungi, bacteria, and viruses that trigger the early symptoms of leaf diseases. In order to assist farmers and take the appropriate action, it is important to develop an automated system that can be used to detect the type of illnesses. Machine learning-based image processing can be used to: this research suggested a system that can automatically identify diseases in apple fruit and apple plants. Hence, this research utilizes the hybrid SVM-RBN model. As a consequence, the model may produce results that are more effective in terms of accuracy, precision, recall, and F1 Score, with respective values of 96%, 99%, 94%, and 93%.Keywords: fruit plant disease, crop disease, machine learning, image processing, SVM-RBN
Procedia PDF Downloads 65459 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks
Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa
Abstract:
In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.Keywords: collaborative network, matching, partner, preference list, role
Procedia PDF Downloads 237458 Analyzing the Impact of Code Commenting on Software Quality
Authors: Thulya Premathilake, Tharushi Perera, Hansi Thathsarani, Tharushi Nethmini, Dilshan De Silva, Piyumika Samarasekara
Abstract:
One of the most efficient ways to assist developers in grasping the source code is to make use of comments, which can be found throughout the code. When working in fields such as software development, having comments in your code that are of good quality is a fundamental requirement. Tackling software problems while making use of programs that have already been built. It is essential for the intention of the source code to be made crystal apparent in the comments that are added to the code. This assists programmers in better comprehending the programs they are working on and enables them to complete software maintenance jobs in a more timely manner. In spite of the fact that comments and documentation are meant to improve readability and maintainability, the vast majority of programmers place the majority of their focus on the actual code that is being written. This study provides a complete and comprehensive overview of the previous research that has been conducted on the topic of code comments. The study focuses on four main topics, including automated comment production, comment consistency, comment classification, and comment quality rating. One is able to get the knowledge that is more complete for use in following inquiries if they conduct an analysis of the proper approaches that were used in this study issue.Keywords: code commenting, source code, software quality, quality assurance
Procedia PDF Downloads 86457 An Intelligent Traffic Management System Based on the WiFi and Bluetooth Sensing
Authors: Hamed Hossein Afshari, Shahrzad Jalali, Amir Hossein Ghods, Bijan Raahemi
Abstract:
This paper introduces an automated clustering solution that applies to WiFi/Bluetooth sensing data and is later used for traffic management applications. The paper initially summarizes a number of clustering approaches and thereafter shows their performance for noise removal. In this context, clustering is used to recognize WiFi and Bluetooth MAC addresses that belong to passengers traveling by a public urban transit bus. The main objective is to build an intelligent system that automatically filters out MAC addresses that belong to persons located outside the bus for different routes in the city of Ottawa. The proposed intelligent system alleviates the need for defining restrictive thresholds that however reduces the accuracy as well as the range of applicability of the solution for different routes. This paper moreover discusses the performance benefits of the presented clustering approaches in terms of the accuracy, time and space complexity, and the ease of use. Note that results of clustering can further be used for the purpose of the origin-destination estimation of individual passengers, predicting the traffic load, and intelligent management of urban bus schedules.Keywords: WiFi-Bluetooth sensing, cluster analysis, artificial intelligence, traffic management
Procedia PDF Downloads 242456 Performance Optimization of Low-Cost Solar Dryer Using Modified PI Controller
Authors: Rajesh Kondareddy, Prakash Kumar Nayak, Maunash Das, Vrinatri Velentina Boro
Abstract:
Today, there is a huge global concern for sustainable development which would include minimizing the consumption of non-renewable energies without affecting the basic global economy. Solar drying is one of the important processes used for extending the shelf life of agricultural products. The performance of a low cost automated solar dryer fitted with cascade control scheme and modified PI controller for drying chilli was investigated. The dryer was composed of designed solar collector (air heater) fitted with cylindrical pipes to improve the air velocity and a solar drying chamber containing rack of two cheese cloth (net) trays both being integrated together. The air allowed in through air inlet is heated up in the solar collector and channelled through the drying chamber where it is utilized in drying (removing the moisture content from the food substance or agricultural produce loaded). Here, to maintain the temperature in the heating chambers and to improve performance, a modified PI (Proportional–Integral) controller was used due its simplicity and robustness. Drying time for drying chilli from the initial moisture content of 88.5% (wb) to 7.3% (wb) was estimated to be 14 hours in solar dryer whereas 32 h was observed in the open sun drying.Keywords: cascade control, chilli, PI controller, solar dryer
Procedia PDF Downloads 288455 Revision of Arthroplasty in Rheumatoid and Osteoarthritis: Methotrexate and Radiographic Lucency in RA Patients
Authors: Mike T. Wei, Douglas N. Mintz, Lisa A. Mandl, Arielle W. Fein, Jayme C. Burket, Yuo-Yu Lee, Wei-Ti Huang, Vivian P. Bykerk, Mark P. Figgie, Edward F. Di Carlo, Bruce N. Cronstein, Susan M. Goodman
Abstract:
Background/Purpose: Rheumatoid arthritis (RA) patients have excellent total hip arthroplasty (THA) survival, and methotrexate (MTX), an anti-inflammatory disease modifying drug which may affect bone reabsorption, may play a role. The purpose of this study is to determine the diagnosis leading to revision THA (rTHA) in RA patients and to assess the association of radiographic lucency with MTX use. Methods: All patients with validated diagnosis of RA in the institution’s THA registry undergoing rTHA from May 2007 - February 2011 were eligible. Diagnosis leading to rTHA and medication use was determined by chart review. Osteolysis was evaluated on available radiographs by measuring maximum lucency in each Gruen zone. Differences within RA patients with/without MTX in osteolysis, demographics, and medications were assessed with chi-squared, Fisher's exact tests or Mann-Whitney U tests as appropriate. The error rate for multiple comparisons of lucency in the different Gruen zones was corrected via false discovery rate methods. A secondary analysis was performed to determine differences in diagnoses leading to revision between RA and matched OA controls (2:1 match by sex age +/- 5 years). OA exclusion criteria included presence of rheumatic diseases, use of MTX, and lack of records. Results: 51 RA rTHA were identified and compared with 103 OA. Mean age for RA was 57.7 v 59.4 years for OA (p = 0.240). 82.4% RA were female v 83.5% OA (p = 0.859). RA had lower BMI than OA (25.5 v 28.2; p = 0.166). There was no difference in diagnosis leading to rTHA, including infection (RA 3.9 v OA 6.8%; p = 0.719) or dislocation (RA 23.5 v OA 23.3%; p = 0.975). There was no significant difference in the length of time the implant was in before revision: RA 11.0 v OA 8.8 years (p = 0.060). Among RA with/without MTX, there was no difference in use of biologics (30.0 v 43.3%, p = 0.283), steroids (47.6 v 50.0%, p = 0.867) or bisphosphonates (23.8 v 33.3%, p = 0.543). There was no difference in rTHA diagnosis with/without MTX, including loosening (52.4 v 56.7%, p = 0.762). There was no significant difference in lucencies with MTX use in any Gruen zone. Patients with MTX had femoral stem subsidence of 3.7mm v no subsidence without MTX (p = 0.006). Conclusion: There was no difference in the diagnosis leading to rTHR in RA and OA, although RA trended longer prior to rTHA. In this small retrospective study, there were no significant differences associated with MTX exposure or radiographic lucency among RA patients. The significance of subsidence is not clear. Further study of arthroplasty survival in RA patients is warranted.Keywords: hip arthroplasty, methotrexate, revision arthroplasty, rheumatoid arthritis
Procedia PDF Downloads 248454 A Study on Solutions to Connect Distribution Power Grid up to Renewable Energy Sources at KEPCO
Authors: Seung Yoon Hyun, Hyeong Seung An, Myeong Ho Choi, Sung Hwan Bae, Yu Jong Sim
Abstract:
In 2015, the southern part of the Korean Peninsula has 8.6 million poles, 1.25 million km power lines, and 2 million transformers, etc. It is the massive amount of distribution equipments which could cover a round-trip distance from the earth to the moon and 11 turns around the earth. These distribution equipments are spread out like capillaries and supplying power to every corner of the Korean Peninsula. In order to manage these huge power facility efficiently, KEPCO use DAS (Distribution Automation System) to operate distribution power system since 1997. DAS is integrated system that enables to remotely supervise and control breakers and switches on distribution network. Using DAS, we can reduce outage time and power loss. KEPCO has about 160,000 switches, 50%(about 80,000) of switches are automated, and 41 distribution center monitoring&control these switches 24-hour 365 days to get the best efficiency of distribution networks. However, the rapid increasing renewable energy sources become the problem in the efficient operation of distributed power system. (currently 2,400 MW, 75,000 generators operate in distribution power system). In this paper, it suggests the way to interconnect between renewable energy source and distribution power system.Keywords: distribution, renewable, connect, DAS (Distribution Automation System)
Procedia PDF Downloads 622453 Early Detection of Breast Cancer in Digital Mammograms Based on Image Processing and Artificial Intelligence
Authors: Sehreen Moorat, Mussarat Lakho
Abstract:
A method of artificial intelligence using digital mammograms data has been proposed in this paper for detection of breast cancer. Many researchers have developed techniques for the early detection of breast cancer; the early diagnosis helps to save many lives. The detection of breast cancer through mammography is effective method which detects the cancer before it is felt and increases the survival rate. In this paper, we have purposed image processing technique for enhancing the image to detect the graphical table data and markings. Texture features based on Gray-Level Co-Occurrence Matrix and intensity based features are extracted from the selected region. For classification purpose, neural network based supervised classifier system has been used which can discriminate between benign and malignant. Hence, 68 digital mammograms have been used to train the classifier. The obtained result proved that automated detection of breast cancer is beneficial for early diagnosis and increases the survival rates of breast cancer patients. The proposed system will help radiologist in the better interpretation of breast cancer.Keywords: medical imaging, cancer, processing, neural network
Procedia PDF Downloads 260452 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles
Authors: Gopi Kandaswamy, P. Balamuralidhar
Abstract:
Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis
Procedia PDF Downloads 263451 Evaluation of Environmental Impact Assessment of Dam Using GIS/Remote Sensing-Review
Authors: Ntungamili Kenosi, Moatlhodi W. Letshwenyo
Abstract:
Negative environmental impacts due to construction of large projects such as dams have become an important aspect of land degradation. This paper will review the previous literature on the previous researches or study in the same area of study in the other parts of the world. After dam has been constructed, the actual environmental impacts are investigated and compared to the predicted results of the carried out Environmental Impact Assessment. GIS and Remote Sensing, play an important role in generating automated spatial data sets and in establishing spatial relationships. Results from other sources shows that the normalized vegetation index (NDVI) analysis was used to detect the spatial and temporal change of vegetation biomass in the study area. The result indicated that the natural vegetation biomass is declining. This is mainly due to the expansion of agricultural land and escalating human made structures in the area. Urgent environmental conservation is necessary when adjoining projects site. Less study on the evaluation of EIA on dam has been conducted in Botswana hence there is a need for the same study to be conducted and then it will be easy to be compared to other studies around the world.Keywords: Botswana, dam, environmental impact assessment, GIS, normalized vegetation index (NDVI), remote sensing
Procedia PDF Downloads 405450 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 93449 Assertion-Driven Test Repair Based on Priority Criteria
Authors: Ruilian Zhao, Shukai Zhang, Yan Wang, Weiwei Wang
Abstract:
Repairing broken test cases is an expensive and challenging task in evolving software systems. Although an automated repair technique with intent preservation has been proposed, but it does not take into account the association between test repairs and assertions, leading to a large number of irrelevant candidates and decreasing the repair capability. This paper proposes an assertion-driven test repair approach. Furthermore, an intent-oriented priority criterion is raised to guide the repair candidate generation, making the repairs closer to the intent of the test. In more detail, repair targets are determined through post-dominance relations between assertions and the methods that directly cause compilation errors. Then, test repairs are generated from the target in a bottom-up way, guided by the intent-oriented priority criteria. Finally, the generated repair candidates are prioritized to match the original test intent. The approach is implemented and evaluated on the benchmark of 4 open-source programs and 91 broken test cases. The result shows that the approach can fix 89% (81/91) of broken test cases, which is more effective than the existing intentpreserved test repair approach, and our intent-oriented priority criteria work well.Keywords: test repair, test intent, software test, test case evolution
Procedia PDF Downloads 130448 Psychological Aspects of Quality of Life in Patients with Primary and Metastatic Bone Tumors
Authors: O. Yu Shchelkova, E. B. Usmanova
Abstract:
Introduction: Last decades scientific research of quality of life (QoL) is developing fast worldwide. QoL concept pays attention to emotional experience of disease in patients, particularly to personal sense of possibility to satisfy actual needs and possibility of full social functioning in spite of disease limitations. QoL in oncological patients is studied intensively. Nevertheless, the issue of QoL in patients with bone tumors focused on psychological factors of QoL and relation to disease impact on QoL is not discussed. The aim of the study was to reveal the basic aspects and personality factors of QoL in patients with bone tumor. Results: Study participants were 139 patients with bone tumors. The diagnoses were osteosarcoma (n=42), giant cell tumor (n=32), chondrosarcoma (n=32), Ewing sarcoma (n=10) and bone metastases (n=23). The study revealed that patients with bone metastases assess their health significantly worse than other patients. Besides patients with osteosarcoma evaluate their general health higher than patients with giant cell tumors. Social functioning in patients with chondrosarcoma is higher than in patients with bone metastases and patients with giant cell tumor. Patients with chondrosarcoma have higher physical functioning and less restricted in daily activities than patients with bone metastases. Patients with bone metastases characterize their pain as more widespread than patients with primary bone tumors and have more functional restrictions due to bone incision. Moreover, the study revealed personality significant influence on QoL related to bone tumors. Such characteristics in structure of personality as high degree of self-consciousness, personal resources, cooperation and disposition to positive reappraisal in difficult situation correspond to higher QoL. Otherwise low personal resources and slight problem solving behaviour, low degree of self-consciousness and high social dependence correspond to decrease of QoL in patients with bone tumors. Conclusion: Patients with bone metastasis have lower QoL compared to patients with primary bone tumors. Patients with giant cell tumor have the worth quality of life among patients with primary bone tumors. Furthermore, the results revealed differences in QoL parameters associated with personality characteristics in patients with bone tumors. Such psychological factors as future goals, interest in life and emotional saturation, besides high degree of personal resources and cooperation influence on increasing QoL in patients with bone tumors.Keywords: quality of life, psychological factors, bone tumor, personality
Procedia PDF Downloads 140447 A Conceptual Framework for the Adoption of Information and Communication Technology for Anti-Corruption in the DR Congo
Authors: Itulelo Matiyabu Imaja, Patrick Ndayizigamiye, Manoj Maharaj
Abstract:
There are many catalysts of corruption. These include amongst others, lack of effective control measures to deter or detect corrupt behaviour. Literature suggests that ICT could assist in curbing corruption through the implementation of automated systems, citizens engagement through e-government and online media to name a few. In the Democratic Republic of Congo, lack of transparency and accountability in public funds collection and allocation contribute to corruption in funds mismanagement. Using the accountability theory and available literature, this paper analyses how Democratic Republic of Congo (DRC) institutions could be strengthened through ICT in order to deter instances of corruption. Findings reveal that DRC lacks reliable control, monitoring and evaluation mechanisms that could identify potentially corrupt behavior. In addition, citizens and civil society organizations who are meant to hold the institutions accountable are not given secure platform to express their views and potentially flag any corrupt behavior. Hence, the paper presents a preliminary conceptual framework that depicts how ICT could be used to strengthen current institutions to potentially deter corrupt behavior in public funds management in Congo.Keywords: corruption, ICT adoption, transparency, DR Congo
Procedia PDF Downloads 186446 IT Perspective of Service-Oriented e-Government Enterprise
Authors: Anu Paul, Varghese Paul
Abstract:
The focal aspire of e-Government (eGovt) is to offer citizen-centered service delivery. Accordingly, the citizenry consumes services from multiple government agencies through national portal. Thus, eGovt is an enterprise with the primary business motive of transparent, efficient and effective public services to its citizenry and its logical structure is the eGovernment Enterprise Architecture (eGEA). Since eGovt is IT oriented multifaceted service-centric system, EA doesn’t do much on an automated enterprise other than the business artifacts. Service-Oriented Architecture (SOA) manifestation led some governments to pertain this in their eGovts, but it limits the source of business artifacts. The concurrent use of EA and SOA in eGovt executes interoperability and integration and leads to Service-Oriented e-Government Enterprise (SOeGE). Consequently, agile eGovt system becomes a reality. As an IT perspective eGovt comprises of centralized public service artifacts with the existing application logics belong to various departments at central, state and local level. The eGovt is renovating to SOeGE by apply the Service-Orientation (SO) principles in the entire system. This paper explores IT perspective of SOeGE in India which encompasses the public service models and illustrated with a case study the Passport service of India.Keywords: enterprise architecture, service-oriented e-Government enterprise, service interface layer, service model
Procedia PDF Downloads 523445 SPR Immunosensor for the Detection of Staphylococcus aureus
Authors: Muhammad Ali Syed, Arshad Saleem Bhatti, Chen-zhong Li, Habib Ali Bokhari
Abstract:
Surface plasmon resonance (SPR) biosensors have emerged as a promising technique for bioanalysis as well as microbial detection and identification. Real time, sensitive, cost effective, and label free detection of biomolecules from complex samples is required for early and accurate diagnosis of infectious diseases. Like many other types of optical techniques, SPR biosensors may also be successfully utilized for microbial detection for accurate, point of care, and rapid results. In the present study, we have utilized a commercially available automated SPR biosensor of BI company to study the microbial detection form water samples spiked with different concentration of Staphylococcus aureus bacterial cells. The gold thin film sensor surface was functionalized to react with proteins such as protein G, which was used for directed immobilization of monoclonal antibodies against Staphylococcus aureus. The results of our work reveal that this immunosensor can be used to detect very small number of bacterial cells with higher sensitivity and specificity. In our case 10^3 cells/ml of water have been successfully detected. Therefore, it may be concluded that this technique has a strong potential to be used in microbial detection and identification.Keywords: surface plasmon resonance (SPR), Staphylococcus aureus, biosensors, microbial detection
Procedia PDF Downloads 475444 Role of F18-FDG PET in Management of Differentiated Thyroid Cancers (TENIS) Patients
Authors: Seemab Safdar, Shazia Fatima, Ahmad Qureshy, M. Adnan Saeed, M. Faheem
Abstract:
Background: Thyroid cancer has 586,000 cases per year worldwide, and this translates to 3% of all tumor diagnoses. 90% of the cases fall under differentiated thyroid carcinoma (DTC), which includes follicular thyroid cancer (FTC) and papillary thyroid cancer (PTC). During their illness, 10% of patients develop distant metastases, and two-thirds of them develop resistance to radioactive iodine (RAI) treatment. It has been shown that in some circumstances, like DTC with high TG levels and negative 131I whole-body scintigraphy (TENIS), [18F] FDG-PET-CT is an effective imaging technique. This study determines the role of [18F] FDG-PET-CT in the treatment of TENIS patients. Methods: 16 patients (n = 12 female; 4 males, age 45 ± 15 years) with histologically proven thyroid cancer (Differentiated and poorly differentiated) and high TG with negative iodine scans were included in this prospective study from January 2024 to June 2024. They underwent scanning in state-of-the-art (GE Discovery MI) [18F] FDG-PET-CT for re-staging or diagnostics of recurrent disease using a standardized protocol. All DTC subtypes and PDTC were included. The referring physicians completed standardized questionnaires both before and after PET-CT to prospectively determine the examination's effect on clinical decision-making. Patient outcomes were measured by analysis of medical records. Moreover, after PET-CT, a change in the pre-PET-CT planned therapies was documented in 32% of cases and additional invasive diagnostic procedures could be waived in 37.5 % of cases. TG levels under TSH stimulation were significantly higher in patients showing PET-CT metastases compared to patients without such findings (68.75%). Results: Without PET-CT, physicians referring to the doctors had not established a complete treatment plan for 45% of patients with thyroid carcinoma. 12/16 patients showed FDG avidity in cervical lymph nodes that were not Iodine avid previously, 2 patients had FDG avid disease in the lungs. In the process, PET-CT helped plan patient management and created a clear plan for treatment in 68.75% of patients. Conclusions: This study confirms that [18F] FDG-PET-CT used in a routine clinical setting has a very important impact on the management of patients with thyroid cancer when TG levels are persistently high in the presence of negative Iodine Scans by initiating treatments and replacing additional imaging and invasive tests.Keywords: PET-CT, TENIS, role, FDG
Procedia PDF Downloads 18443 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition
Authors: Latha Subbiah, Dhanalakshmi Samiappan
Abstract:
In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.Keywords: curvelet, decomposition, levelset, ultrasound
Procedia PDF Downloads 342442 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 185441 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 161440 Application of Principle Component Analysis for Classification of Random Doppler-Radar Targets during the Surveillance Operations
Authors: G. C. Tikkiwal, Mukesh Upadhyay
Abstract:
During the surveillance operations at war or peace time, the Radar operator gets a scatter of targets over the screen. This may be a tracked vehicle like tank vis-à-vis T72, BMP etc, or it may be a wheeled vehicle like ALS, TATRA, 2.5Tonne, Shaktiman or moving army, moving convoys etc. The Radar operator selects one of the promising targets into Single Target Tracking (STT) mode. Once the target is locked, the operator gets a typical audible signal into his headphones. With reference to the gained experience and training over the time, the operator then identifies the random target. But this process is cumbersome and is solely dependent on the skills of the operator, thus may lead to misclassification of the object. In this paper we present a technique using mathematical and statistical methods like Fast Fourier Transformation (FFT) and Principal Component Analysis (PCA) to identify the random objects. The process of classification is based on transforming the audible signature of target into music octave-notes. The whole methodology is then automated by developing suitable software. This automation increases the efficiency of identification of the random target by reducing the chances of misclassification. This whole study is based on live data.Keywords: radar target, fft, principal component analysis, eigenvector, octave-notes, dsp
Procedia PDF Downloads 346439 Prevalence and Correlates of Mental Disorders in Children and Adolescents in Mendefera Community, Eritrea
Authors: Estifanos H. Zeru
Abstract:
Introduction: Epidemiological research is important to draw need-based rational public health policy. However, research on child and adolescent mental health in low and middle income countries, where socioeconomic, political, cultural, biological and other mental health hazards are in abundance, is almost nonexistent. To the author's knowledge, there is no published research in this field in Eritrea, whose child and adolescent population constitutes 53% of its total population. Study Aims and Objectives: The objective of this study was to determine the prevalence and patterns of DSM-IV psychiatric disorders and identify their socio-demographic correlates among children and adolescents in Mendefera, Eritrea. The study aims to provide local information to public health policymakers to guide policy in service development. Methodology: In a cross-sectional two stage procedure, both the Parent and Child versions of the SDQ were used to screen 314 children and adolescents aged 4-17 years, recruited by a multi-stage random sampling method. All parents/adult guardians also completed a socio-demographic questionnaire. All children and adolescents who screened positive for any of the SDQ abnormality sub-classes were selected for the second stage interview, which was conducted using the K-SADS-PL 2009 Working Draft version to generate specific DSM-IV diagnoses. All data gathered was entered into CSPro version 6.2 and was then transported in to and analyzed using SPSS version 20 for windows. Results: Prevalence of DSM-IV psychiatric disorders was found to be 13.1%. Adolescents 11-17 years old and males had higher prevalence than children 4-10 years old and females, respectively. Behavioral disorders were the commonest disorders (9.9%), followed by affective disorders (3.2%) and anxiety disorders (2.5). Chronic medical illness in the child, poor academic performance, difficulties with teachers in school, psychopathology in a family member and parental conflict were found to be independently associated with these disorders. Conclusion: Prevalence of child and adolescent psychiatric disorders in Eritrea is high. Promotion, prevention, treatment, and rehabilitation for child and adolescent mental health services need to be made widely available in the country. The socio-demographic correlates identified by this study can be targeted for intervention. The need for further research is emphasized.Keywords: adolescents, children, correlates, DSM-IV psychiatric disorders, Eritrea, K-SAD-PL 2009, prevalence and correlates, SDQ
Procedia PDF Downloads 267438 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging
Authors: Chih-Chung Huang, Po-Hsun Peng
Abstract:
Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future.Keywords: plane wave imaging, high frequency ultrasound, elastography, beamforming
Procedia PDF Downloads 540437 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.Keywords: community water usage, fuzzy logic, irrigation, multi-agent system
Procedia PDF Downloads 298436 Distributed Processing for Content Based Lecture Video Retrieval on Hadoop Framework
Authors: U. S. N. Raju, Kothuri Sai Kiran, Meena G. Kamal, Vinay Nikhil Pabba, Suresh Kanaparthi
Abstract:
There is huge amount of lecture video data available for public use, and many more lecture videos are being created and uploaded every day. Searching for videos on required topics from this huge database is a challenging task. Therefore, an efficient method for video retrieval is needed. An approach for automated video indexing and video search in large lecture video archives is presented. As the amount of video lecture data is huge, it is very inefficient to do the processing in a centralized computation framework. Hence, Hadoop Framework for distributed computing for Big Video Data is used. First, step in the process is automatic video segmentation and key-frame detection to offer a visual guideline for the video content navigation. In the next step, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames. The OCR and detected slide text line types are adopted for keyword extraction, by which both video- and segment-level keywords are extracted for content-based video browsing and search. The performance of the indexing process can be improved for a large database by using distributed computing on Hadoop framework.Keywords: video lectures, big video data, video retrieval, hadoop
Procedia PDF Downloads 537435 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture
Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac
Abstract:
This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.Keywords: fuzzy logic, intelligent system, precision agriculture, renewable energy
Procedia PDF Downloads 130