Search results for: pore pressure coefficient
217 Sugar-Induced Stabilization Effect of Protein Structure
Authors: Mitsuhiro Hirai, Satoshi Ajito, Nobutaka Shimizu, Noriyuki Igarashi, Hiroki Iwase, Shinichi Takata
Abstract:
Sugars and polyols are known to be bioprotectants preventing such as protein denaturation and enzyme deactivation and widely used as a nontoxic additive in various industrial and medical products. The mechanism of their protective actions has been explained by specific bindings between biological components and additives, changes in solvent viscosities, and surface tension and free energy changes upon transfer of those components into additive solutions. On the other hand, some organisms having tolerances against extreme environment produce stress proteins and/or accumulate sugars in cells, which is called cryptobiosis. In particular, trehalose has been drawing attention relevant to cryptobiosis under external stress such as high or low temperature, drying, osmotic pressure, and so on. The function of cryptobiosis by trehalose has been explained relevant to the restriction of the intra-and/or-inter-molecular movement by vitrification or from the replacement of water molecule by trehalose. Previous results suggest that the structure and interaction between sugar and water are a key determinant for understanding cryptobiosis. Recently, we have shown direct evidence that the protein hydration (solvation) and structural stability against chemical and thermal denaturation significantly depend on sugar species and glycerol. Sugar and glycerol molecules tend to be preferentially or weakly excluded from the protein surface and preserved the native protein hydration shell. Due to the protective action of the protein hydration shell by those molecules, the protein structure is stabilized against chemical (guanidinium chloride) and thermal denaturation. The protective action depends on sugar species. To understand the above trend and difference in detail, it is essentially important to clarify the characteristics of solutions containing those additives. In this study, by using wide-angle X-ray scattering technique covering a wide spatial region (~3-120 Å), we have clarified structures of sugar solutions with the concentration from 5% w/w to 65% w/w. The sugars measured in the present study were monosaccharides (glucose, fructose, mannose) and disaccharides (sucrose, trehalose, maltose). Due to observed scattering data with a wide spatial resolution, we have succeeded in obtaining information on the internal structure of individual sugar molecules and on the correlation between them. Every sugar gradually shortened the average inter-molecular distance as the concentration increased. The inter-molecular interaction between sugar molecules was essentially showed an exclusive tendency for every sugar, which appeared as the presence of a repulsive correlation hole. This trend was more weakly seen for trehalose compared to other sugars. The intermolecular distance and spread of individual molecule clearly showed the dependence of sugar species. We will discuss the relation between the characteristic of sugar solution and its protective action of biological materials.Keywords: hydration, protein, sugar, X-ray scattering
Procedia PDF Downloads 156216 Managing Type 1 Diabetes in College: A Thematic Analysis of Online Narratives Posted on YouTube
Authors: Ekaterina Malova
Abstract:
Type 1 diabetes (T1D) is a chronic illness requiring immense lifestyle changes to reduce the chance of life-threatening complications. Moving to a college may be the first time for a young adult with T1D to take responsibility for all the aspects of their diabetes care. In addition, people with T1D constantly face stigmatization and discrimination as a result of their health condition, which puts additional pressure on young adults with T1D. Hence, omissions in diabetes self-care often occur during the time of transition to college when both the social and physical environment of young adults changes drastically and contribute to the fact that emerging young adults remain one of the age groups with the highest hemoglobin levels and poorest diabetes control. However, despite potential severe health risks caused by a lack of proper diabetes self-care, little is known about the experiences of emerging adults embarking on a higher education journey as this population. Thus, young adults with type 1 diabetes are a 'forgotten group,' meaning that their experiences are rarely addressed by researchers. Given that self-disclosure and information-seeking can be challenging for individuals with stigmatized illnesses, online platforms like YouTube have become a popular medium of self-disclosure and information-seeking for people living with T1D. Thus, this study aims to provide an analysis of experiences that college students with T1D choose to share with the general public online and explore the nature of information being communicated by college students with T1D to the online community in personal narratives posted on YouTube. A systematic approach was used to retrieve a video sample by searching YouTube with keywords 'type 1 diabetes' and 'college,' with results ordered by relevance. A total of 18 videos were saved. Video lengths ranged from 2 to 28 minutes. The data were coded using NVivo. Video transcripts were coded and analyzed utilizing the thematic analysis method. Three key themes emerged from thematic analysis: 1) Advice, 2) Personal experience, and 3) Things I wish everyone knew about T1D. In addition, Theme 1 was divided into subtopics to differentiate between the most common types of advice: 1) Overcoming stigma and b) Seeking social support. The identified themes indicate that two groups of the population can potentially benefit from watching students’ video testimonies: 1) lay public and 2) other students with T1D. Given that students in the videos reported a lack of T1D education in the lay public, such video narratives can serve important educational purposes and reduce health stigma, while perceived similarity and identification with students in the videos may facilitate the transition of health information to other individuals with T1D and positively affect their diabetes routine. Thus, online video narratives can potentially serve both educational and persuasive purposes, empowering students with T1D to stay in control of T1D while succeeding academically.Keywords: type 1 diabetes, college students, health communication, transition period
Procedia PDF Downloads 154215 Antimicrobial and Anti-Biofilm Activity of Non-Thermal Plasma
Authors: Jan Masak, Eva Kvasnickova, Vladimir Scholtz, Olga Matatkova, Marketa Valkova, Alena Cejkova
Abstract:
Microbial colonization of medical instruments, catheters, implants, etc. is a serious problem in the spread of nosocomial infections. Biofilms exhibit enormous resistance to environment. The resistance of biofilm populations to antibiotic or biocides often increases by two to three orders of magnitude in comparison with suspension populations. Subjects of interests are substances or physical processes that primarily cause the destruction of biofilm, while the released cells can be killed by existing antibiotics. In addition, agents that do not have a strong lethal effect do not cause such a significant selection pressure to further enhance resistance. Non-thermal plasma (NTP) is defined as neutral, ionized gas composed of particles (photons, electrons, positive and negative ions, free radicals and excited or non-excited molecules) which are in permanent interaction. In this work, the effect of NTP generated by the cometary corona with a metallic grid on the formation and stability of biofilm and metabolic activity of cells in biofilm was studied. NTP was applied on biofilm populations of Staphylococcus epidermidis DBM 3179, Pseudomonas aeruginosa DBM 3081, DBM 3777, ATCC 15442 and ATCC 10145, Escherichia coli DBM 3125 and Candida albicans DBM 2164 grown on solid media on Petri dishes and on the titanium alloy (Ti6Al4V) surface used for the production joint replacements. Erythromycin (for S. epidermidis), polymyxin B (for E. coli and P. aeruginosa), amphotericin B (for C. albicans) and ceftazidime (for P. aeruginosa) were used to study the combined effect of NTP and antibiotics. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Fluorescence microscopy was applied to visualize the biofilm on the surface of the titanium alloy; SYTO 13 was used as a fluorescence probe to stain cells in the biofilm. It has been shown that biofilm populations of all studied microorganisms are very sensitive to the type of used NTP. The inhibition zone of biofilm recorded after 60 minutes exposure to NTP exceeded 20 cm², except P. aeruginosa DBM 3777 and ATCC 10145, where it was about 9 cm². Also metabolic activity of cells in biofilm differed for individual microbial strains. High sensitivity to NTP was observed in S. epidermidis, in which the metabolic activity of biofilm decreased after 30 minutes of NTP exposure to 15% and after 60 minutes to 1%. Conversely, the metabolic activity of cells of C. albicans decreased to 53% after 30 minutes of NTP exposure. Nevertheless, this result can be considered very good. Suitable combinations of exposure time of NTP and the concentration of antibiotic achieved in most cases a remarkable synergic effect on the reduction of the metabolic activity of the cells of the biofilm. For example, in the case of P. aeruginosa DBM 3777, a combination of 30 minutes of NTP with 1 mg/l of ceftazidime resulted in a decrease metabolic activity below 4%.Keywords: anti-biofilm activity, antibiotic, non-thermal plasma, opportunistic pathogens
Procedia PDF Downloads 184214 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University
Authors: Karishma Kashyap, Subha D. Parida
Abstract:
Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performanceKeywords: building optimization, green building, post occupancy evaluation, stakeholder engagement
Procedia PDF Downloads 357213 Stability of a Natural Weak Rock Slope under Rapid Water Drawdowns: Interaction between Guadalfeo Viaduct and Rules Reservoir, Granada, Spain
Authors: Sonia Bautista Carrascosa, Carlos Renedo Sanchez
Abstract:
The effect of a rapid drawdown is a classical scenario to be considered in slope stability under submerged conditions. This situation arises when totally or partially submerged slopes experience a descent of the external water level and is a typical verification to be done in a dam engineering discipline, as reservoir water levels commonly fluctuate noticeably during seasons and due to operational reasons. Although the scenario is well known and predictable in general, site conditions can increase the complexity of its assessment and external factors are not always expected, can cause a reduction in the stability or even a failure in a slope under a rapid drawdown situation. The present paper describes and discusses the interaction between two different infrastructures, a dam and a highway, and the impact on the stability of a natural rock slope overlaid by the north abutment of a viaduct of the A-44 Highway due to the rapid drawdown of the Rules Dam, in the province of Granada (south of Spain). In the year 2011, with both infrastructures, the A-44 Highway and the Rules Dam already constructed, delivered and under operation, some movements start to be recorded in the approximation embankment and north abutment of the Guadalfeo Viaduct, included in the highway and developed to solve the crossing above the tail of the reservoir. The embankment and abutment were founded in a low-angle natural rock slope formed by grey graphic phyllites, distinctly weathered and intensely fractured, with pre-existing fault and weak planes. After the first filling of the reservoir, to a relative level of 243m, three consecutive drawdowns were recorded in the autumns 2010, 2011 and 2012, to relative levels of 234m, 232m and 225m. To understand the effect of these drawdowns in the weak rock mass strength and in its stability, a new geological model was developed, after reviewing all the available ground investigations, updating the geological mapping of the area and supplemented with an additional geotechnical and geophysical investigations survey. Together with all this information, rainfall and reservoir level evolution data have been reviewed in detail to incorporate into the monitoring interpretation. The analysis of the monitoring data and the new geological and geotechnical interpretation, supported by the use of limit equilibrium software Slide2, concludes that the movement follows the same direction as the schistosity of the phyllitic rock mass, coincident as well with the direction of the natural slope, indicating a deep-seated movement of the whole slope towards the reservoir. As part of these conclusions, the solutions considered to reinstate the highway infrastructure to the required FoS will be described, and the geomechanical characterization of these weak rocks discussed, together with the influence of water level variations, not only in the water pressure regime but in its geotechnical behavior, by the modification of the strength parameters and deformability.Keywords: monitoring, rock slope stability, water drawdown, weak rock
Procedia PDF Downloads 160212 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases
Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner
Abstract:
Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.Keywords: aerosol processes, Brownian coagulation, gravitational settling, transport regulations
Procedia PDF Downloads 117211 Biotechnological Interventions for Crop Improvement in Nutricereal Pearl Millet
Authors: Supriya Ambawat, Subaran Singh, C. Tara Satyavathi, B. S. Rajpurohit, Ummed Singh, Balraj Singh
Abstract:
Pearl millet [Pennisetum glaucum (L.) R. Br.] is an important staple food of the arid and semiarid tropical regions of Asia, Africa, and Latin America. It is rightly termed as nutricereal as it has high nutrition value and a good source of carbohydrate, protein, fat, ash, dietary fiber, potassium, magnesium, iron, zinc, etc. Pearl millet has low prolamine fraction and is gluten free which is useful for people having a gluten allergy. It has several health benefits like reduction in blood pressure, thyroid, diabe¬tes, cardiovascular and celiac diseases but its direct consumption as food has significantly declined due to several reasons. Keeping this in view, it is important to reorient the ef¬forts to generate demand through value-addition and quality improvement and create awareness on the nutritional merits of pearl millet. In India, through Indian Council of Agricultural Research-All India Coordinated Research Project on Pearl millet, multilocational coordinated trials for developed hybrids were conducted at various centers. The gene banks of pearl millet contain varieties with high levels of iron and zinc which were used to produce new pearl millet varieties with elevated iron levels bred with the high‐yielding varieties. Thus, using breeding approaches and biochemical analysis, a total of 167 hybrids and 61 varieties were identified and released for cultivation in different agro-ecological zones of the country which also includes some biofortified hybrids rich in Fe and Zn. Further, using several biotechnological interventions such as molecular markers, next-generation sequencing (NGS), association mapping, nested association mapping (NAM), MAGIC populations, genome editing, genotyping by sequencing (GBS), genome wide association studies (GWAS) advancement in millet improvement has become possible by identifying and tagging of genes underlying a trait in the genome. Using DArT markers very high density linkage maps were constructed for pearl millet. Improved HHB67 has been released using marker assisted selection (MAS) strategies, and genomic tools were used to identify Fe-Zn Quantitative Trait Loci (QTL). The draft genome sequence of millet has also opened various ways to explore pearl millet. Further, genomic positions of significantly associated simple sequence repeat (SSR) markers with iron and zinc content in the consensus map is being identified and research is in progress towards mapping QTLs for flour rancidity. The sequence information is being used to explore genes and enzymatic pathways responsible for rancidity of flour. Thus, development and application of several biotechnological approaches along with biofortification can accelerate the genetic gain targets for pearl millet improvement and help improve its quality.Keywords: Biotechnological approaches, genomic tools, malnutrition, MAS, nutricereal, pearl millet, sequencing.
Procedia PDF Downloads 185210 Persuading ICT Consumers to Disconnect from Work: An Experimental Study on the Influence of Message Frame, Regulatory Focus, Ad Believability and Attitude toward the Ad on Message Effectiveness
Authors: Katharina Ninaus, Ralf Terlutter, Sandra Diehl
Abstract:
Information and communication technologies (ICT) have become pervasive in all areas of modern life, both in work and leisure. Technological developments and particularly the ubiquity of smartphones have made it possible for ICT consumers to be constantly connected to work, fostering an always-on mentality and increasing the pressure to be accessible at all times. However, performing work tasks outside of working hours using ICT results in a lack of mental detachment and recovery from work. It is, therefore, necessary to develop effective behavioral interventions to increase risk awareness of a constant connection to the workplace in the employed population. Drawing on regulatory focus theory, this study aims to investigate the persuasiveness of tailoring messages to individuals’ chronic regulatory focus in order to encourage ICT consumers to set boundaries by defining fixed times for professional accessibility outside of working hours in order to contribute to the well-being of ICT consumers with high ICT involvement in their work life. The experimental study examines the interaction effect between consumers’ chronic regulatory focus (i.e. promotion focus versus prevention focus) and positive or negative message framing (i.e. gain frame versus loss frame) on consumers’ intention to perform the advocated behavior. Based on the assumption that congruent messages create regulatory fit and increase message effectiveness, it is hypothesized that behavioral intention will be higher in the condition of regulatory fit compared to regulatory non-fit. It is further hypothesized that ad believability and attitude toward the ad will mediate the effect of regulatory fit on behavioral intention given that ad believability and ad attitude both determine consumer behavioral responses. Results confirm that the interaction between regulatory focus and message frame emerged as a predictor of behavioral intention such as that consumers’ intentions to set boundaries by defining fixed times for professional accessibility outside of working hours increased as congruency with their regulatory focus increased. The loss-framed ad was more effective for consumers with a predominant prevention focus, while the gain-framed ad was more effective for consumers with a predominant promotion focus. Ad believability and attitude toward the ad both emerged as predictors of behavioral intention. Mediation analysis revealed that the direct effect of the interaction between regulatory focus and message frame on behavioral intention was no longer significant when including ad believability and ad attitude as mediators in the model, indicating full mediation. However, while the indirect effect through ad believability was significant, the indirect effect through attitude toward the ad was not significant. Hence, regulatory fit increased ad believability, which then increased behavioral intention. Ad believability appears to have a superior effect indicating that behavioral intention does not depend on attitude toward the ad, but it depends on whether or not the ad is perceived as believable. The study shows that the principle of regulatory fit holds true in the context of ICT consumption and responds to calls for more research on mediators of health message framing effects.Keywords: always-on mentality, Information and communication technologies (ICT) consumption, message framing, regulatory focus
Procedia PDF Downloads 210209 Gauging Floral Resources for Pollinators Using High Resolution Drone Imagery
Authors: Nicholas Anderson, Steven Petersen, Tom Bates, Val Anderson
Abstract:
Under the multiple-use management regime established in the United States for federally owned lands, government agencies have come under pressure from commercial apiaries to grant permits for the summer pasturing of honeybees on government lands. Federal agencies have struggled to integrate honeybees into their management plans and have little information to make regulations that resolve how many colonies should be allowed in a single location and at what distance sets of hives should be placed. Many conservation groups have voiced their concerns regarding the introduction of honeybees to these natural lands, as they may outcompete and displace native pollinating species. Assessing the quality of an area in regard to its floral resources, pollen, and nectar can be important when attempting to create regulations for the integration of commercial honeybee operations into a native ecosystem. Areas with greater floral resources may be able to support larger numbers of honeybee colonies, while poorer resource areas may be less resilient to introduced disturbances. Attempts are made in this study to determine flower cover using high resolution drone imagery to help assess the floral resource availability to pollinators in high elevation, tall forb communities. This knowledge will help in determining the potential that different areas may have for honeybee pasturing and honey production. Roughly 700 images were captured at 23m above ground level using a drone equipped with a Sony QX1 RGB 20-megapixel camera. These images were stitched together using Pix4D, resulting in a 60m diameter high-resolution mosaic of a tall forb meadow. Using the program ENVI, a supervised maximum likelihood classification was conducted to calculate the percentage of total flower cover and flower cover by color (blue, white, and yellow). A complete vegetation inventory was taken on site, and the major flowers contributing to each color class were noted. An accuracy assessment was performed on the classification yielding an 89% overall accuracy and a Kappa Statistic of 0.855. With this level of accuracy, drones provide an affordable and time efficient method for the assessment of floral cover in large areas. The proximal step of this project will now be to determine the average pollen and nectar loads carried by each flower species. The addition of this knowledge will result in a quantifiable method of measuring pollen and nectar resources of entire landscapes. This information will not only help land managers determine stocking rates for honeybees on public lands but also has applications in the agricultural setting, aiding producers in the determination of the number of honeybee colonies necessary for proper pollination of fruit and nut crops.Keywords: honeybee, flower, pollinator, remote sensing
Procedia PDF Downloads 141208 State and Benefit: Delivering the First State of the Bays Report for Victoria
Authors: Scott Rawlings
Abstract:
Victoria’s first State of the Bays report is an historic baseline study of the health of Port Phillip Bay and Western Port. The report includes 50 assessments of 36 indicators across a broad array of topics from the nitrogen cycle and water quality to key marine species and habitats. This paper discusses the processes for determining and assessing the indicators and comments on future priorities identified to maintain and improve the health of these water ways. Victoria’s population is now at six million, and growing at a rate of over 100,000 people per year - the highest increase in Australia – and the population of greater Melbourne is over four million. Port Phillip Bay and Western Port are vital marine assets at the centre of this growth and will require adaptive strategies if they are to remain in good condition and continue to deliver environmental, economic and social benefits. In 2014, it was in recognition of these pressures that the incoming Victorian Government committed to reporting on the state of the bays every five years. The inaugural State of the Bays report was issued by the independent Victorian Commissioner for Environmental Sustainability. The report brought together what is known about both bays, based on existing research. It was a baseline on which future reports will build and, over time, include more of Victoria’s marine environment. Port Phillip Bay and Western Port generally demonstrate healthy systems. Specific threats linked to population growth are a significant pressure. Impacts are more significant where human activity is more intense and where nutrients are transported to the bays around the mouths of creeks and drainage systems. The transport of high loads of nutrients and pollutants to the bays from peak rainfall events is likely to increase with climate change – as will sea level rise. Marine pests are also a threat. More than 100 introduced marine species have become established in Port Phillip Bay and can compete with native species, alter habitat, reduce important fish stocks and potentially disrupt nitrogen cycling processes. This study confirmed that our data collection regime is better within the Marine Protected Areas of Port Phillip Bay than in other parts. The State of the Bays report is a positive and practical example of what can be achieved through collaboration and cooperation between environmental reporters, Government agencies, academic institutions, data custodians, and NGOs. The State of the Bays 2016 provides an important foundation by identifying knowledge gaps and research priorities for future studies and reports on the bays. It builds a strong evidence base to effectively manage the bays and support an adaptive management framework. The Report proposes a set of indicators for future reporting that will support a step-change in our approach to monitoring and managing the bays – a shift from reporting only on what we do know, to reporting on what we need to know.Keywords: coastal science, marine science, Port Phillip Bay, state of the environment, Western Port
Procedia PDF Downloads 210207 Barriers to Social Entrepreneurship by Refugees: An Explorative Study How Prior Experience Influences Social Orientation
Authors: D. M. Koers, A. J. Groen, P. D. Englis, R. Harms
Abstract:
We are witnessing the largest level of displacement of people since World War II. Refugees want to become independent as quickly as possible and build a new, safe future; however, access to the labor market is difficult and they face many problems that are not easily solved. This makes self-employment including social entrepreneurship a valuable alternative. Our research studied refugee-based entrepreneurship and examined whether prior knowledge, unmet personal needs and contextual factors influence how refugees recognize opportunities and if this influences their social orientation. In addition, we examine the barriers refugees face when starting up a company in the Netherlands. We use a case study design with a mixed-method approach, combining in-depth interviews and survey data. Data was collected from two Dutch entrepreneurial training programs in the Netherlands. We have a sample size of 27 latent refugee entrepreneurs. Our results show that refugees score high on the social entrepreneurial measures. They perceive themselves as having a strong social vision and are determined to defend a social need. They also score high on sustainability and state that their business ideas improve the quality of life on the long run. Based on these findings, we did not expect that only 5 participants had business ideas with a social orientation. In this group, 37,5% started a company before and 77.8% used their personal experience to come up with this business idea. Another 70,3% had the higher professional education or academic education. In the interviews, we found that they often copy and paste their gained experience from a previous profession on their new context and expect that it would work well. The social aspect lies in their cultural values and personal beliefs but is not reflected in their business models. One of the reasons could be that the context in which the refugee operates as a moderator suppressing the social mission and social value creation opportunities. Refugees are first and foremost focused on their survival. They do not want to be on social welfare and feel a strong need to be independent. Since they cannot access the labor market easily and face labor market discrimination they want to start a company. Another factor that explains lack of the social orientation in their business ideas is that social entrepreneurship is not a known concept in their home countries. Their idea of entrepreneurship differs substantially. We found that a huge barrier for refugees is their expectations about setting up a business, which are often not realistic because they have little knowledge about the system, institutions and corresponding red tape. In those instances, can the institutional configuration of a country, cultural differences, and perspective on entrepreneurship hinders social entrepreneurship. In conclusion, there might be latent potential for social entrepreneurship in refugees but there are many barriers to overcome. Overcoming these barriers can enhance local communities and enhance integration. In addition it has a positive financial impact on the host country because it reduces the pressure on the social system and stimulate the economy.Keywords: immigrant entrepreneurship, refugee entrepreneurship, social entrepreneurship, prior experience, opportunity recognition
Procedia PDF Downloads 165206 Mapping Vulnerabilities: A Social and Political Study of Disasters in Eastern Himalayas, Region of Darjeeling
Authors: Shailendra M. Pradhan, Upendra M. Pradhan
Abstract:
Disasters are perennial features of human civilization. The recurring earthquakes, floods, cyclones, among others, that result in massive loss of lives and devastation, is a grim reminder of the fact that, despite all our success stories of development, and progress in science and technology, human society is perennially at risk to disasters. The apparent threat of climate change and global warming only severe our disaster risks. Darjeeling hills, situated along Eastern Himalayan region of India, and famous for its three Ts – tea, tourism and toy-train – is also equally notorious for its disasters. The recurring landslides and earthquakes, the cyclone Aila, and the Ambootia landslides, considered as the largest landslide in Asia, are strong evidence of the vulnerability of Darjeeling hills to natural disasters. Given its geographical location along the Hindu-Kush Himalayas, the region is marked by rugged topography, geo-physically unstable structure, high-seismicity, and fragile landscape, making it prone to disasters of different kinds and magnitudes. Most of the studies on disasters in Darjeeling hills are, however, scientific and geographical in orientation that focuses on the underlying geological and physical processes to the neglect of social and political conditions. This has created a tendency among the researchers and policy-makers to endorse and promote a particular type of discourse that does not consider the social and political aspects of disasters in Darjeeling hills. Disaster, this paper argues, is a complex phenomenon, and a result of diverse factors, both physical and human. The hazards caused by the physical and geological agents, and the vulnerabilities produced and rooted in political, economic, social and cultural structures of a society, together result in disasters. In this sense, disasters are as much a result of political and economic conditions as it is of physical environment. The human aspect of disasters, therefore, compels us to address intricating social and political challenges that ultimately determine our resilience and vulnerability to disasters. Set within the above milieu, the aims of the paper are twofold: a) to provide a political and sociological account of disasters in Darjeeling hills; and, b) to identify and address the root causes of its vulnerabilities to disasters. In situating disasters in Darjeeling Hills, the paper adopts the Pressure and Release Model (PAR) that provides a theoretical insight into the study of social and political aspects of disasters, and to examine myriads of other related issues therein. The PAR model conceptualises risk as a complex combination of vulnerabilities, on the one hand, and hazards, on the other. Disasters, within the PAR framework, occur when hazards interact with vulnerabilities. The root causes of vulnerability, in turn, could be traced to social and political structures such as legal definitions of rights, gender relations, and other ideological structures and processes. In this way, the PAR model helps the present study to identify and unpack the root causes of vulnerabilities and disasters in Darjeeling hills that have largely remained neglected in dominant discourses, thereby providing a more nuanced and sociologically sensitive understanding of disasters.Keywords: Darjeeling, disasters, PAR, vulnerabilities
Procedia PDF Downloads 273205 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process
Authors: Marek Vondra, Petr Bobák
Abstract:
Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation
Procedia PDF Downloads 387204 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants
Authors: Coriolano Salvini
Abstract:
The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis
Procedia PDF Downloads 214203 Midterm Clinical and Functional Outcomes After Treatment with Ponseti Method for Idiopathic Clubfeet: A Prospective Cohort Study
Authors: Neeraj Vij, Amber Brennan, Jenni Winters, Hadi Salehi, Hamy Temkit, Emily Andrisevic, Mohan V. Belthur
Abstract:
Idiopathic clubfoot is a common lower extremity deformity with an incidence of 1:500. The Ponseti Method is well known as the gold standard of treatment. However, there is limited functional data demonstrating correction of the clubfoot after treatment with the Ponseti method. The purpose of this study was to study the clinical and functional outcomes after the Ponseti method with the Clubfoot Disease-Specific Instrument (CDS) and pedobarography. This IRB-approved prospective study included patients aged 3-18 who were treated for idiopathic clubfoot with the Ponseti method between January 2008 and December 2018. Age-matched controls were identified through siblings of clubfoot patients and other community members. Treatment details were collected through a chart review of the included patients. Laboratory assessment included a physical exam, gait analysis, and pedobarography. The Pediatric Outcomes Data Collection Instrument and the Clubfoot Disease-Specific Instrument were also obtained on clubfoot patients (CF). The Wilcoxson rank-sum test was used to study differences between the CF patients and the typically developing (TD) patients. Statistical significance was set at p < 0.05. There were a total of 37 enrolled patients in our study. 21 were priorly treated for CF and 16 were TD. 94% of the CF patients had bilateral involvement. The age at the start of treatment was 29 days, the average total number of casts was seven to eight, and the average total number of casts after Achilles tenotomy was one. The reoccurrence rate was 25%, tenotomy was required in 94% of patients, and ≥1 tenotomy was required in 25% of patients. There were no significant differences between step length, step width, stride length, force-time integral, maximum peak pressure, foot progression angles, stance phase time, single-limb support time, double limb support time, and gait cycle time between children treated with the Ponseti method and typically developing children. The average post-treatment Pirani and Dimeglio scores were 5.50±0.58 and 15.29±1.58, respectively. The average post-treatment PODCI subscores were: Upper Extremity: 90.28, Transfers: 94.6, Sports: 86.81, Pain: 86.20, Happiness: 89.52, Global: 88.6. The average post-treatment Clubfoot Disease-Specific Instrument scores subscores were: Satisfaction: 73.93, Function: 80.32, Overall: 78.41. The Ponseti Method has a very high success rate and remains to be the gold standard in the treatment of idiopathic clubfoot. Timely management leads to good outcomes and a low need for repeated Achilles tenotomy. Children treated with the Ponseti method demonstrate good functional outcomes as measured through pedobarography. Pedobarography may have clinical utility in studying congenital foot deformities. Objective measures for hours of brace wear could represent an improvement in clubfoot care.Keywords: functional outcomes, pediatric deformity, patient-reported outcomes, talipes equinovarus
Procedia PDF Downloads 78202 Intensive Care Experience of Providing Palliative Care for a Terminal Lung Cancer Patient
Authors: Ting-I Lin
Abstract:
Objective: This article explores the nursing care experience of a 51-year-old terminal lung cancer patient admitted to the intensive care unit (ICU) following an upper right lobectomy. The patient initially sought emergency treatment due to worsening cough and dyspnea, which led to the placement of an endotracheal tube following sudden deterioration. Subsequent CT scans and chest X-rays revealed a tumor in the upper right lung with metastases to the lungs, liver, bones, and adrenal glands. The patient underwent a right upper lobectomy and a wedge resection of the right middle lobe. Pathology staging: T4N3M1c and the patient was diagnosed with advanced cancer postoperatively. Method: During the care period, nursing staff continuously monitored the patient’s physiological data through observations, direct care, interviews, physical assessments, and review of the patient’s medical records. The nursing team collaborated with the critical care team and the palliative care team, using Gordon's Eleven Functional Health Patterns to conduct a comprehensive assessment. The key health problems identified included pain related to postoperative cancer resection and invasive devices, fear of death due to rapid disease progression, and altered tissue perfusion associated with hemodynamic instability. Results: Postoperatively, the patient experienced pain from the surgical wound and dyspnea due to extensive metastasis, often leading to confusion. Through the adjustment of pain medication, the patient’s discomfort was alleviated, using Morphine 8 mg in 0.9% normal saline 60 ml IV drip q6h prn, and Ultracet 37.5 mg/325 mg 1# PO q6h. Additionally, lavender essential oil inhalation and limb massage were provided for 15 minutes four times a day. The patient’s FLACC pain score decreased from 7 to below 3. After respiratory training, the endotracheal tube was successfully removed, and the patient was weaned off the ventilator. Triflow exercises were used to promote alveolar expansion, with the goal of achieving 2 balls for 10 seconds, 5 repetitions per session, 6-8 times a day. The patient’s breathing stabilized at 16-18 breaths per minute, body temperature remained between 35.8°C and 36.1°C, and the mean arterial pressure was maintained between 60-80 mmHg. Conclusion: The critical care team and the palliative care team held a family meeting to discuss not only the patient’s care but also the emotional well-being of the family. Visiting hours were increased to two times per day, one hour each time, allowing the patient and family to express love and gratitude, which strengthened their emotional connection and reduced the patient’s anxiety from severe to mild. The family expressed that they had no regrets. After the patient was transferred to the general ward, the nursing team continued to provide end-of-life care with genuine empathy, compassion, and religious support, helping both the patient and family through the final stage of life.Keywords: multiple metastases, lung cancer, palliative care, nursing experience
Procedia PDF Downloads 26201 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 57200 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst
Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci
Abstract:
The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel
Procedia PDF Downloads 154199 An Assessment of Health Hazards in Urban Communities: A Study of Spatial-Temporal Variations of Dengue Epidemic in Colombo, Sri Lanka
Authors: U. Thisara G. Perera, C. M. Kanchana N. K. Chandrasekara
Abstract:
Dengue is an epidemic which is spread by Aedes Egyptai and Aedes Albopictus mosquitoes. The cases of dengue show a dramatic growth rate of the epidemic in urban and semi urban areas spatially in tropical and sub-tropical regions of the world. Incidence of dengue has become a prominent reason for hospitalization and deaths in Asian countries, including Sri Lanka. During the last decade the dengue epidemic began to spread from urban to semi-urban and then to rural settings of the country. The highest number of dengue infected patients was recorded in Sri Lanka in the year 2016 and the highest number of patients was identified in Colombo district. Together with the commercial, industrial, and other supporting services, the district suffers from rapid urbanization and high population density. Thus, drainage and waste disposal patterns of the people in this area exert an additional pressure to the environment. The district is situated in the wet zone and thus low lying lands constitute the largest portion of the district. This situation additionally facilitates mosquito breeding sites. Therefore, the purpose of the present study was to assess the spatial and temporal distribution patterns of dengue epidemic in Kolonnawa MOH area (Medical Officer of Health) in the district of Colombo. The study was carried out using 615 recorded dengue cases in Kollonnawa MOH area during the south east monsoon season from May to September 2016. The Moran’s I and Kernel density estimation were used as analytical methods. The analysis of data was accomplished through the integrated use of ArcGIS 10.1 software packages along with Microsoft Excel analytical tool. Field observation was also carried out for verification purposes during the study period. Results of the Moran’s I index indicates that the spatial distribution of dengue cases showed a cluster distribution pattern across the area. Kernel density estimation emphasis that dengue cases are high where the population has gathered, especially in areas comprising housing schemes. Results of the Kernel Density estimation further discloses that hot spots of dengue epidemic are located in the western half of the Kolonnawa MOH area, which is close to the Colombo municipal boundary and there is a significant relationship with high population density and unplanned urban land use practices. Results of the field observation confirm that the drainage systems in these areas function poorly and careless waste disposal methods of the people further encourage mosquito breeding sites. This situation has evolved harmfully from a public health issue to a social problem, which ultimately impacts on the economy and social lives of the country.Keywords: Dengue epidemic, health hazards, Kernel density, Moran’s I, Sri Lanka
Procedia PDF Downloads 300198 Soybean Oil Based Phase Change Material for Thermal Energy Storage
Authors: Emre Basturk, Memet Vezir Kahraman
Abstract:
In many developing countries, with the rapid economic improvements, energy shortage and environmental issues have become a serious problem. Therefore, it has become a very critical issue to improve energy usage efficiency and also protect the environment. Thermal energy storage system is an essential approach to match the thermal energy claim and supply. Thermal energy can be stored by heating, cooling or melting a material with the energy and then enhancing accessible when the procedure is reversed. The overall thermal energy storage techniques are sorted as; latent heat or sensible heat thermal energy storage technology segments. Among these methods, latent heat storage is the most effective method of collecting thermal energy. Latent heat thermal energy storage depend on the storage material, emitting or discharging heat as it undergoes a solid to liquid, solid to solid or liquid to gas phase change or vice versa. Phase change materials (PCMs) are promising materials for latent heat storage applications due to their capacities to accumulate high latent heat storage per unit volume by phase change at an almost constant temperature. Phase change materials (PCMs) are being utilized to absorb, collect and discharge thermal energy during the cycle of melting and freezing, converting from one phase to another. Phase Change Materials (PCMs) can generally be arranged into three classes: organic materials, salt hydrates and eutectics. Many kinds of organic and inorganic PCMs and their blends have been examined as latent heat storage materials. Organic PCMs are rather expensive and they have average latent heat storage per unit volume and also have low density. Most organic PCMs are combustible in nature and also have a wide range of melting point. Organic PCMs can be categorized into two major categories: non-paraffinic and paraffin materials. Paraffin materials have been extensively used, due to their high latent heat and right thermal characteristics, such as minimal super cooling, varying phase change temperature, low vapor pressure while melting, good chemical and thermal stability, and self-nucleating behavior. Ultraviolet (UV)-curing technology has been generally used because it has many advantages, such as low energy consumption , high speed, high chemical stability, room-temperature operation, low processing costs and environmental friendly. For many years, PCMs have been used for heating and cooling industrial applications including textiles, refrigerators, construction, transportation packaging for temperature-sensitive products, a few solar energy based systems, biomedical and electronic materials. In this study, UV-curable, fatty alcohol containing soybean oil based phase change materials (PCMs) were obtained and characterized. The phase transition behaviors and thermal stability of the prepared UV-cured biobased PCMs were analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The heating process phase change enthalpy is measured between 30 and 68 J/g, and the freezing process phase change enthalpy is found between 18 and 70 J/g. The decomposition of UVcured PCMs started at 260 ºC and reached a maximum of 430 ºC.Keywords: fatty alcohol, phase change material, thermal energy storage, UV curing
Procedia PDF Downloads 382197 Investigating Sub-daily Responses of Water Flow of Trees in Tropical Successional Forests in Thailand
Authors: Pantana Tor-Ngern
Abstract:
In the global water cycle, tree water use (Tr) largely contributes to evapotranspiration which is the total amount of water evaporated from terrestrial ecosystems to the atmosphere, regulating climates. Tree water use responds to environmental factors, including atmospheric humidity and sunlight (represented by vapor pressure deficit or VPD and photosynthetically active radiation or PAR, respectively) and soil moisture. In forests, Tr responses to such factors depend on species and their spatial and temporal variations. Tropical forests in Southeast Asia (SEA) have experienced land-use conversion from abandoned agricultural practices, resulting in patches of forests at different stages including old-growth and secondary forests. Because the inherent structures, such as canopy height and tree density, significantly vary among forests at different stages and can strongly affect their respective microclimate, Tr and its responses to changing environmental conditions in successional forests may differ. Daily and seasonal variations in the environmental factors may exert significant impacts on the respective Tr patterns. Extrapolating Tr data from short periods of days to longer periods of seasons or years can be complex and is important for estimating long-term ecosystem water use which often includes normal and abnormal climatic conditions. Thus, this study aims to investigate the diurnal variation of Tr, using measured sap flux density (JS) data, with changes in VPD in eight evergreen tree species in an old-growth forest (hereafter OF; >200 years old) and a young forest (hereafter YF, <10 years old) in Khao Yai National Park, Thailand. The studied species included Sysygium syzygoides, Aquilaria crassna, Cinnamomum subavenium, Nephelium melliferum, Altingia excelsa in OF, and Syzygium nervosum and Adinandra integerrima in YF. Only Sysygium antisepticum was found in both forest stages. Specifically, hysteresis, which indicates the asymmetrical changes of JS in response to changing VPD across daily timescale, was examined in these species. Results showed no hysteresis in all species in OF, except Altingia excelsa which exhibited a 3-hour delayed JS response to VPD. In contrast, JS of all species in YF displayed one-hour delayed responses to VPD. The OF species that showed no hysteresis indicated their well-coupling of their canopies with the atmosphere, facilitating the gas exchange which is essential for tree growth. The delayed responses in Altingia excelsa in OF and all species in YF were associated with higher JS in the morning than that in the afternoon. This implies that these species were sensitive to drying air, closing stomata relatively rapidly compared to the decreasing atmospheric humidity (VPD). Such behavior is often observed in trees growing in dry environments. This study suggests that detailed investigation of JS at sub-daily timescales is imperative for better understanding of mechanistic responses of trees to the changing climate, which will benefit the improvement of earth system models.Keywords: sap flow, tropical forest, forest succession, thermal dissipcation probe
Procedia PDF Downloads 60196 Case Report: Opioid Sparing Anaesthesia with Dexmedetomidine in General Surgery
Authors: Shang Yee Chong
Abstract:
Perioperative pain is a complex mechanism activated by various nociceptive, neuropathic, and inflammatory pathways. Opioids have long been a mainstay for analgesia in this period, even as we are continuously moving towards a multimodal model to improve pain control while minimising side effects. Dexmedetomidine, a potent alpha-2 agonist, is a useful sedative and hypnotic agent. Its use in the intensive care unit has been well described, and it is increasingly an adjunct intraoperatively for its opioid sparing effects and to decrease pain scores. We describe a case of a general surgical patient in whom minimal opioids was required with dexmedetomidine use. The patient was a 61-year-old Indian gentleman with a history of hyperlipidaemia and type 2 diabetes mellitus, presenting with rectal adenocarcinoma detected on colonoscopy. He was scheduled for a robotic ultra-low anterior resection. The patient was induced with intravenous fentanyl 75mcg, propofol 160mg and atracurium 40mg. He was intubated conventionally and mechanically ventilated. Anaesthesia was maintained with inhalational desflurane and anaesthetic depth was measured with the Masimo EEG Sedline brain function monitor. An initial intravenous dexmedetomidine dose (bolus) of 1ug/kg for 10 minutes was given prior to anaesthetic induction and thereafter, an infusion of 0.2-0.4ug/kg/hr to the end of surgery. In addition, a bolus dose of intravenous lignocaine 1.5mg/kg followed by an infusion at 1mg/kg/hr throughout the surgery was administered. A total of 10mmol of magnesium sulphate and intravenous paracetamol 1000mg were also given for analgesia. There were no significant episodes of bradycardia or hypotension. A total of intravenous phenylephrine 650mcg was given throughout to maintain the patient’s mean arterial pressure within 10-15mmHg of baseline. The surgical time lasted for 5 hours and 40minutes. Postoperatively the patient was reversed and extubated successfully. He was alert and comfortable and pain scores were minimal in the immediate post op period in the postoperative recovery unit. Time to first analgesia was 4 hours postoperatively – with paracetamol 1g administered. This was given at 6 hourly intervals strictly for 5 days post surgery, along with celecoxib 200mg BD as prescribed by the surgeon regardless of pain scores. Oral oxycodone was prescribed as a rescue analgesic for pain scores > 3/10, but the patient did not require any dose. Neither was there nausea or vomiting. The patient was discharged on postoperative day 5. This case has reinforced the use of dexmedetomidine as an adjunct in general surgery cases, highlighting its excellent opioid-sparing effects. In the entire patient’s hospital stay, the only dose of opioid he received was 75mcg of fentanyl at the time of anaesthetic induction. The patient suffered no opioid adverse effects such as nausea, vomiting or postoperative ileus, and pain scores varied from 0-2/10. However, intravenous lignocaine infusion was also used in this instance, which would have helped improve pain scores. Paracetamol, lignocaine, and dexmedetomidine is thus an effective, opioid-sparing combination of multi-modal analgesia for major abdominal surgery cases.Keywords: analgesia, dexmedetomidine, general surgery, opioid sparing
Procedia PDF Downloads 135195 Spatial and Temporal Variability of Meteorological Drought Including Atmospheric Circulation in Central Europe
Authors: Andrzej Wałęga, Marta Cebulska, Agnieszka Ziernicka-Wojtaszek, Wojciech Młocek, Agnieszka Wałęga, Tommaso Caloiero
Abstract:
Drought is one of the natural phenomena influencing many aspects of human activities like food production, agriculture, industry, and the ecological conditions of the environment. In the area of the Polish Carpathians, there are periods with a deficit of rainwater and an increasing frequency in dry months, especially in the cold half of the year. The aim of this work is a spatial and temporal analysis of drought, expressed as SPI in a heterogenous area of the Polish Carpathian and of the highland Region in the Central part of Europe based on long-term precipitation data. Also, to our best knowledge, for the first time in this work, drought characteristics analyzed via the SPI were discussed based on the atmospheric circulation calendar. The study region is the Upper Vistula Basin, located in the southern and south-eastern part of Poland. In this work, monthly precipitation from 56 rainfall stations was analysed from 1961 to 2022. The 3-, 6-, 9-, and 12-month Standardized Precipitation Index (SPI) were used as indicators of meteorological drought. For the 3-month SPI, the main climatic mechanisms determining extreme droughts were defined based on the calendar of synoptic circulations. The Mann-Kendall test was used to detect the trend of extreme droughts. Statistically significant trends of SPI were observed on 52.7% of all analyzed stations, and in most cases, a positive trend was observed. Statistically significant trends were more frequently observed in stations located in the western part of the analyzed region. Long-term droughts, represented by the 12-month SPI, occurred in all stations but not in all years. Short-term droughts (3-month SPI) were most frequent in the winter season, 6 and 9-month SPI in winter and spring, and 12-month SPI in winter and autumn, respectively. The spatial distribution of drought was highly diverse. The most intensive drought occurred in 1984, with the 6-month SPI covering 98% of the analyzed region and the 9 and 12-month SPI covering 90% of the entire region. Droughts exhibit a seasonal pattern, with a dominant 10-year periodicity for all analyzed variants of SPI. Additionally, Fourier analysis revealed a 2-year periodicity for the 3-, 6-, and 9-month SPI and a 31-year periodicity for the 12-month SPI. The results provide insights into the typical climatic conditions in Poland, with strong seasonality in precipitation. The study highlighted that short-term extreme droughts, represented by the 3-month SPI, are often caused by anticyclonic situations with high-pressure wedges Ka and Wa, and anticyclonic West as observed in 52.3% of cases. These findings are crucial for understanding the spatial and temporal variability of short and long-term extreme droughts in Central Europe, particularly for the agriculture sector dominant in the northern part of the analyzed region, where drought frequency is highest.Keywords: atmospheric circulation, drought, precipitation, SPI, the Upper Vistula Basin
Procedia PDF Downloads 74194 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading
Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro
Abstract:
Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling
Procedia PDF Downloads 276193 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89
Authors: A. Chatel, I. S. Torreguitart, T. Verstraete
Abstract:
The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness
Procedia PDF Downloads 110192 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing
Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko
Abstract:
Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components
Procedia PDF Downloads 608191 Feasibility and Acceptability of Mindfulness-Based Cognitive Therapy in People with Depression and Cardiovascular Disorders: A Feasibility Randomised Controlled Trial
Authors: Modi Alsubaie, Chris Dickens, Barnaby Dunn, Andy Gibson, Obioha Ukoumunned, Alison Evans, Rachael Vicary, Manish Gandhi, Willem Kuyken
Abstract:
Background: Depression co-occurs in 20% of people with cardiovascular disorders, can persist for years and predicts worse physical health outcomes. While psychosocial treatments have been shown to effectively treat acute depression in those with comorbid cardiovascular disorders, to date there has been no evaluation of approaches aiming to prevent relapse and treat residual depression symptoms in this group. Therefore, the current study aimed to examine the feasibility and acceptability of a randomised controlled trial design evaluating an adapted version of mindfulness-based cognitive therapy (MBCT) designed specifically for people with co-morbid depression and cardiovascular disorders. Methods: A 3-arm feasibility randomised controlled trial was conducted, comparing MBCT adapted for people with cardiovascular disorders plus treatment as usual (TAU), mindfulness-based stress reduction (MBSR) plus TAU, and TAU alone. Participants completed a set of self-report measures of depression severity, anxiety, quality of life, illness perceptions, mindfulness, self-compassion and affect and had their blood pressure taken immediately before, immediately after, and three months following the intervention. Those in the adapted-MBCT arm additionally underwent a qualitative interview to gather their views about the adapted intervention. Results: 3400 potentially eligible participants were approached when attending an outpatient appointment at a cardiology clinic or via a GP letter following a case note search. 242 (7.1%) were interested in taking part, 59 (1.7%) were screened as being suitable, and 33 (<1%) were eventually randomised to the three groups. The sample was heterogeneous in terms of whether they reported current depression or had a history of depression and the time since the onset of cardiovascular disease (one to 25 years). Of 11 participants randomised to adapted MBCT seven completed the full course, levels of home mindfulness practice were high, and positive qualitative feedback about the intervention was given. Twenty-nine out of 33 participants randomised completed all the assessment measures at all three-time points. With regards to the primary outcome (depression), five out of the seven people who completed the adapted MBCT and three out of five under MBSR showed significant clinical change, while in TAU no one showed any clinical change at the three-month follow-up. Conclusions: The adapted MBCT intervention was feasible and acceptable to participants. However, aspects of the trial design were not feasible. In particular, low recruitment rates were achieved, and there was a high withdrawal rate between screening and randomisation. Moreover, the heterogeneity in the sample was high meaning the adapted intervention was unlikely to be well tailored to all participants needs. This suggests that if the decision is made to move to a definitive trial, study recruitment procedures will need to be revised to more successfully recruit a target sample that optimally matches the adapted intervention.Keywords: mindfulness-based cognitive therapy (MBCT), depression, cardiovascular disorders, feasibility, acceptability
Procedia PDF Downloads 218190 Prevention and Treatment of Hay Fever Prevalence by Natural Products: A Phytochemistry Study on India and Iran
Authors: Tina Naser Torabi
Abstract:
Prevalence of allergy is affected by different factors according to its base and seasonal weather changes, and it also needs various treatments.Although reasons of allergy existence are not clear but generally, allergens cause reaction between antigen and antibody because of their antigenic traits. In this state, allergens cause immune system to make mistake and identify safe material as threat, therefore function of immune system impaired because of histamine secretion. There are different reasons for allergy, but herbal reasons are on top of the list, although animal causes cannot be ignored. Important point is that allergenic compounds, cause making dedicated antibody, so in general every kind of allergy is different from the other one. Therefore, most of the plants in herbal allergenic category can cause various allergies for human beings, such as respiratory allergies, nutritional allergies, injection allergies, infection allergies, touch allergies, that each of them show different symptoms based on the reason of allergy and also each of them requires different prevention and treatment. Geographical condition is another effective factor in allergy. Seasonal changes, weather condition, herbal coverage variety play important roles in different allergies. It goes without saying that humid climate and herbal coverage variety in different seasons especially spring cause most allergies in human beings in Iran and India that are discussed in this article. These two countries are good choices for allergy prevalence because of their condition, various herbal coverage, human and animal factors. Hay fever is one of the allergies, although the reasons of its prevalence are unknown yet. It is one of the most popular allergies in Iran and India because of geographical, human, animal and herbal factors. Hay fever is on top of the list in these two countries. Significant point about these two countries is that herbal factor is the most important factor in prevalence of hay fever. Variety of herbal coverage especially in spring during herbal pollination is the main reason of hay fever prevalence in these two countries. Based on the research result of Pharmacognosy and Phytochemistry, pollination of some plants in spring is major reason of hay fever prevalence in these countries. If airborne pollens in pollination season enter the human body through air, they will cause allergic reactions in eyes, nasal mucosa, lungs, and respiratory system, and if these particles enter the body of potential person through food, they will cause allergic reactions in mouth, stomach, and other digestive systems. Occasionally, chemical materials produced by human body such as Histamine cause problems like: developing of nasal polyps, nasal blockage, sleep disturbance, risk of asthma developing, blood vasodilation, sneezing, eye tears, itching and swelling of eyes and nasal mucosa, Urticaria, decrease in blood pressure, and rarely trauma, anesthesia, anaphylaxis and finally death. This article is going to study the reasons of hay fever prevalence in Iran and India and presents prevention and treatment Method from Phytochemistry and Pharmocognocy point of view by using local natural products in these two countries.Keywords: hay fever, India, Iran, natural treatment, phytochemistry
Procedia PDF Downloads 164189 State, Public Policies, and Rights: Public Expenditure and Social and Welfare Policies in America, as Opposed to Argentina
Authors: Mauro Cristeche
Abstract:
This paper approaches the intervention of the American State in the social arena and the modeling of the rights system from the Argentinian experience, by observing the characteristics of its federal budgetary system, the evolution of social public spending and welfare programs in recent years, labor and poverty statistics, and the changes on the labor market structure. The analysis seeks to combine different methodologies and sources: in-depth interviews with specialists, analysis of theoretical and mass-media material, and statistical sources. Among the results, it could be mentioned that the tendency to state interventionism (what has been called ‘nationalization of social life’) is quite evident in the United States, and manifests itself in multiple forms. The bibliography consulted, and the experts interviewed pointed out this increase of the state presence in historical terms (beyond short-term setbacks) in terms of increase of public spending, fiscal pressure, public employment, protective and control mechanisms, the extension of welfare policies to the poor sectors, etc. In fact, despite the significant differences between both countries, the United States and Argentina have common patterns of behavior in terms of the aforementioned phenomena. On the other hand, dissimilarities are also important. Some of them are determined by each country's own political history. The influence of political parties on the economic model seems more decisive in the United States than in Argentina, where the tendency to state interventionism is more stable. The centrality of health spending is evident in America, while in Argentina that discussion is more concentrated in the social security system and public education. The biggest problem of the labor market in the United States is the disqualification as a consequence of the technological development while in Argentina it is a result of its weakness. Another big difference is the huge American public spending on Defense. Then, the more federal character of the American State is also a factor of differential analysis against a centralized Argentine state. American public employment (around 10%) is comparatively quite lower than the Argentinian (around 18%). The social statistics show differences, but inequality and poverty have been growing as a trend in the last decades in both countries. According to public rates, poverty represents 14% in The United States and 33% in Argentina. American public spending is important (welfare spending and total public spending represent around 12% and 34% of GDP, respectively), but a bit lower than Latin-American or European average). In both cases, the tendency to underemployment and disqualification unemployment does not assume a serious gravity. Probably one of the most important aspects of the analysis is that private initiative and public intervention are much more intertwined in the United States, which makes state intervention more ‘fuzzy’, while in Argentina the difference is clearer. Finally, the power of its accumulation of capital and, more specifically, of the industrial and services sectors in the United States, which continues to be the engine of the economy, express great differences with Argentina, supported by its agro-industrial power and its public sector.Keywords: state intervention, welfare policies, labor market, system of rights, United States of America
Procedia PDF Downloads 131188 Ankle Fracture Management: A Unique Cross Departmental Quality Improvement Project
Authors: Langhit Kurar, Loren Charles
Abstract:
Introduction: In light of recent BOAST 12 (August 2016) published guidance on management of ankle fractures, the project aimed to highlight key discrepancies throughout the care trajectory from admission to point of discharge at a district general hospital. Wide breadth of data covering three key domains: accident and emergency, radiology, and orthopaedic surgery were subsequently stratified and recommendations on note documentation, and outpatient follow up were made. Methods: A retrospective twelve month audit was conducted reviewing results of ankle fracture management in 37 patients. Inclusion criterion involved all patients seen at Darent Valley Hospital (DVH) emergency department with radiographic evidence of an ankle fracture. Exclusion criterion involved all patients managed solely by nursing staff or having sustained purely ligamentous injury. Medical notes, including discharge summaries and the PACS online radiographic tool were used for data extraction. Results: Cross-examination of the A & E domain revealed limited awareness of the BOAST 12 recent publication including requirements to document skin integrity and neurovascular assessment. This had direct implications as this would have changed the surgical plan for acutely compromised patients. The majority of results obtained from the radiographic domain were satisfactory with appropriate X-rays taken in over 95% of cases. However, due to time pressures within A & E, patients were often left without a post manipulation XRAY in a backslab. Poorly reduced fractures were subsequently left for a long period resulting in swollen ankles and a time-dependent lag to surgical intervention. This had knocked on implications for prolonged inpatient stay resulting in hospital-acquired co-morbidity including pressure sores. Discussion: The audit has highlighted several areas of improvement throughout the disease trajectory from review in the emergency department to follow up as an outpatient. This has prompted the creation of an algorithm to ensure patients with significant fractures presenting to the emergency department are seen promptly and treatment expedited as per recent guidance. This includes timing for X-rays taken in A & E. Re-audit has shown significant improvement in both documentation at time of presentation and appropriate follow-up strategies. Within the orthopedic domain, we are in the process of creating an ankle fracture pathway to ensure imaging and weight bearing status are made clear to the consulting clinicians in an outpatient setting. Significance/Clinical Relevance: As a result of the ankle fracture algorithm we have adapted the BOAST 12 guidance to shape an intrinsic pathway to not only improve patient management within the emergency department but also create a standardised format for follow up.Keywords: ankle, fracture, BOAST, radiology
Procedia PDF Downloads 180