Search results for: alternative phase opposition disposition (APOD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8244

Search results for: alternative phase opposition disposition (APOD)

2124 The Role of Polyphenolic Compounds in the Alpha Amylase and Alpha Glucosidase Inhibitory Potentials of Extracts from the Leaves of Acalypha godseffiana from Eastern Nigeria: An in-vitro Study

Authors: A. K. Asekunowo, A O. T. Asafa, O. O. Okoh, O. T. Asekun, O. B. Familoni

Abstract:

Background: Acalypha godseffiana is an important plant used both as an ornamental and herbs; its leaves are employed in management of diseases such as diabetics in Eastern Nigeria. Aim: The correlations of the polyphenolic compounds in the hypoglycemic potential of different extracts of leaves of A. godseffiana and their safety profile on cell lines were investigated. Materials and Methods: The phytochemical compositions and antioxidants potentials were determined using adopted methods. An in vitro approach was employed in determining the hypoglycemic potentials of the extracts on α-amylase and α-glucosidase. The Line weaver-Burke plot was used to evaluate the mechanisms of Inhibition mechanisms of the enzymes. Results and Conclusions: Antioxidants results revealed that total antioxidant capacity (TAC) of the acetone extract (IC50: 0.34 mg/mL) showed better activity compared to the standards (silymarine 0.52 mg/mL; gallic acid 0.51 mg/mL). In-vitro hypoglycemic activity of the extracts confirmed that acetone extract demonstrated strong and mild inhibitory potential against α-amylase and α-glucosidase respectively. The observed activity was concentration-dependent with IC50 values of 2.33 and 0.13 mg/mL. The observed hypoglycemic and anti-oxidant potentials of acetone extract A. godseffiana correlate to its high polyphenolic contents which include phenols (133.20 mg gallic acid g-1), flavonoid (350.60 mg quercetin g-1) and tannins (264.67 mg catechin g-1). The mechanisms of action exhibited by acetone extract of A. godseffiana were mixed non-competitive and uncompetitive; which can be attributed to its inhibitory properties on α-amylase and α-glucosidase respectively. This effect would cause reduction in the rate at which starch hydrolyse, boost palliated glucose levels; hence, making acetone extract of A. godseffiana a potential anti-hypoglycemic alternative.

Keywords: Acalypha godeseffiana, acetone extract, anti-hypoglycemia, antioxidant, phytochemicals

Procedia PDF Downloads 268
2123 Digital System Design for Strategic Improvement Planning in Education: A Socio-Technical and Iterative Design Approach

Authors: Neeley Current, Fatih Demir, Kenneth Haggerty, Blake Naughton, Isa Jahnke

Abstract:

Educational systems seek reform using data-intensive continuous improvement processes known as strategic improvement plans (SIPs). Schools turn to digital systems to monitor, analyze and report SIPs. One technical challenge of these digital systems focuses on integrating a highly diverse set of data sources. Another challenge is to create a learnable sociotechnical system to help administrators, principals and teachers add, manipulate and interpret data. This study explores to what extent one particular system is usable and useful for strategic planning activities and whether intended users see the benefit of the system achieve the goal of improving workflow related to strategic planning in schools. In a three-phase study, researchers used sociotechnical design methods to understand the current workflow, technology use, and processes of teachers and principals surrounding their strategic improvement planning. Additionally, design review and task analysis usability methods were used to evaluate task completion, usability, and user satisfaction of the system. The resulting socio-technical models illustrate the existing work processes and indicate how and at which places in the workflow the newly developed system could have an impact. The results point to the potential of the system but also indicate that it was initially too complicated for use. However, the diverse users see the potential benefits, especially to overcome the diverse set of data sources, and that the system could fill a gap for schools in planning and conducting strategic improvement plans.

Keywords: continuous improvement process, education reform, strategic improvement planning, sociotechnical design, software development, usability

Procedia PDF Downloads 301
2122 Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand

Authors: Charirat Kusonwiriyawong, Supha Photichan, Wannarut Chutibutr

Abstract:

Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available.

Keywords: available phosphorus, exchangeable potassium, modified single extractant, organic matter, soil test kits

Procedia PDF Downloads 151
2121 Terahertz Glucose Sensors Based on Photonic Crystal Pillar Array

Authors: S. S. Sree Sanker, K. N. Madhusoodanan

Abstract:

Optical biosensors are dominant alternative for traditional analytical methods, because of their small size, simple design and high sensitivity. Photonic sensing method is one of the recent advancing technology for biosensors. It measures the change in refractive index which is induced by the difference in molecular interactions due to the change in concentration of the analyte. Glucose is an aldosic monosaccharide, which is a metabolic source in many of the organisms. The terahertz waves occupies the space between infrared and microwaves in the electromagnetic spectrum. Terahertz waves are expected to be applied to various types of sensors for detecting harmful substances in blood, cancer cells in skin and micro bacteria in vegetables. We have designed glucose sensors using silicon based 1D and 2D photonic crystal pillar arrays in terahertz frequency range. 1D photonic crystal has rectangular pillars with height 100 µm, length 1600 µm and width 50 µm. The array period of the crystal is 500 µm. 2D photonic crystal has 5×5 cylindrical pillar array with an array period of 75 µm. Height and diameter of the pillar array are 160 µm and 100 µm respectively. Two samples considered in the work are blood and glucose solution, which are labelled as sample 1 and sample 2 respectively. The proposed sensor detects the concentration of glucose in the samples from 0 to 100 mg/dL. For this, the crystal was irradiated with 0.3 to 3 THz waves. By analyzing the obtained S parameter, the refractive index of the crystal corresponding to the particular concentration of glucose was measured using the parameter retrieval method. Refractive indices of the two crystals decreased gradually with the increase in concentration of glucose in the sample. For 1D photonic crystals, a gradual decrease in refractive index was observed at 1 THz. 2D photonic crystal showed this behavior at 2 THz. The proposed sensor was simulated using CST Microwave studio. This will enable us to develop a model which can be used to characterize a glucose sensor. The present study is expected to contribute to blood glucose monitoring.

Keywords: CST microwave studio, glucose sensor, photonic crystal, terahertz waves

Procedia PDF Downloads 283
2120 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 286
2119 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia

Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg

Abstract:

The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.

Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar

Procedia PDF Downloads 267
2118 Solar-Plasma Reactors for a Zero-Emission Economy

Authors: Dassou Nagassou

Abstract:

Recent increase in frequency and severity of climatic impacts throughout the world has put a particular emphasis on the urgency to address the anthropogenic greenhouse gas emissions. The latter, mainly composed of carbon dioxide are responsible for the global warming of planet earth. Despite efforts to transition towards a zero-emission economy, manufacturing industries, electricity generation power plants, and transportation sectors continue to encounter challenges which hinder their progress towards a full decarbonization. The growing energy demand from both developed and under-developed economies exacerbates the situation and as a result, more carbon dioxide is discharged into the atmosphere. This situation imposes a lot of constraints on industries which are involved i.e., manufacturing industries, transportation, and electricity generation which must navigate the stringent environmental regulations in order to remain profitable. Existing solutions such as energy efficiencies, green materials (life cycle analysis), and many more have fallen short to address the problem due to their inadaptation to existing infrastructures, low efficiencies, and prohibitive costs. The proposed technology exploits the synergistic interaction between solar radiation and plasma to boost a direct decomposition of the molecules of carbon dioxide while producing alternative fuels which can be used to sustain on-site high-temperature processes via 100% solar energy harvesting in the form of photons and electricity. The advantages of this technology and its ability to be easily integrated into existing systems make it appealing for the industry which can now afford to fast track on the path towards full decarbonization, thanks to the solar plasma reactor. Despite the promising experimental results which proved the viability of this concept, solar-plasma reactors require further investigations to understand the synergistic interactions between plasma and solar radiation for a potential technology scale-up.

Keywords: solar, non-equilibrium, plasma, reactor, greenhouse-gases, solar-fuels

Procedia PDF Downloads 63
2117 Effect of Volcanic Ash and Recycled Aggregates in Concrete

Authors: Viviana Letelier, Ester Tarela, Giacomo Moriconi

Abstract:

The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material.

Keywords: compressive strength of recycled concrete, mechanical properties of recycled concrete, recycled aggregates, volcanic ash as cement replacement

Procedia PDF Downloads 304
2116 The Effectiveness of Laser In situ Keratomileusis for Correction Various Types of Refractive Anomalies

Authors: Yuliya Markava

Abstract:

The laser in situ keratomileusis (LASIK) is widely common surgical procedure, which has become an alternative for patients who are not satisfied with the performance of other correction methods. A high level of patient satisfaction functional outcomes after refractive surgery confirms the high reliability and safety of LASIK and provides a significant improvement in the quality of life and social adaptation. Purpose: To perform clinical analysis of the results of correction made to the excimer laser system SCHWIND AMARIS 500E in patients with different types of refractive anomalies. Materials and Methods: This was a retrospective analysis of 1581 operations (812 patients): 413 males (50.86%) and 399 females (49.14%) at the age from 18 to 47 years with different types of ametropia. All operations were performed on excimer laser SCHWIND AMARIS 500E in the LASIK procedure. Formation of the corneal flap was made by mechanical microkeratome SCHWIND. Results: Analyzing the structure of refractive anomalies: The largest number of interventions accounted for myopia: 1505 eyes (95.2%), of which about a low myopia: 706 eyes (44.7%), moderate myopia: 562 eyes (35.5 %), high myopia: eyes 217 (13.7%) and supermyopia: 20 eyes (1.3%). Hyperopia was 0.7% (11 eyes), mixed astigmatism: 4.1% (65 eyes). The efficiency was 80% (in patients with supermyopia) to 91.6% and 95.4% (in groups with myopia low and moderate, respectively). Uncorrected visual acuity average values before and after laser operation was in groups: a low myopia 0.18 (up 0.05 to 0.31) and 0.80 (up 0.60 to 1.0); moderate myopia 0.08 (up 0.03 to 0.13) and 0.87 ( up 0.74 to 1.0); high myopia 0.05 (up 0.02 to 0.08) and 0.83 (up 0.66 to 1.0); supermyopia 0.03 (up 0.02 to 0.04) and 0.59 ( up 0.34 to 0.84); hyperopia 0.27 (up 0.16 to 0.38) and 0.57 (up 0.27 to 0.87); mixed astigmatism of 0.35 (up 0.19 to 0.51) and 0.69 (up 0.44 to 0.94). In all cases, after LASIK indicators uncorrected visual acuity significantly increased. Reoperation was 4.43%. Significance: Clinical results of refractive surgery at the excimer laser system SCHWIND AMARIS 500E in different ametropia correction is characterized by high efficiency.

Keywords: effectiveness of laser correction, LASIK, refractive anomalies, surgical treatment

Procedia PDF Downloads 258
2115 Buy-and-Hold versus Alternative Strategies: A Comparison of Market-Timing Techniques

Authors: Jonathan J. Burson

Abstract:

With the rise of virtually costless, mobile-based trading platforms, stock market trading activity has increased significantly over the past decade, particularly for the millennial generation. This increased stock market attention, combined with the recent market turmoil due to the economic upset caused by COVID-19, make the topics of market-timing and forecasting particularly relevant. While the overall stock market saw an unprecedented, historically-long bull market from March 2009 to February 2020, the end of that bull market reignited a search by investors for a way to reduce risk and increase return. Similar searches for outperformance occurred in the early, and late 2000’s as the Dotcom bubble burst and the Great Recession led to years of negative returns for mean-variance, index investors. Extensive research has been conducted on fundamental analysis, technical analysis, macroeconomic indicators, microeconomic indicators, and other techniques—all using different methodologies and investment periods—in pursuit of higher returns with lower risk. The enormous variety of timeframes, data, and methodologies used by the diverse forecasting methods makes it difficult to compare the outcome of each method directly to other methods. This paper establishes a process to evaluate the market-timing methods in an apples-to-apples manner based on simplicity, performance, and feasibility. Preliminary findings show that certain technical analysis models provide a higher return with lower risk when compared to the buy-and-hold method and to other market-timing strategies. Furthermore, technical analysis models tend to be easier for individual investors both in terms of acquiring the data and in analyzing it, making technical analysis-based market-timing methods the preferred choice for retail investors.

Keywords: buy-and-hold, forecast, market-timing, probit, technical analysis

Procedia PDF Downloads 100
2114 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes

Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park

Abstract:

The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.

Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy

Procedia PDF Downloads 125
2113 Corrosion Resistance of 17-4 Precipitation Hardenable Stainless Steel Fabricated by Selective Laser Melting

Authors: Michella Alnajjar, Frederic Christien, Krzysztof Wolski, Cedric Bosch

Abstract:

Additive manufacturing (AM) has gained more interest in the past few years because it allows 3D parts often having a complex geometry to be directly fabricated, layer by layer according to a CAD model. One of the AM techniques is the selective laser melting (SLM) which is based on powder bed fusion. In this work, the corrosion resistance of 17-4 PH steel obtained by SLM is investigated. Wrought 17-4 PH steel is a martensitic precipitation hardenable stainless steel. It is widely used in a variety of applications such as aerospace, medical and food industries, due to its high strength and relatively good corrosion resistance. However, the combined findings of X-Ray diffraction and electron backscatter diffraction (EBSD) proved that SLM-ed 17-4 PH steel has a fully ferritic microstructure, more specifically δ ferrite. The microstructure consists of coarse ferritic grains elongated along the build direction, with a pronounced solidification crystallographic texture. These results were associated with the high cooling and heating rates experienced throughout the SLM process (10⁵-10⁶ K/s) that suppressed the austenite formation and produced a 'by-passing' phenomenon of this phase during the numerous thermal cycles. Furthermore, EDS measurements revealed a uniform distribution of elements without any dendritic structure. The extremely high cooling kinetics induced a diffusionless solidification, resulting in a homogeneous elemental composition. Consequently, the corrosion properties of this steel are altered from that of conventional ones. By using electrochemical means, it was found that SLM-ed 17-4 PH is more resistant to general corrosion than the wrought steel. However, the SLM-ed material exhibits metastable pitting due to its high porosity density. In addition, the hydrogen embrittlement of SLM-ed 17-4 PH steel is investigated, and a correlation between its behavior and the observed microstructure is made.

Keywords: corrosion resistance, 17-4 PH stainless steel, selective laser melting, hydrogen embrittlement

Procedia PDF Downloads 145
2112 Construction Innovation: Support for 3D Printing House

Authors: Andrea Palazzo, Daniel Macek, Veronika Malinova

Abstract:

Contour processing is the new technology challenge for architects and construction companies. The many advantages it promises make it one of the most interesting solutions for construction in terms of automation of building processes. The technology for 3D printing houses offers many application possibilities, from low-cost construction, to being considered by NASA for visionary projects as a good solution for building settlements on other planets. Another very important point is that clients, as architects, will no longer have many limits in design concerning ideas and creativity. The prices for real estate are constantly increasing and the lack of availability of construction materials as well as the speculation that has been created around it in 2021 is bringing prices to such a level that in the future real estate developers risk not being able to find customers for these ultra-expensive homes. Hence, this paper starts with the introduction of 3D printing, which now has the potential to gain an important position in the market, becoming a valid alternative to the classic construction process. This technology is not only beneficial from an economic point of view but it is also a great opportunity to have an impact on the environment by reducing CO2 emissions. Further on in the article we will also understand if, after the COP 26 (2021 United Nations Climate Change Conference), world governments could also push towards building technologies that reduce the waste materials that are needed to be disposed of and at the same time reduce emissions with the contribution of governmental funds. This paper will give us insight on the multiple benefits of 3D printing and emphasise the importance of finding new solutions for materials that can be used by the printer. Therefore, based on the type of material, it will be possible to understand the compatibility with current regulations and how the authorities will be inclined to support this technology. This will help to enable the rise and development of this technology in Europe and in the rest of the world on actual housing projects and not only on prototypes.

Keywords: additive manufacturing, contour crafting, development, new regulation, printing material

Procedia PDF Downloads 203
2111 Bionaut™: A Microrobotic Drug-Device Platform for the Local Treatment of Brainstem Gliomas

Authors: Alex Kiselyov, Suehyun Cho, Darrell Harrington; Florent Cros, Olin Palmer, John Caputo, Michael Kardosh, Eran Oren, William Loudon, Michael Shpigelmacher

Abstract:

Despite the most aggressive surgical and adjuvant therapeutic strategies, treatment of both pediatric and adult brainstem tumors remains problematic. Novel strategies, including targeted biologics, immunotherapy, and specialized delivery systems such as convection-enhanced delivery (CED), have been proposed. While some of these novel treatments are entering phase I trials, the field is still in need of treatment(s) that exhibits dramatically enhanced potency with optimal therapeutic ratio. Bionaut Labs has developed a modular microrobotic platform for performing localized delivery of diverse therapeutics in vivo. Our biocompatible particles (Bionauts™) are externally propelled and visualized in real-time. Bionauts™ are specifically designed to enhance the effect of radiation therapy via anatomically precise delivery of a radiosensitizing agent, as exemplified by temozolomide (TMZ) and Avastin™ to the brainstem gliomas of diverse origin. The treatment protocol is designed to furnish a better therapeutic outcome due to the localized (vs systemic) delivery of the drug to the neoplastic lesion(s) for use as a synergistic combination of radiation and radiosensitizing agent. In addition, the procedure is minimally invasive and is expected to be appropriate for both adult and pediatric patients. Current progress, including platform optimization, selection of the lead radiosensitizer as well as in vivo safety studies of the Bionauts™ in large animals, specifically the spine and the brain of porcine and ovine models, will be discussed.

Keywords: Bionaut, brainstem, glioma, local delivery, micro-robot, radiosensitizer

Procedia PDF Downloads 199
2110 An Approach towards Elementary Investigation on HCCI Technology

Authors: Jitendra Sharma

Abstract:

Here a Homogeneous Charge is used as in a spark-ignited engine, but the charge is compressed to auto ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine. HCCI has a homogeneous charge and have no problems associated with soot and Nox but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP (Indicated Mean Effective Pressure) values with HCCI. The Homogeneous charge compression ignition (HCCI) is an attractive technology because of its high efficiency and low emissions. However, HCCI lakes a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios and engine speeds. HCCI a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low Knox and particulate matter emissions. The homogenous charge compression ignition (HCCI) is a promising new engine technology that combines elements of the diesel and gasoline engine operating cycles. HCCI as a way to increase the efficiency of the gasoline engine. The attractive properties are increased fuel efficiency due to reduced throttling losses, increased expansion ratio and higher thermodynamic efficiency. With the advantages there are some mechanical limitations to the operation of the HCCI engine. The implementation of homogenous charge compression ignition (HCCI) to gasoline engines is constrained by many factors. The main drawback of HCCI is the absence of direct combustion timing control. Therefore all the right conditions for auto ignition have to be set before combustion starts. This paper describes the past and current research done on HCCI engine. Many research got considerable success in doing detailed modeling of HCCI combustion. This paper aims at studying the fundamentals of HCCI combustion, the strategy to control the limitation of HCCI engine.

Keywords: HCCI, diesel engine, combustion, elementary investigation

Procedia PDF Downloads 450
2109 Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors

Authors: Claudia Matassa, Matthias Hohne, Dominic Ormerod, Yamini Satyawali

Abstract:

Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal.

Keywords: amine donor, chiral amines, in situ product removal, transamination

Procedia PDF Downloads 158
2108 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.

Keywords: asphalt, basalt, pavement, recycled aggregate

Procedia PDF Downloads 169
2107 A Reflective Investigation on the Course Design and Coaching Strategy for Creating a Trans-Disciplinary Leaning Environment

Authors: Min-Feng Hsieh

Abstract:

Nowadays, we are facing a highly competitive environment in which the situation for survival has come even more critical than ever before. The challenge we will be confronted with is no longer can be dealt with the single system of knowledge. The abilities we urgently need to acquire is something that can lead us to cross over the boundaries between different disciplines and take us to a neutral ground that gathers and integrates powers and intelligence that surrounds us. This paper aims at discussing how a trans-disciplinary design course organized by the College of Design at Chaoyang University can react to this modern challenge. By orchestrating an experimental course format and by developing a series of coaching strategies, a trans-disciplinary learning environment has been created and practiced in which students selected from five different departments, including Architecture, Interior Design, Visual Design, Industrial Design, Landscape and Urban Design, are encouraged to think outside their familiar knowledge pool and to learn with/from each other. In the course of implementing this program, a parallel research has been conducted alongside by adopting the theory and principles of Action Research which is a research methodology that can provide the course organizer emergent, responsive, action-oriented, participative and critically reflective insights for the immediate changes and amendments in order to improve the effect of teaching and learning experience. In the conclusion, how the learning and teaching experience of this trans-disciplinary design studio can offer us some observation that can help us reflect upon the constraints and division caused by the subject base curriculum will be pointed out. A series of concepts for course design and teaching strategies developed and implemented in this trans-disciplinary course are to be introduced as a way to promote learners’ self-motivated, collaborative, cross-disciplinary and student-centered learning skills. The outcome of this experimental course can exemplify an alternative approach that we could adopt in pursuing a remedy for dealing with the problematic issues of the current educational practice.

Keywords: course design, coaching strategy, subject base curriculum, trans-disciplinary

Procedia PDF Downloads 207
2106 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 472
2105 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 142
2104 A Neural Network for the Prediction of Contraction after Burn Injuries

Authors: Ginger Egberts, Marianne Schaaphok, Fred Vermolen, Paul van Zuijlen

Abstract:

A few years ago, a promising morphoelastic model was developed for the simulation of contraction formation after burn injuries. Contraction can lead to a serious reduction in physical mobility, like a reduction in the range-of-motion of joints. If this is the case in a healing burn wound, then this is referred to as a contracture that needs medical intervention. The morphoelastic model consists of a set of partial differential equations describing both a chemical part and a mechanical part in dermal wound healing. These equations are solved with the numerical finite element method (FEM). In this method, many calculations are required on each of the chosen elements. In general, the more elements, the more accurate the solution. However, the number of elements increases rapidly if simulations are performed in 2D and 3D. In that case, it not only takes longer before a prediction is available, the computation also becomes more expensive. It is therefore important to investigate alternative possibilities to generate the same results, based on the input parameters only. In this study, a surrogate neural network has been designed to mimic the results of the one-dimensional morphoelastic model. The neural network generates predictions quickly, is easy to implement, and there is freedom in the choice of input and output. Because a neural network requires extensive training and a data set, it is ideal that the one-dimensional FEM code generates output quickly. These feed-forward-type neural network results are very promising. Not only can the network give faster predictions, but it also has a performance of over 99%. It reports on the relative surface area of the wound/scar, the total strain energy density, and the evolutions of the densities of the chemicals and mechanics. It is, therefore, interesting to investigate the applicability of a neural network for the two- and three-dimensional morphoelastic model for contraction after burn injuries.

Keywords: biomechanics, burns, feasibility, feed-forward NN, morphoelasticity, neural network, relative surface area wound

Procedia PDF Downloads 59
2103 Bamboo as the Frontier for Economically Sustainable Solution to Flood Control and Human Wildlife Conflict

Authors: Nirman Kumar Ojha

Abstract:

Bamboo plantation can be integrated for natural embankment against flood and live fencing against wild animals, at the same time provide economic opportunity for the poor farmers as a sustainable solution and adaptation alternative. 2010 flood in the Rui River completely inundated fields of four VDCs in Madi, Chitwan National Park with extensive bank erosion. The main aim of this action research was to identify an economically sustainable natural embankment against flood and also providing wildlife friendly fencing to reduce human-wildlife conflict. Community people especially poor farmers were trained for soil testing, land identification, plantation, and the harvesting regime, nursery set up and intercropping along with bamboo plantation on the edge of the river bank in order to reduce or minimize soil erosion. Results show that farmers are able to establish cost efficient and economically sustainable river embankment with bamboo plantation also creating a fence for wildlife which has also promoted bamboo cultivation and conservation. This action research has amalgamated flood control and wildlife control with the livelihood of the farmers which otherwise would cost huge resource. Another major impact of the bamboo plantation is its role in climate change and its adaptation process reducing degradation and improving vegetation cover contributing to landscape management. Based on this study, we conclude that bamboo plantation in Madi, Chitwan promoted the livelihood of the poor farmers providing a sustainable economic solution to reduce bank erosion, human-wildlife conflict and contributes to landscape management.

Keywords: climate change and conservation, economic opportunity, flood control, national park

Procedia PDF Downloads 282
2102 Natural and Construction/Demolition Waste Aggregates: A Comparative Study

Authors: Debora C. Mendes, Matthias Eckert, Claudia S. Moço, Helio Martins, Jean-Pierre Gonçalves, Miguel Oliveira, Jose P. Da Silva

Abstract:

Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.

Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants

Procedia PDF Downloads 364
2101 Genderqueerness in Polish: A Survey-Based Study of Linguistic Strategies Employed by Genderqueer Speakers of Polish

Authors: Szymon Misiek

Abstract:

The genderqueer (or gender non-binary, both terms referring to those individuals who are identified as neither men nor women) community has been gaining greater visibility over the last few years. This includes legal recognition, representation in popular media, and inclusion of non-binary perspectives in research on transgender issues. Another important aspect of visibility is language. Gender-neutrality, often associated with genderqueer people, is relatively easy to achieve in natural-gender languages such as English. This can be observed in the growing popularity of the 'singular they' pronoun (used specifically with reference to genderqueer individuals) or the gender-neutral title 'Mx.' (as an alternative to 'Ms./Mr.'). 'Singular they' seems to have become a certain standard in the genderqueer community. Grammatical-gender languages, such as Polish, provide for a greater challenge to genderqueer speakers. In Polish, every noun is inherently gendered, while verbs, adjectives, and pronouns inflect for gender. Those who do not wish to settle for using only either masculine or feminine forms (which some genderqueer Polish speakers do choose) have to somehow mix the two, attempt to avoid gendered forms altogether, or turn to non-standard forms, such as neuter (not used for people in standard Polish), plurals (vaguely akin to English 'singular they'), or neologisms (such as verb forms using the '-u-' affix). The following paper presents the results of a survey conducted among genderqueer speakers of Polish regarding their choice of linguistic strategies. As no definitive standard such as 'singular they' has (yet) emerged, it rather seeks to emphasize the diversity of chosen strategies and their relation to a person's specific identity as well as the context an exchange takes place. The findings of the study may offer an insight into how heavily gendered languages deal with non-normatively gendered experiences, and to what extent English influences this process (e.g., the majority of genderqueer poles choose English terms to label their identity), as well as help design good practices aimed at achieving gender-equality in speech.

Keywords: genderqueer, grammatical gender in Polish, non-binary, transgender

Procedia PDF Downloads 144
2100 A Zero-Flaring Flowback Solution to Revive Liquid Loaded Gas Wells

Authors: Elsayed Amer, Tarek Essam, Abdullah Hella, Mohammed Al-Ajmi

Abstract:

Hydrocarbon production decline in mature gas fields is inevitable, and mitigating these circumstances is essential to ensure a longer production period. Production decline is not only influenced by reservoir pressure and wellbore integrity; however, associated liquids in the reservoir rock have a considerable impact on the production process. The associated liquid may result in liquid loading, near wellbore damage, condensate banking, fine sand migration, and wellhead pressure depletion. Consequently, the producing well will suffocate, and the liquid column will seize the well from flowing. A common solution in such circumstances is reducing the surface pressure by opening the well to the atmospheric pressure and flaring the produced liquids. This practice may not be applicable to many cases since the atmospheric pressure is not low enough to create a sufficient driving force to flow the well. In addition, flaring the produced hydrocarbon is solving the issue on account of the environment, which is against the world's efforts to mitigate the impact of climate change. This paper presents a novel approach and a case study that utilizes a multi-phase mobile wellhead gas compression unit (MMWGC) to reduce surface pressure to the sub-atmospheric level and transfer the produced hydrocarbons to the sales line. As a result, the liquid column will unload in a zero-flaring manner, and the life of the producing well will extend considerably. The MMWGC unit was able to successfully kick off a dead well to produce up to 10 MMSCFD after reducing the surface pressure for 3 hours. Applying such novelty on a broader scale will not only extend the life of the producing wells yet will also provide a zero-flaring, economically and environmentally preferred solution.

Keywords: petroleum engineering, zero-flaring, liquid loading, well revival

Procedia PDF Downloads 105
2099 Anterior Tooth Misalignment: Orthodontics or Restorative Treatment

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Smile is considered to be one of the most effective methods of influencing people. Increasing numbers of patients are requesting cosmetic dental procedures to achieve the perfect smile. Based on the patient’s age, oral and facial characteristics, and the dentist’s expertise, different concepts of treatment would be available. Orthodontics is the most conservative and the ideal treatment alternative for crowded anterior teeth; however, it may be rejected by patients due to occupational limitations of time, physical discomfort including pain and functional limitations, psychological discomfort, and appearance during treatment. In addition, orthodontic treatment will not resolve deficits of contour and color of the anterior teeth. In consequence, patients may demand restorative techniques to resolve their anterior mal-alignment instead, often called "instant orthodontics". Following its introduction, however, adhesive dentistry has suffered at times from overuse. Creating short-term attractive smiles at the expense of long-term dental health and optimal tooth biomechanics by using cosmetic techniques should not be considered an ethical approach. The objective of this narrative review was to investigate the literature for guidelines with regard to decision making and treatment planning for anterior tooth mal-alignment. In this regard, indications of orthodontic, restorative, combination of both treatments, and adjunctive periodontal surgery were discussed in clinical cases to achieve a proportional smile. Restorative modalities would include disking, cosmetic contouring, veneers, and crowns and were compared with limited or comprehensive orthodontic options. A rapid review was also presented on pros and cons of snap on smile to mask malalignments. Diagnostic tools such as mock up, wax up, and digital smile design were also considered to achieve more conservative and functional treatments with respect to biologic factors.

Keywords: crowding, misalignment, veneer, crown, orthodontics

Procedia PDF Downloads 119
2098 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process

Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski

Abstract:

Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.

Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction

Procedia PDF Downloads 141
2097 Kinetics and Toxicological Effects of Kickxia elatine Extract-Based Silver Nanoparticles on Rat Brain Acetylcholinesterase

Authors: Noor Ul Huda, Mushtaq Ahmed, Nadia Mushtaq, Naila Sher, Rahmat Ali Khan

Abstract:

Purpose: The green synthesis of AgNPs has been favored over chemical synthesis due to their distinctive properties such as high dispersion, surface-to-volume ratio, low toxicity, and easy preparation. In the present work, the biosynthesis of AgNPs (KE-AgNPs) was carried out in one step by using the traditionally used plant Kickxia elatine (KE) extract and then investigated its enzyme inhibiting activity against rat’s brain acetylcholinesterase (AChE) in vitro. Methods: KE-AgNPs were synthesized from 1mM AgNO₃ using KE extract and characterized by UV–spectroscopy, SEM, EDX, XRD, and FTIR analysis. Rat’s brain acetylcholinesterase (AChE) inhibition activity was evaluated by the standard protocol. Results: UV–spectrum at 416 nm confirmed the formation of KE-AgNPs. X-ray diffraction (XRD) pattern presented 2θ values corresponding to the crystalline nature of KE-AgNPs with an average size of 42.47nm. The scanning electron microscope (SEM) analysis confirmed the presence of spherical-shaped and huge density KE-AgNPs with a size of 50nm. Fourier transform infrared spectroscopy (FT-IR) suggested that the functional groups present in KE extract and on the surface of KE-AgNPs are responsible for the stability of biosynthesized NPs. Energy dispersive X-ray (EDX) displayed an intense sharp peak at 3.2 keV, presenting that Ag was the chief element with 61.67%. Both KE extract and KE-AgNPs showed good and potent anti-AChE activity, with higher inhibition potential at a concentration of 175 µg/ml. Statistical analysis showed that both KEE and AgNPs exhibited non-competitive type inhibition against AChE, i.e., Vmax decreased (34.17-68.64% and 22.29- 62.10%) in the concentration-dependent mode for KEE and KE-AgNPs respectively and while Km values remained constant. Conclusions: KEE and KE-AgNPs can be considered an inhibitor of rats’ brain AChE, and the synthesis of KE-AgNPs-based drugs can be used as a cheaper and alternative option against diseases such as Alzheimer’s disease.

Keywords: Kickxia elatine, AgNPs, brain homogenate, acetylcholinesterase, kinetics

Procedia PDF Downloads 125
2096 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 313
2095 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 97