Search results for: energy performance gap
13282 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System
Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du
Abstract:
Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.Keywords: cislunar transfer, dynamics, momentum exchange, tether
Procedia PDF Downloads 27013281 The Use of Space Syntax in Urban Transportation Planning and Evaluation: Limits and Potentials
Authors: Chuan Yang, Jing Bie, Yueh-Lung Lin, Zhong Wang
Abstract:
Transportation planning is an academic integration discipline combining research and practice with the aim of mobility and accessibility improvements at both strategic-level policy-making and operational dimensions of practical planning. Transportation planning could build the linkage between traffic and social development goals, for instance, economic benefits and environmental sustainability. The transportation planning analysis and evaluation tend to apply empirical quantitative approaches with the guidance of the fundamental principles, such as efficiency, equity, safety, and sustainability. Space syntax theory has been applied in the spatial distribution of pedestrian movement or vehicle flow analysis, however rare has been written about its application in transportation planning. The correlated relationship between the variables of space syntax analysis and authentic observations have declared that the urban configurations have a significant effect on urban dynamics, for instance, land value, building density, traffic, crime. This research aims to explore the potentials of applying Space Syntax methodology to evaluate urban transportation planning through studying the effects of urban configuration on cities transportation performance. By literature review, this paper aims to discuss the effects that urban configuration with different degrees of integration and accessibility have on three elementary components of transportation planning - transportation efficiency, transportation safety, and economic agglomeration development - via intensifying and stabilising the nature movements generated by the street network. And then the potential and limits of Space Syntax theory to study the performance of urban transportation and transportation planning would be discussed in the paper. In practical terms, this research will help future research explore the effects of urban design on transportation performance, and identify which patterns of urban street networks would allow for most efficient and safe transportation performance with higher economic benefits.Keywords: transportation planning, space syntax, economic agglomeration, transportation efficiency, transportation safety
Procedia PDF Downloads 20213280 Entrepreneurship, Institutional Quality, and Macroeconomic Performance: Evidence from Nigeria
Authors: Cleopatra Oluseye Ibukun
Abstract:
Following the endogenous growth theory, entrepreneurship has been considered pivotal to economic growth and development, particularly in developing countries like Nigeria. Meanwhile, efforts to reduce unemployment has yielded minimal result with over 36% of youth unemployment and a dwindling economic growth despite the country’s natural and human resource endowment. This study, therefore, investigates the effects of entrepreneurship and institutional quality on economic growth and unemployment in Nigeria over the period 1996 to 2018. The data is obtained from the National Bureau of Statistics (NBS), World Bank’s World Development Indicators (WDI), and the World Bank’s World Governance Indicators (WGI). The study period is guided by the availability of data, and the study employs both descriptive and econometric techniques of analysis (specifically, the Auto-regressive Distributed Lag Approach). This approach is preferable given that the variables are stationary at the first difference, while the bounds test suggests the existence of co-integration among the variables. By implication, an increase in entrepreneurship significantly improves economic growth, and it reduces unemployment in both the short-run and the long-run. Besides, institutional quality proxied by the control of corruption, political stability, and government effectiveness significantly mediates the interaction between entrepreneurship and macroeconomic performance. This study concludes that improved institutional quality enhances the effect of entrepreneurship on economic growth and unemployment in Nigeria, and it recommends an improvement in Nigeria’s institutional quality because it can jeopardise or augment the effect of entrepreneurship on macroeconomic performance.Keywords: entrepreneurship, institutional quality, unemployment, gross domestic product, Nigeria
Procedia PDF Downloads 14213279 Single Carrier Frequency Domain Equalization Design to Cope with Narrow Band Jammer
Authors: So-Young Ju, Sung-Mi Jo, Eui-Rim Jeong
Abstract:
In this paper, based on the conventional single carrier frequency domain equalization (SC-FDE) structure, we propose a new SC-FDE structure to cope with narrowband jammer. In the conventional SC-FDE structure, channel estimation is performed in the time domain. When a narrowband jammer exists, time-domain channel estimation is very difficult due to high power jamming interference, which degrades receiver performance. To relieve from this problem, a new SC-FDE frame is proposed to enable channel estimation under narrow band jamming environments. In this paper, we proposed a modified SC-FDE structure that can perform channel estimation in the frequency domain and verified the performance via computer simulation.Keywords: channel estimation, jammer, pilot, SC-FDE
Procedia PDF Downloads 47813278 Control Strategy for a Solar Vehicle Race
Authors: Francois Defay, Martim Calao, Jean Francois Dassieu, Laurent Salvetat
Abstract:
Electrical vehicles are a solution for reducing the pollution using green energy. The shell Eco-Marathon provides rules in order to minimize the battery use for the race. The use of solar panel combined with efficient motor control and race strategy allow driving a 60kg vehicle with one pilot using only the solar energy in the best case. This paper presents a complete modelization of a solar vehicle used for the shell eco-marathon. This project called Helios is cooperation between non-graduated students, academic institutes, and industrials. The prototype is an ultra-energy-efficient vehicle based on one-meter square solar panel and an own-made brushless controller to optimize the electrical part. The vehicle is equipped with sensors and embedded system to provide all the data in real time in order to evaluate the best strategy for the course. A complete modelization with Matlab/Simulink is used to test the optimal strategy to increase the global endurance. Experimental results are presented to validate the different parts of the model: mechanical, aerodynamics, electrical, solar panel. The major finding of this study is to provide solutions to identify the model parameters (Rolling Resistance Coefficient, drag coefficient, motor torque coefficient, etc.) by means of experimental results combined with identification techniques. One time the coefficients are validated, the strategy to optimize the consumption and the average speed can be tested first in simulation before to be implanted for the race. The paper describes all the simulation and experimental parts and provides results in order to optimize the global efficiency of the vehicle. This works have been started four years ago and evolved many students for the experimental and theoretical parts and allow to increase the knowledge on electrical self-efficient vehicle.Keywords: electrical vehicle, endurance, optimization, shell eco-marathon
Procedia PDF Downloads 27013277 On Transferring of Transient Signals along Hollow Waveguide
Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener
Abstract:
In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon
Procedia PDF Downloads 33413276 Wind Resource Classification and Feasibility of Distributed Generation for Rural Community Utilization in North Central Nigeria
Authors: O. D. Ohijeagbon, Oluseyi O. Ajayi, M. Ogbonnaya, Ahmeh Attabo
Abstract:
This study analyzed the electricity generation potential from wind at seven sites spread across seven states of the North-Central region of Nigeria. Twenty-one years (1987 to 2007) wind speed data at a height of 10m were assessed from the Nigeria Meteorological Department, Oshodi. The data were subjected to different statistical tests and also compared with the two-parameter Weibull probability density function. The outcome shows that the monthly average wind speeds ranged between 2.2 m/s in November for Bida and 10.1 m/s in December for Jos. The yearly average ranged between 2.1m/s in 1987 for Bida and 11.8 m/s in 2002 for Jos. Also, the power density for each site was determined to range between 29.66 W/m2 for Bida and 864.96 W/m2 for Jos, Two parameters (k and c) of the Weibull distribution were found to range between 2.3 in Lokoja and 6.5 in Jos for k, while c ranged between 2.9 in Bida and 9.9m/s in Jos. These outcomes points to the fact that wind speeds at Jos, Minna, Ilorin, Makurdi and Abuja are compatible with the cut-in speeds of modern wind turbines and hence, may be economically feasible for wind-to-electricity at and above the height of 10 m. The study further assessed the potential and economic viability of standalone wind generation systems for off-grid rural communities located in each of the studied sites. A specific electric load profile was developed to suite hypothetic communities, each consisting of 200 homes, a school and a community health center. Assessment of the design that will optimally meet the daily load demand with a loss of load probability (LOLP) of 0.01 was performed, considering 2 stand-alone applications of wind and diesel. The diesel standalone system (DSS) was taken as the basis of comparison since the experimental locations have no connection to a distribution network. The HOMER® software optimizing tool was utilized to determine the optimal combination of system components that will yield the lowest life cycle cost. Sequel to the analysis for rural community utilization, a Distributed Generation (DG) analysis that considered the possibility of generating wind power in the MW range in order to take advantage of Nigeria’s tariff regime for embedded generation was carried out for each site. The DG design incorporated each community of 200 homes, freely catered for and offset from the excess electrical energy generated above the minimum requirement for sales to a nearby distribution grid. Wind DG systems were found suitable and viable in producing environmentally friendly energy in terms of life cycle cost and levelised value of producing energy at Jos ($0.14/kWh), Minna ($0.12/kWh), Ilorin ($0.09/kWh), Makurdi ($0.09/kWh), and Abuja ($0.04/kWh) at a particluar turbine hub height. These outputs reveal the value retrievable from the project after breakeven point as a function of energy consumed Based on the results, the study demonstrated that including renewable energy in the rural development plan will enhance fast upgrade of the rural communities.Keywords: wind speed, wind power, distributed generation, cost per kilowatt-hour, clean energy, North-Central Nigeria
Procedia PDF Downloads 51813275 Alcohol and Soda Consumption of University Students in Manila
Authors: Alexi Colleen F. Lim, Inna Felicia I. Agoncillo, Quenniejoy T. Dizon, Jennifer Joyce T. Eti, Carlota Aileen H. Monares, Neil Roy B. Rosales, Joshua F. Santillan, Alyssa Francesca D. S. Tanchuling, Josefina A. Tuazon, Mary Joan Therese C. Valera-Kourdache
Abstract:
Majority of leading causes of mortality in the Philippines are NCDs, which are preventable through control of known risk factors such as smoking, obesity, physical inactivity, and alcohol. Sugar-sweetened beverages such as soda and energy drinks also contribute to NCD risk and are of concern particularly for youth. This study provides baseline data on beverage consumption of university students in Manila with the focus on alcohol and soda. It further aims to identify factors affecting consumption. Specific objectives include: (1) to describe beverage consumption practices of university students in Manila; and (2) to determine factors promoting excessive consumption of alcohol and soda including demographic characteristics, attitude, interpersonal and environmental variables. Methods: The study employed correlational design with randomly selected students from two universities in Manila. Students 18 years or older who agreed to participate were included after obtaining ethical clearance. The study had two instruments: (1) World Health Organization’s Alcohol Use Disorders Identification Test (AUDIT) was used with permission, to determine excessive alcohol consumption; and (2) a questionnaire to obtain information regarding soda and energy drink consumption. Results: Out of 400 students surveyed, 70% were female and 78.75% were 18-20 years old (mean=19.79; SD=3.76). Among them, 51.50% consumed alcohol, with 30.10% excessive drinkers. Soda consumption is 91.50% with 37.70% excessive consumers. For energy drinks, 36.75% consume this and only 4.76% drink excessively. Using logistic regression, students who were more likely to be excessive alcohol drinkers belonged to non-health courses (OR=2.21) and purchased alcohol from bars (OR=7.84). Less likely to drink excessively are students who do not drink due to stress (OR=0.05) and drink when it is accessible (OR=0.02). Excessive soda consumption was less likely for female students (OR=0.28), those who drink when it is accessible (OR=0.14), do not drink soda during stressful situations (OR=0.19), and do not use soda as hangover treatment (OR=0.15). Conclusion: Excessive alcohol consumption was greater among students in Manila (30.10%) than in US (20%). Drinking alcohol with friends was not related to excessive consumption but availability in bars was. It is expected that health sciences students are less likely to engage in excessive alcohol as they are more aware of its ill effects. Prevalence of soda consumption in Manila (91.50%) is markedly higher compared to 24.5% in the US. These findings can inform schools in developing appropriate health education interventions and policies. For greater understanding of these behaviors and factors, further studies are recommended to explore knowledge and other factors that may promote excessive consumption.Keywords: alcohol consumption, beverage consumption, energy drinks consumption, soda consumption, university students
Procedia PDF Downloads 28213274 The Impact of Bitcoin on Stock Market Performance
Authors: Oliver Takawira, Thembi Hope
Abstract:
This study will analyse the relationship between Bitcoin price movements and the Johannesburg stock exchange (JSE). The aim is to determine whether Bitcoin price movements affect the stock market performance. As crypto currencies continue to gain prominence as a safe asset during periods of economic distress, this raises the question of whether Bitcoin’s prosperity could affect investment in the stock market. To identify the existence of a short run and long run linear relationship, the study will apply the Autoregressive Distributed Lag Model (ARDL) bounds test and a Vector Error Correction Model (VECM) after testing the data for unit roots and cointegration using the Augmented Dicker Fuller (ADF) and Phillips-Perron (PP). The Non-Linear Auto Regressive Distributed Lag (NARDL) will then be used to check if there is a non-linear relationship between bitcoin prices and stock market prices.Keywords: bitcoin, stock market, interest rates, ARDL
Procedia PDF Downloads 11213273 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites
Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu
Abstract:
Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.Keywords: textile reinforced composite, cement, fine grained concrete, latex, redispersible powder
Procedia PDF Downloads 25913272 Performance Analysis of 180 nm Low Voltage Low Power CMOS OTA for High Frequency Application
Authors: D. J. Dahigaonkar, D. G. Wakde
Abstract:
The performance analysis of low voltage low power CMOS OTA is presented in this paper. The differential input single output OTA is simulated in 180nm CMOS process technology. The simulation results indicate high bandwidth of the order of 7.04GHz with 0.766mW power consumption and transconductance of -71.20dB. The total harmonic distortion for 100mV input at a frequency of 1MHz is found to be 2.3603%. In addition to this, to establish comparative analysis of designed OTA and analyze effect of technology scaling, the differential input single output OTA is further simulated using 350nm CMOS process technology and the comparative analysis is presented in this paper.Keywords: Operational Transconductance Amplifier, Total Harmonic Distortions, low voltage/low power, power dissipation
Procedia PDF Downloads 41413271 Investigation of Biochar from Banana Peel
Authors: Anurita Selvarajoo, Svenja Hanson
Abstract:
Growing energy needs and increasing environmental issues are creating awareness for alternative energy which substitutes the non-renewable and polluting fossil fuels. Agricultural wastes are a good feedstock for biochar production through the pyrolysis process. There is potential to generate solid fuel from agricultural wastes, as there are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study on the pyrolysis of banana peel. The effects of pyrolysis temperatures on the yield of biochar from the banana peel were investigated. Banana peel was pyrolysed in a horizontal tubular reactor under inert atmosphere by varying the temperatures between 300 and 700 0C. With increasing temperature, the total biochar yield decreased with increased heating value. It was found that the pyrolysis temperature had major effect on the yield of biochar product. It also exerted major influence on the heating value and C,H and O composition. The obtained biochar ranged between 31.9 to 56.7 %wt, at different pyrolysis temperatures. The optimum biochar yield was obtained at 325 0C. Biochar yield obtained at optimum temperature was 47 % wt with a heating value of 25.9 MJ kg-1. The study has been performed in order to demonstrate that agricultural wastes like banana peel are also important source of solid fuel.Keywords: agricultural Wastes, banana peel, biochar, pyrolysis
Procedia PDF Downloads 30013270 Naphtha Catalytic Reform: Modeling and Simulation of Unity
Authors: Leal Leonardo, Pires Carlos Augusto de Moraes, Casiraghi Magela
Abstract:
In this work were realized the modeling and simulation of the catalytic reformer process, of ample form, considering all the equipment that influence the operation performance. Considered it a semi-regenerative reformer, with four reactors in series intercalated with four furnaces, two heat exchanges, one product separator and one recycle compressor. A simplified reactional system was considered, involving only ten chemical compounds related through five reactions. The considered process was the applied to aromatics production (benzene, toluene, and xylene). The models developed to diverse equipment were interconnecting in a simulator that consists of a computer program elaborate in FORTRAN 77. The simulation of the global model representative of reformer unity achieved results that are compatibles with the literature ones. It was then possible to study the effects of operational variables in the products concentration and in the performance of the unity equipment.Keywords: catalytic reforming, modeling, simulation, petrochemical engineering
Procedia PDF Downloads 52013269 Estimating Big Five Personality Expressions with a Tiered Information Framework
Authors: Laura Kahn, Paul Rodrigues, Onur Savas, Shannon Hahn
Abstract:
An empirical understanding of an individual's personality expression can have a profound impact on organizations seeking to strengthen team performance and improve employee retention. A team's personality composition can impact overall performance. Creating a tiered information framework that leverages proxies for a user's social context and lexical and linguistic content provides insight into location-specific personality expression. We leverage the layered framework to examine domain-specific, psychological, and lexical cues within social media posts. We apply DistilBERT natural language transfer learning models with real world data to examine the relationship between Big Five personality expressions of people in Science, Technology, Engineering and Math (STEM) fields.Keywords: big five, personality expression, social media analysis, workforce development
Procedia PDF Downloads 14613268 The Path to Ruthium: Insights into the Creation of a New Element
Authors: Goodluck Akaoma Ordu
Abstract:
Ruthium (Rth) represents a theoretical superheavy element with an atomic number of 119, proposed within the context of advanced materials science and nuclear physics. The conceptualization of Rth involves theoretical frameworks that anticipate its atomic structure, including a hypothesized stable isotope, Rth-320, characterized by 119 protons and 201 neutrons. The synthesis of Ruthium (Rth) hinges on intricate nuclear fusion processes conducted in state-of-the-art particle accelerators, notably utilizing Calcium-48 (Ca-48) as a projectile nucleus and Einsteinium-253 (Es-253) as a target nucleus. These experiments aim to induce fusion reactions that yield Ruthium isotopes, such as Rth-301, accompanied by neutron emission. Theoretical predictions outline various physical and chemical properties attributed to Ruthium (Rth). It is envisaged to possess a high density, estimated at around 25 g/cm³, with melting and boiling points anticipated to be exceptionally high, approximately 4000 K and 6000 K, respectively. Chemical studies suggest potential oxidation states of +2, +3, and +4, indicating a versatile reactivity, particularly with halogens and chalcogens. The atomic structure of Ruthium (Rth) is postulated to feature an electron configuration of [Rn] 5f^14 6d^10 7s^2 7p^2, reflecting its position in the periodic table as a superheavy element. However, the creation and study of superheavy elements like Ruthium (Rth) pose significant challenges. These elements typically exhibit very short half-lives, posing difficulties in their stabilization and detection. Research efforts are focused on identifying the most stable isotopes of Ruthium (Rth) and developing advanced detection methodologies to confirm their existence and properties. Specialized detectors are essential in observing decay patterns unique to Ruthium (Rth), such as alpha decay or fission signatures, which serve as key indicators of its presence and characteristics. The potential applications of Ruthium (Rth) span across diverse technological domains, promising innovations in energy production, material strength enhancement, and sensor technology. Incorporating Ruthium (Rth) into advanced energy systems, such as the Arc Reactor concept, could potentially amplify energy output efficiencies. Similarly, integrating Ruthium (Rth) into structural materials, exemplified by projects like the NanoArc gauntlet, could bolster mechanical properties and resilience. Furthermore, Ruthium (Rth)--based sensors hold promise for achieving heightened sensitivity and performance in various sensing applications. Looking ahead, the study of Ruthium (Rth) represents a frontier in both fundamental science and applied research. It underscores the quest to expand the periodic table and explore the limits of atomic stability and reactivity. Future research directions aim to delve deeper into Ruthium (Rth)'s atomic properties under varying conditions, paving the way for innovations in nanotechnology, quantum materials, and beyond. The synthesis and characterization of Ruthium (Rth) stand as a testament to human ingenuity and technological advancement, pushing the boundaries of scientific understanding and engineering capabilities. In conclusion, Ruthium (Rth) embodies the intersection of theoretical speculation and experimental pursuit in the realm of superheavy elements. It symbolizes the relentless pursuit of scientific excellence and the potential for transformative technological breakthroughs. As research continues to unravel the mysteries of Ruthium (Rth), it holds the promise of reshaping materials science and opening new frontiers in technological innovation.Keywords: superheavy element, nuclear fusion, bombardment, particle accelerator, nuclear physics, particle physics
Procedia PDF Downloads 4413267 Bio-Hub Ecosystems: Investment Risk Analysis Using Monte Carlo Techno-Economic Analysis
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, new methodologies to analyze investment risk are needed. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. This study modeled the economics and risk strategies of cradle-to-cradle linkages to incorporate the value-chain effects on capital/operational expenditures and investment risk reductions using a proprietary techno-economic model that incorporates investment risk scenarios utilizing the Monte Carlo methodology. The study calculated the sequential increases in profitability for each additional co-host on an operating forestry-based biomass energy plant in West Enfield, Maine. Phase I starts with the base-line of forestry biomass to electricity only and was built up in stages to include co-hosts of a greenhouse and a land-based shrimp farm. Phase I incorporates CO2 and heat waste streams from the operating power plant in an analysis of lowering and stabilizing the operating costs of the agriculture and aquaculture co-hosts. Phase II analysis incorporated a jet-fuel biorefinery and its secondary slip-stream of biochar which would be developed into two additional bio-products: 1) A soil amendment compost for agriculture and 2) A biochar effluent filter for the aquaculture. The second part of the study applied the Monte Carlo risk methodology to illustrate how co-location derisks investment in an integrated Bio-Hub versus individual investments in stand-alone projects of energy, agriculture or aquaculture. The analyzed scenarios compared reductions in both Capital and Operating Expenditures, which stabilizes profits and reduces the investment risk associated with projects in energy, agriculture, and aquaculture. The major findings of this techno-economic modeling using the Monte Carlo technique resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. In 2018, the site was designated as an economic opportunity zone as part of a Federal Program, which allows for Capital Gains tax benefits for investments on the site. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. The Bio-hub Ecosystems techno-economic analysis model is a critical model to expedite new standards for investments in circular zero-waste projects. Profitable projects will expedite adoption and advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable Bio-Economy paradigm that supports local and rural communities.Keywords: bio-economy, investment risk, circular design, economic modelling
Procedia PDF Downloads 10413266 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications
Abstract:
Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate
Procedia PDF Downloads 15713265 Effect of Feeding Camel Rumen Content on Growth Performance and Haematological Parameters of Broiler Chickens under Semi-Arid Condition
Authors: Alhaji Musa Abdullahi, Usman Abdullahi, Adamu Adamu, Aminu Maidala
Abstract:
One hundred and fifty (150) day old chicks were randomly allocated into five dietary treatments birds and each treatment where replicated twice in groups of fifteen birds in each replicate. Camel rumen content (CRC) was included in the diets of broiler at 0, 5, 10, 15, and 20% to replace maize and groundnut cake to evaluate the effect on the performance and hematological parameters at the starter and finisher phase. A completely randomized design was used and 600g of feed was given daily and water was given ad libitum. At the starter phase, the daily weight gain and feed conversion ratio were significantly affected by the test ingredients, although T1(0% CRC) which serve as a control, were similar with T2(5% CRC), T3(10% CRC), and T4(15% CRC), while the lowest value was recorded in T5(20% CRC). The result indicates that up to 15% (CRC) level can be included in the starter diet to replace maize and groundnut cake without any effect on the performance. However, at the finisher phase, the daily feed intake, daily weight gain and feed conversion ratio show no significant (F>0.05) difference among the dietary treatments. Similarly, Packed cell volume (PCV), Red Blood Cell (RBC), White Blood Cell (WBC), Mean Corpuscular Volume (MCV), and Mean Corpuscular Haemoglobin (MCH) also did not differ significantly (F>0.05) among the dietary treatments while hemoglobin (Hb) and Mean Corpuscular Haemoglobin Concentration (MCHC) differs significantly. The differential counts of eosinophils, heterophils, and lymphocytes differ significantly among the treatment groups, while that of basophils and monocytes shows no significant difference among the treatment groups. This means up to 20% CRC inclusion level can be used to replaced maize and groundnut cake in the finisher diet without any adverse effect on the performance and hematological parameters of the chickens.Keywords: camel, rumen content, growth, hematology
Procedia PDF Downloads 22113264 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel
Authors: Sanjeev Kumar, S. K. Nath
Abstract:
Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.Keywords: HAZ simulation, mechanical properties, peak temperature, ship hull steel, weldability
Procedia PDF Downloads 56413263 Efficient Iterative V-BLAST Detection Technique in Wireless Communication System
Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song
Abstract:
Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMOOFDM system is important issue. In this paper, efficient iterative VBLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6 % less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRDM, DFE, iterative scheme, channel condition
Procedia PDF Downloads 53413262 Voltage Controlled Ring Oscillator for RF Applications in 0.18 µm CMOS Technology
Authors: Mohammad Arif Sobhan Bhuiyan, Zainal Abidin Nordin, Mamun Bin Ibne Reaz
Abstract:
A compact and power efficient high performance Voltage Controlled Oscillator (VCO) is a must in analog and digital circuits especially in the communication system, but the best trade-off among the performance parameters is a challenge for researchers. In this paper, a design of a compact 3-stage differential voltage controlled ring oscillator (VCRO) with low phase noise, low power and higher tuning bandwidth is proposed in 0.18 µm CMOS technology. The VCRO is designed with symmetric load and positive feedback techniques to achieve higher gain and minimum delay. The proposed VCRO can operate at tuning range of 3.9-5.0 GHz at 1.6 V supply voltage. The circuit consumes only 1.0757 mW of power and produces -129 dbc/Hz. The total active area of the proposed VCRO is only 11.74 x 37.73 µm2. Such a VCO can be the best choice for compact and low-power RF applications.Keywords: CMOS, VCO, VCRO, oscillator
Procedia PDF Downloads 48313261 A Soft Error Rates (SER) Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers
Authors: Man Li, Wanting Zhou, Lei Li
Abstract:
Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of the combinational logic circuit. The existing research on soft error rates (SER) of the combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rate evaluation method based on LET. In this paper, the authors analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on the LET. Based on this model, the error rate of test circuit ISCAS'85 is calculated. The effectiveness of the model is proved by comparing it with previous experiments.Keywords: communication satellite, pulse width, soft error rates, LET
Procedia PDF Downloads 17613260 Improve Heat Pipes Thermal Performance In H-VAC Systems Using CFD Modeling
Authors: A. Ghanami, M.Heydari
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.used in the abstract.Keywords: Heat pipe, HVAC system, Grooved Heat pipe, Heat pipe limits.
Procedia PDF Downloads 48613259 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach
Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh
Abstract:
Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.Keywords: frequency control, islanded microgrid, multi-agent system, load shedding
Procedia PDF Downloads 46913258 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 37713257 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress
Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher
Abstract:
Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.Keywords: green roof, plant cover, plant drought stress, rainfall retention
Procedia PDF Downloads 11813256 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences
Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao
Abstract:
Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern
Procedia PDF Downloads 35813255 Axisymmetric Rotating Flow over a Permeable Surface with Heat and Mass Transfer Effects
Authors: Muhammad Faraz, Talat Rafique, Jang Min Park
Abstract:
In this article, rotational flow above a permeable surface with a variable free stream angular velocity is considered. Main interest is to solve the associated heat/mass transport equations under different situations. Firstly, heat transport phenomena occurring in generalized vortex flow are analyzed under two altered heating processes, namely, the (i) prescribed surface temperature and (ii) prescribed heat flux. The vortex motion imposed at infinity is assumed to follow a power-law form 〖(r/r_0)〗^((2n-1)) where r denotes the radial coordinate, r_0 the disk radius, and n is a power-law parameter. Assuming a similar solution, the governing Navier-Stokes equations transform into a set of coupled ODEs which are treated numerically for the aforementioned thermal conditions. Secondly, mass transport phenomena accompanied by activation energy are incorporated into the generalized vortex flow situation. After finding self-similar equations, a numerical solution is furnished by using MATLAB's built-in function bvp4c.Keywords: bödewadt flow, vortex flow, rotating flows, prescribed heat flux, permeable surface, activation energy
Procedia PDF Downloads 11913254 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)
Procedia PDF Downloads 36313253 Influence of Bragg Reflectors Pairs on Resonance Characteristics of Solidly Mounted Resonators
Authors: Vinita Choudhary
Abstract:
The solidly mounted resonator (SMR) is a bulk acoustic wave-based device consisting of a piezoelectric layer sandwiched between two electrodes upon Bragg reflectors, which then are attached to a substrate. To transform the effective acoustic impedance of the substrate to a near zero value, the Bragg reflectors are composed of alternating high and low acoustic impedance layers of quarter-wavelength thickness. In this work presents the design and investigation of acoustic Bragg reflectors (ABRs) for solidly mounted bulk acoustic wave resonators through analysis and simulation. This performance of the resonator is analyzed using 1D Mason modeling. The performance parameters are the effect of Bragg pairs number on transmissivity, reflectivity, insertion loss, the electromechanical and quality factor of the 5GHz operating resonator.Keywords: bragg reflectors, SMR, insertion loss, quality factor
Procedia PDF Downloads 104