Search results for: lean production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7670

Search results for: lean production

1640 Conceptualizing Clashing Values in the Field of Media Ethics

Authors: Saadia Izzeldin Malik

Abstract:

Lack of ethics is the crisis of the 21-century. Today’s global world is filled with economic, political, environmental, media/communication, and social crises that all generated by the eroding fabric of ethics and moral values that guide human’s decisions in all aspects of live. Our global world is guided by liberal western democratic principles and liberal capitalist economic principles that define and reinforce each other. In economic terms, capitalism has turned world economic systems into one market place of ideas and products controlled by big multinational corporations that not only determine the conditions and terms of commodity production and commodity exchange between countries, but also transform the political economy of media systems around the globe. The citizen (read the consumer) today is the target of persuasion by all types of media at a time when her/his interests should be, ethically and in principle, the basic significant factor in the selection of media content. It is very important in this juncture of clashing media values –professional and commercial- and wide spread ethical lapses of media organizations and media professionals to think of a perspective to theorize these conflicting values within a broader framework of media ethics. Thus, the aim of this paper is to, epistemologically, bring to the center a perspective on media ethics as a basis for reconciliation of clashing values of the media. The paper focuses on conflicting ethical values in current media debate; namely ownership of media vs. press freedom, individual right for privacy vs. public right to know, and global western consumerism values vs. media values. The paper concludes that a framework to reconcile conflicting values of media ethics should focus on the “individual” journalist and his/her moral development as well as focus on maintaining ethical principles of the media as an institution with a primary social responsibility for the “public” it serves.

Keywords: ethics, media, journalism, social responsibility, conflicting values, global

Procedia PDF Downloads 495
1639 Optimization of Beneficiation Process for Upgrading Low Grade Egyptian Kaolin

Authors: Nagui A. Abdel-Khalek, Khaled A. Selim, Ahmed Hamdy

Abstract:

Kaolin is naturally occurring ore predominantly containing kaolinite mineral in addition to some gangue minerals. Typical impurities present in kaolin ore are quartz, iron oxides, titanoferrous minerals, mica, feldspar, organic matter, etc. The main coloring impurity, particularly in the ultrafine size range, is titanoferrous minerals. Kaolin is used in many industrial applications such as sanitary ware, table ware, ceramic, paint, and paper industries, each of which should be of certain specifications. For most industrial applications, kaolin should be processed to obtain refined clay so as to match with standard specifications. For example, kaolin used in paper and paint industries need to be of high brightness and low yellowness. Egyptian kaolin is not subjected to any beneficiation process and the Egyptian companies apply selective mining followed by, in some localities, crushing and size reduction only. Such low quality kaolin can be used in refractory and pottery production but not in white ware and paper industries. This paper aims to study the amenability of beneficiation of an Egyptian kaolin ore of El-Teih locality, Sinai, to be suitable for different industrial applications. Attrition scrubbing and classification followed by magnetic separation are applied to remove the associated impurities. Attrition scrubbing and classification are used to separate the coarse silica and feldspars. Wet high intensity magnetic separation was applied to remove colored contaminants such as iron oxide and titanium oxide. Different variables affecting of magnetic separation process such as solid percent, magnetic field, matrix loading capacity, and retention time are studied. The results indicated that substantial decrease in iron oxide (from 1.69% to 0.61% ) and TiO2 (from 3.1% to 0.83%) contents as well as improving iso-brightness (from 63.76% to 75.21% and whiteness (from 79.85% to 86.72%) of the product can be achieved.

Keywords: Kaolin, titanoferrous minerals, beneficiation, magnetic separation, attrition scrubbing, classification

Procedia PDF Downloads 361
1638 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

Authors: Morteza Malek Yarand, Hadi Saebi Monfared

Abstract:

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

Keywords: mechanical force gauge, mold, reshaped fruit, square watermelon

Procedia PDF Downloads 274
1637 Useful Characteristics of Pleurotus Mushroom Hybrids

Authors: Suvalux Chaichuchote, Ratchadaporn Thonghem

Abstract:

Pleurotus mushroom is one of popular edible mushrooms in Thailand. It is much favored by consumers due to its delicious taste and high nutrition. It is commonly used as an ingredient in several dishes. The commercially cultivated strain grown in most farms is the Pleurotus sp., Hed Bhutan, that is widely distributed to mushroom farms throughout the country and can be cultivated almost all year round. However, it demands different cultivated strains from mushroom growers, therefore, the improving mushroom strains should be done to their benefits. In this study, we used a di-mon mating method to hybrid production from Hed Bhutan (P-3) as dikaryon material and monokaryotic mycelium were isolated from basidiospores of other three Pleurotus sp. by single spore isolation. The 3 hybrids: P-3XSA-6, P-3XSB-24 and P-3XSE-5 were recognized from the 12 hybridized successfully. They were appropriate hybridized in terms of fruiting body performance in the three time cycles of cultivation such as the number of days until growing, time for pinning, color and shape of fruiting bodies and yield. For genetic study, genomic DNAs of both Hed Bhutan (P-3) and three hybrids were extracted. A couple of primer ITS1 and ITS4 were used to amplify the gene coding for ITS1, ITS2 and 5.8S rRNA. The similarities between these amplified genes and databases of DNA revealed that Hed Bhutan (P-3) was the Pleurotus pulmonarius as well as P-3XSA-6, P-3XSB-24 and P-3XSE-5 hybrids. Furthermore, Hed Bhutan (P3) and three hybrids were distributed to 3 small-scale farms, with mushroom farming experience, in the countryside. To address this, one hundred and twenty mushroom bags of each strain were supplied to them. The findings, by interview, indicated two mushroom farmers were satisfied with P-3XSA-6 hybrid and P-3XSB-24 hybrid, thanks to their simultaneous fruiting time and good yield. While the other was satisfied with P-3XSB-24 hybrid due to its good yield and P-3XSE-5 hybrids thanks to its gradually fruiting body, benefiting in frequent harvest. Overall, farmers adopted all hybrids to grow as commercially cultivated strains as well as Hed Bhutan (P-3) strain.

Keywords: dikaryon, monokaryon, pleurotus, strain improvement

Procedia PDF Downloads 254
1636 Effectiveness of Climate Smart Agriculture in Managing Field Stresses in Robusta Coffee

Authors: Andrew Kirabira

Abstract:

This study is an investigation into the effectiveness of climate-smart agriculture (CSA) technologies in improving productivity through managing biotic and abiotic stresses in the coffee agroecological zones of Uganda. The motive is to enhance farmer livelihoods. The study was initiated as a result of the decreasing productivity of the crop in Uganda caused by the increasing prevalence of pests, diseases and abiotic stresses. Despite 9 years of farmers’ application of CSA, productivity has stagnated between 700kg -800kg/ha/yr which is only 26% of the 3-5tn/ha/yr that CSA is capable of delivering if properly applied. This has negatively affected the incomes of the 10.6 million people along the crop value chain which has in essence affected the country’s national income. In 2019/20 FY for example, Uganda suffered a deficit of $40m out of singularly the increasing incidence of one pest; BCTB. The amalgamation of such trends cripples the realization of SDG #1 and #13 which are the eradication of poverty and mitigation of climate change, respectively. In probing CSA’s effectiveness in curbing such a trend, this study is guided by the objectives of; determining the existing farmers’ knowledge and perceptions of CSA amongst the coffee farmers in the diverse coffee agro-ecological zones of Uganda; examining the relationship between the use of CSA and prevalence of selected coffee pests, diseases and abiotic stresses; ascertaining the difference in the market organization and pricing between conventionally and CSA produced coffee; and analyzing the prevailing policy environment concerning the use of CSA in coffee production. The data collection research design is descriptive in nature; collecting data from farmers and agricultural extension workers in the districts of Ntungamo, Iganga and Luweero; each of these districts representing a distinct coffee agroecological zone. Policy custodian officers at district, cooperatives and at the crop’s overseeing national authority were also interviewed.

Keywords: climate change, food security, field stresses, Productivity

Procedia PDF Downloads 60
1635 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 222
1634 Biochar and Food Security in Central Uganda

Authors: Nataliya Apanovich, Mark Wright

Abstract:

Uganda is among the poorest but fastest growing populations in the world. Its annual population growth of 3% puts additional stress through land fragmentation, agricultural intensification, and deforestation on already highly weathered tropical (Ferralsol) soils. All of these factors lead to decreased agricultural yields and consequently diminished food security. The central region of Uganda, Buganda Kingdom, is especially vulnerable in terms of food security as its high population density coupled with mismanagement of natural resources led to gradual loss of its soil and even changes in microclimate. These changes are negatively affecting livelihoods of smallholder farmers who comprise 80% of all population in Uganda. This research focuses on biochar for soil remediation in Masaka District, Uganda. If produced on a small scale from locally sourced materials, biochar can increase the quality of soil in a cost and time effective manner. To assess biochar potential, 151 smallholder farmers were interviewed on the types of crops grown, agricultural residues produced and their use, as well as on attitudes towards biochar use and its production on a small scale. The interviews were conducted in 7 sub-counties, 32 parishes, and 92 villages. The total farmland covered by the study was 606.2 kilometers. Additional information on the state of agricultural development and environmental degradation in the district was solicited from four local government officials via informal interviews. This project has been conducted in collaboration with the international agricultural research institution, Makerere University in Kampala, Uganda. The results of this research can have implications on the way farmers perceive the value of their agricultural residues and what they decide to do with them. The underlying objective is to help smallholders in degraded soils increase their agricultural yields through the use of biochar without diverting the already established uses of agricultural residues to a new soil management practice.

Keywords: agricultural residues, biochar, central Uganda, food security, soil erosion, soil remediation

Procedia PDF Downloads 284
1633 Microbial Assessment of Dairy Byproducts in Albania as a Basis for Consumer Safety

Authors: Klementina Puto, Ermelinda Nexhipi, Evi Llaka

Abstract:

Dairy by-products are a fairly good environment for microorganisms due to their composition for their growth. Microbial populations have a significant impact in the production of cheese, butter, yogurt, etc. in terms of their organoleptic quality and at the same time some also cause their breakdown. In this paper, the microbiological contamination of soft cheese, butter and yogurt produced in the country (domestic) and imported is assessed, as an indicator of hygiene with impact on public health. The study was extended during September 2018-June 2019 and was divided into three periods, September-December, January-March, and April-June. During this study, a total of 120 samples were analyzed, of which 60 samples of cheese and butter locally produced, and 60 samples of imported soft cheese and butter productions. The microbial indicators analyzed are Staphylococcus aureus and E. coli. Analyzes have been conducted at the Food Safety Laboratory (FSIV) in Tirana in accordance with EU Regulation 2073/2005. Sampling was performed according to the specific international standards for these products (ISO 6887 and ISO 8261). Sampling and transport of samples were done under sterile conditions. Also, coding of samples was done to preserve the anonymity of subjects. After the analysis, the country's soft cheese products compared to imports were more contaminated with S. aureus and E. coli. Meanwhile, the imported butter samples that were analyzed, resulted within norms compared to domestic ones. Based on the results, it was concluded that the microbial quality of samples of cheese, butter and yogurt analyzed remains a real problem for hygiene in Albania. The study will also serve business operators in Albania to improve their work to ensure good hygiene on the basis of the HACCP plan and to provide a guarantee of consumer health.

Keywords: consumer, health, dairy, by-products, microbial

Procedia PDF Downloads 129
1632 Developing Urban Design and Planning Approach to Enhance the Efficiency of Infrastructure and Public Transportation in Order to Reduce GHG Emissions

Authors: A. Rostampouryasouri, A. Maghoul, S. Tahersima

Abstract:

The rapid growth of urbanization and the subsequent increase in population in cities have resulted in the destruction of the environment to cater to the needs of citizens. The industrialization of urban life has led to the production of pollutants, which has significantly contributed to the rise of air pollution. Infrastructure can have both positive and negative effects on air pollution. The effects of infrastructure on air pollution are complex and depend on various factors such as the type of infrastructure, location, and context. This study examines the effects of infrastructure on air pollution, drawing on a range of empirical evidence from Iran and China. Our paper focus for analyzing the data is on the following concepts: 1. Urban design and planning principles and practices 2. Infrastructure efficiency and optimization strategies 3. Public transportation systems and their environmental impact 4. GHG emissions reduction strategies in urban areas 5. Case studies and best practices in sustainable urban development This paper employs a mixed methodology approach with a focus on developmental and applicative purposes. The mixed methods approach combines both quantitative and qualitative research methods to provide a more comprehensive understanding of the research topic. A group of 20 architectural specialists and experts who are proficient in the field of research, design, and implementation of green architecture projects were interviewed in a systematic and purposeful manner. The research method was based on content analysis using MAXQDA2020 software. The findings suggest that policymakers and urban planners should consider the potential impacts of infrastructure on air pollution and take measures to mitigate negative effects while maximizing positive ones. This includes adopting a nature-based approach to urban planning and infrastructure development, investing in information infrastructure, and promoting modern logistic transport infrastructure.

Keywords: GHG emissions, infrastructure efficiency, urban development, urban design

Procedia PDF Downloads 80
1631 The Phenomenon of Biofilm Formation and the Subsequent Management of Foodborne Pathogenic Bacteria

Authors: Raana Babadi Fathipour

Abstract:

Biofilms, those intricate structures of microbial aggregation that emerge as microorganisms adhere to animate or inanimate surfaces, possess an innate capacity to shield their inhabitants from adversities within the environment whilst fortifying their endurance against antimicrobial agents. This remarkable aspect facilitates the persistence and virulence of said microorganisms, establishing biofilm formation as an integral component of bacterial survival mechanisms. However, should foodborne pathogens adopt this mode of existence, the potentiality for foodborne disease infections becomes alarmingly intensified—an alarming prospect that harbors significant public health hazards and engenders deleterious economic ramifications. Thus, due to these consequences lurking on the horizon, extensive research concentrating upon comprehending biofilms and devising efficacious removal strategies assumes a position imbued with paramount importance within the realm of the food industry. The problem of food waste resulting from spoilage in the food industry continues to present a widespread challenge to both environmental sustainability and the security of our food supplies. In this comprehensive analysis, we delve into the formation of bacterial biofilms, highlighting the specific issues they pose within the realm of food production. Additionally, we provide an overview of various types of common foodborne pathogens that tend to thrive in these biofilms. Furthermore, we summarize existing strategies aimed at tackling or managing detrimental bacterial biofilm growth. We also introduce contemporary approaches that show promise in terms of controlling this issue and highlight their potential for further advancement. Ultimately, our focus lies on outlining prospects for future development as they pertain specifically to combatting bacterial biofilms within the field.

Keywords: foodborne pathogens, food safety, biofilm, resistance, quorum-sensing

Procedia PDF Downloads 59
1630 Bacteriological Quality of Commercially Prepared Fermented Ogi (AKAMU) Sold in Some Parts of South Eastern Nigeria

Authors: Alloysius C. Ogodo, Ositadinma C. Ugbogu, Uzochukwu G. Ekeleme

Abstract:

Food poisoning and infection by bacteria are of public health significance to both developing and developed countries. Samples of ogi (akamu) prepared from white and yellow variety of maize sold in Uturu and Okigwe were analyzed together with the laboratory prepared ogi for microbial quality using the standard microbiological methods. The analyses showed that both white and yellow variety had total bacterial counts (cfu/g) of 4.0 ×107 and 3.9 x 107 for the laboratory prepared ogi while the commercial ogi had 5.2 x 107 and 4.9 x107, 4.9 x107 and 4.5 x107, 5.4 x107 and 5.0 x107 for Eke-Okigwe, Up-gate and Nkwo-Achara market respectively. The Staphylococcal counts ranged from 2.0 x 102 to 5.0 x102 and 1.0 x 102 to 4.0 x102 for the white and yellow variety from the different markets while Staphylococcal growth was not recorded on the laboratory prepared ogi. The laboratory prepared ogi had no Coliform growth while the commercially prepared ogi had counts of 0.5 x103 to 1.6 x 103 for white variety and 0.3 x 103 to 1.1 x103 for yellow variety respectively. The Lactic acid bacterial count of 3.5x106 and 3.0x106 was recorded for the laboratory ogi while the commercially prepared ogi ranged from 3.2x106 to 4.2x106 (white variety) and 3.0 x106 to 3.9 x106 (yellow). The presence of bacteria isolates from the commercial and laboratory fermented ogi showed that Lactobacillus sp, Leuconostoc sp and Citrobacter sp were present in all the samples, Micrococcus sp and Klebsiella sp were isolated from Eke-Okigwe and ABSU-up-gate markets varieties respectively, E. coli and Staphylococcus sp were present in Eke-Okigwe and Nkwo-Achara markets while Salmonella sp were isolated from the three markets. Hence, there are chances of contracting food borne diseases from commercially prepared ogi. Therefore, there is the need for sanitary measures in the production of fermented cereals so as to minimize the rate of food borne pathogens during processing and storage.

Keywords: ogi, fermentation, bacterial quality, lactic acid bacteria, maize

Procedia PDF Downloads 409
1629 Development of Integrated Solid Waste Management Plan for Industrial Estates of Pakistan

Authors: Mehak Masood

Abstract:

This paper aims to design an integrated solid waste management plan for industrial estates taking Sundar Industrial Estate as case model. The issue of solid waste management is on the rise in Pakistan especially in the industrial sector. In this regard, the concept of development and establishment of industrial estates is gaining popularity nowadays. Without proper solid waste management plan it is very difficult to manage day to day affairs of industrial estates. An industrial estate contains clusters of different types of industrial units. It is necessary to identify different types of solid waste streams from each industrial cluster within the estate. In this study, Sundar Industrial Estate was taken as a case model. Primary and secondary data collection, waste assessment, waste segregation and weighing and field surveys were essential elements of the study. Wastes from each industrial process were identified and quantified. Currently 130 industries are in production but after full colonization of industries this number would reach 385. Elaborated process flow diagrams were made to characterize the recyclable and non-recyclables waste. From the study it was calculated that about 12354.1 kg/captia/day of solid waste is being generated in Sundar Industrial Estate. After the full colonization of the industrial estate, the estimated quantity will be 4756328.5 kg/captia/day. Furthermore, solid waste generated from each industrial sector was estimated. Suggestions for collection and transportation are given. Environment friendly solid waste management practices are suggested. If an effective integrated waste management system is developed and implemented it will conserve resources, create jobs, reduce poverty, conserve natural resources, protect the environment, save collection, transportation and disposal costs and extend the life of disposal sites. A major outcome of this study is an integrated solid waste management plan for the Sundar Industrial Estate which requires immediate implementation.

Keywords: integrated solid waste management plan, industrial estates, Sundar Industrial Estate, Pakistan

Procedia PDF Downloads 490
1628 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: efficient building, electric and gas consumption, eQuest, Passive parameters

Procedia PDF Downloads 112
1627 Capacity Enhancement for Agricultural Workers in Mangosteen Product

Authors: Cholpassorn Sitthiwarongchai, Chutikarn Sriviboon

Abstract:

The two primary objectives of this research were (1) to examine the current knowledge and actual circumstance of agricultural workers about mangosteen product processing; and (2) to analyze and evaluate ways to develop capacity of mangosteen product processing. The population of this study was 15,125 people who work in the agricultural sector, in this context, mangosteen production, in the eastern part of Thailand that included Chantaburi Province, Rayong Province, Trad Province and Pracheenburi Province. The sample size based on Yamane’s calculation with 95% reliability was therefore 392 samples. Mixed method was employed included questionnaire and focus group discussion with Connoisseurship Model used in order to collect quantitative and qualitative data. Key informants were used in the focus group including agricultural business owners, academic people in agro food processing, local academics, local community development staff, OTOP subcommittee, and representatives of agro processing industry professional organizations. The study found that the majority of the respondents agreed with a high level (in five-rating scale) towards most of variables of knowledge management in agro food processing. The result of the current knowledge and actual circumstance of agricultural human resource in an arena of mangosteen product processing revealed that mostly, the respondents agreed at a high level to establish 7 variables. The guideline to developing the body of knowledge in order to enhance the capacity of the agricultural workers in mangosteen product processing was delivered in the focus group discussion. The discussion finally contributed to an idea to produce manuals for mangosteen product processing methods, with 4 products chosen: (1) mangosteen soap, (2) mangosteen juice, (3) mangosteen toffee, and (4) mangosteen preserves or jam.

Keywords: capacity enhancement, agricultural workers, mangosteen product processing, marketing management

Procedia PDF Downloads 214
1626 Glycyrrhizic Acid Inhibits Lipopolysaccharide-Stimulated Bovine Fibroblast-Like Synoviocyte, Invasion through Suppression of TLR4/NF-κB-Mediated Matrix Metalloproteinase-9 Expression

Authors: Hosein Maghsoudi

Abstract:

Rheumatois arthritis (RA) is progressive inflammatory autoimmune diseases that primarily affect the joints, characterized by synovial hyperplasia and inflammatory cell infiltration, deformed and painful joints, which can lead tissue destruction, functional disability systemic complications, and early dead and socioeconomic costs. The cause of rheumatoid arthritis is unknown, but genetic and environmental factors are contributory and the prognosis is guarded. However, advances in understanding the pathogenesis of the disease have fostered the development of new therapeutics, with improved outcomes. The current treatment strategy, which reflects this progress, is to initiate aggressive therapy soon after diagnosis and to escalate the therapy, guided by an assessment of disease activity, in pursuit of clinical remission. The pathobiology of RA is multifaceted and involves T cells, B cells, fibroblast-like synoviocyte (FLSc) and the complex interaction of many pro-inflammatory cytokine. Novel biologic agents that target tumor necrosis or interlukin (IL)-1 and Il-6, in addition T- and B-cells inhibitors, have resulted in favorable clinical outcomes in patients with RA. Despite this, at least 30% of RA patients are résistance to available therapies, suggesting novel mediators should be identified that can target other disease-specific pathway or cell lineage. Among the inflammatory cell population that might participated in RA pathogenesis, FLSc are crucial in initiaing and driving RA in concert of cartilage and bone by secreting metalloproteinase (MMPs) into the synovial fluid and by direct invasion into extracellular matrix (ECM), further exacerbating joint damage. Invasion of fibroblast-like synoviocytes (FLSc) is critical in the pathogenesis of rheumatoid-arthritis. The metalloproteinase (MMPs) and activator of Toll-like receptor 4 (TLR4)/nuclear factor- κB pthway play a critical role in RA-FLS invasion induced by lipopolysaccharide (LPS). The present study aimed to explore the anti-invasion activity of Glycyrrhizic Acid as a pharmacologically safe phytochemical agent with potent anti-inflammatory properties on IL-1beta and TNF-alpha signalling pathways in Bovine fibroblast-like synoviocyte ex- vitro, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Results showed that Glycyrrhizic Acid suppressed LPS-stimulated bovine FLS migration and invasion by inhibition MMP-9 expression and activity. In addition our results revealed that Glycyrrhizic Acid inhibited the transcriptional activity of MMP-9 by suppression the nbinding activity of NF- κB in the MMP-9 promoter pathway. The extract of licorice (Glycyrrhiza glabra L.) has been widely used for many centuries in the traditional Chinese medicine as native anti-allergic agent. Glycyrrhizin (GL), a triterpenoidsaponin, extracted from the roots of licorice is the most effective compound for inflammation and allergic diseases in human body. The biological and pharmacological studies revealed that GL possesses many pharmacological effects, such as anti-inflammatory, anti-viral and liver protective effects, and the biological effects, such as induction of cytokines (interferon-γ and IL-12), chemokines as well as extrathymic T and anti-type 2 T cells. GL is known in the traditional Chinese medicine for its anti-inflammatory effect, which is originally described by Finney in 1959. The mechanism of the GL-induced anti-inflammatory effect is based on different pathways of the GL-induced selective inhibition of the prostaglandin E2 production, the CK-II- mediated activation of both GL-binding lipoxygenas (gbLOX; 17) and PLA2, an anti-thrombin action of GL and production of the reactive oxygen species (ROS; GL exerts liver protection properties by inhibiting PLA2 or by the hydroxyl radical trapping action, leading to the lowering of serum alanine and aspartate transaminase levels. The present study was undertaken to examine the possible mechanism of anti-inflammatory properties GL on IL-1beta and TNF-alpha signalling pathways in bovine fibroblast-like synoviocyte ex-vivo, on LPS-stimulated bovine FLS migration and invasion as well as MMP expression and explored the upstream signal transduction. Our results clearly showed that treatment of bovine fibroblast-like synoviocyte with GL suppressed LPS-induced cell migration and invasion. Furthermore, it revealed that GL inhibited the transcription activity of MMP-9 by suppressing the binding activity of NF-κB in the MM-9 promoter. MMP-9 is an important ECM-degrading enzyme and overexpression of MMPs in important of RA-FLSs. LPS can stimulate bovine FLS to secret MMPs, and this induction is regulated at the transcription and translational levels. In this study, LPS treatment of bovine FLS caused an increase in MMP-2 and MMP-9 levels. The increase in MMP-9 expression and secretion was inhibited by ex- vitro. Furthermore, these effects were mimicked by MMP-9 siRNA. These result therefore indicate the the inhibition of LPS-induced bovine FLS invasion by GL occurs primarily by inhibiting MMP-9 expression and activity. Next we analyzed the functional significance of NF-κB transcription of MMP-9 activation in Bovine FLSs. Results from EMSA showed that GL suppressed LPS-induced NF-κB binding to the MMP-9 promotor, as NF-κB regulates transcriptional activation of multiple inflammatory cytokines, we predicted that GL might target NF-κB to suppress MMP-9 transcription by LPS. Myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-κB and apoptotic signaling pathways, GL inhibited the expression of TLR4 and MYD88. These results demonstrated that GL suppress LPS-induced MMP-9 expression through the inhibition of the induced TLR4/NFκB signaling pathway. Taken together, our results provide evidence that GL exerts anti-inflammatory effects by inhibition LPS-induced bovine FLSs migration and invasion, and the mechanisms may involve the suppression of TLR4/NFκB –mediated MMP-9 expression. Although further work is needed to clarify the complicated mechanism of GL-induced anti-invasion of bovine FLSs, GL might be used as a further anti-invasion drug with therapeutic efficacy in the treatment of immune-mediated inflammatory disease such as RA.

Keywords: glycyrrhizic acid, bovine fibroblast-like synoviocyte, tlr4/nf-κb, metalloproteinase-9

Procedia PDF Downloads 391
1625 Hesperidin through Acting on Proliferating Cell Nuclear Antigen and Follicle Stimulating Hormone Receptor Expression Decreased Ovarian Toxicity Induced by Malathion

Authors: Mahnaz Zarein, Hamed Shoorei

Abstract:

Background: Malathion is one of the most toxic agents widely used in agriculture throughout the world. This agent has adverse effects on the functions of multiple organs such as the reproductive system in both male and female genders. On the one hand, daily use of antioxidant supplementations such as hesperidin is capable to neutralize the deleterious impacts of malathion. Therefore, in this experimental study, the protective effects of hesperidin against ovarian toxicity induced by malathion were investigated. Material & Methods: Balb/c adult mice (n=32) were randomly divided into 4 groups including 1) the control group, treated with normal saline, 2) the Mal group, treated with 30mg/kg malathion, daily for 1 month, 3) Mal + Hes group, treated with 20 mg/kg malathion and 20 mg/kg hesperidin, daily for 1 month, and 5) Hes group, treated with 20 mg/kg hesperidin. At the end of the experimental period, mice were anesthetized and their drops of blood were collected to the assessment of some hormones such as LH, FSH, E2, and P4. Also, the right ovaries were used to H&E staining, and the left ovaries were used for IHC staining (PCNA and FSHR). Results: Histopathological assessments showed that the number of follicles, i.e. primordial, primary, and secondary, significantly decreased, while the atretic follicle counts remarkably increased compared to the control group (p<0.05). Hormonal levels revealed that the production of all mentioned hormones decreased in the Mal group in comparison with the control group (p<0.05). The expression of PCNA, as a proliferative marker, and FHSR, as a marker showing maturation, decreased when mice received malathion compared to the control group (p<0.05). Interestingly, treatment with hesperidin significantly neutralized the adverse effects of malathion on all mentioned parameters. Conclusion: Daily use of antioxidant supplementations such as hesperidin could alleviate the ovarian toxicity induced by malathion.

Keywords: malathion, ovary, antioxidant hesperidin, FSHR PCNA, ovary

Procedia PDF Downloads 76
1624 In vitro Effects of Salvia officinalis on Bovine Spermatozoa

Authors: Eva Tvrdá, Boris Botman, Marek Halenár, Tomáš Slanina, Norbert Lukáč

Abstract:

In vitro storage and processing of animal semen represents a risk factor to spermatozoa vitality, potentially leading to reduced fertility. A variety of substances isolated from natural sources may exhibit protective or antioxidant properties on the spermatozoon, thus extending the lifespan of stored ejaculates. This study compared the ability of different concentrations of the Salvia officinalis extract on the motility, mitochondrial activity, viability and reactive oxygen species (ROS) production by bovine spermatozoa during different time periods (0, 2, 6 and 24 h) of in vitro culture. Spermatozoa motility was assessed using the Computer-assisted sperm analysis (CASA) system. Cell viability was examined using the metabolic activity MTT assay, the eosin-nigrosin staining technique was used to evaluate the sperm viability and ROS generation was quantified using luminometry. The CASA analysis revealed that the motility in the experimental groups supplemented with 0.5-2 µg/mL Salvia extract was significantly lower in comparison with the control (P<0.05; Time 24 h). At the same time, a long-term exposure of spermatozoa to concentrations ranging between 0.05 µg/mL and 2 µg/mL had a negative impact on the mitochondrial metabolism (P<0.05; Time 24 h). The viability staining revealed that 0.001-1 µg/mL Salvia extract had no effects on bovine male gametes, however 2 µg/mL Salvia had a persisting negative effect on spermatozoa (P<0.05). Furthermore 0.05-2 µg/mL Salvia exhibited an immediate ROS-promoting effect on the sperm culture (P>0.05; Time 0 h and 2 h), which remained significant throughout the entire in vitro culture (P<0.05; Time 24 h). Our results point out to the necessity to examine specific effects the biomolecules present in Salvia officinalis may have individually or collectively on the in vitro sperm vitality and oxidative profile.

Keywords: bulls, CASA, MTT test, reactive oxygen species, sage, Salvia officinalis, spermatozoa

Procedia PDF Downloads 339
1623 Dynamics of Soil Fertility Management in India: An Empirical Analysis

Authors: B. Suresh Reddy

Abstract:

The over dependence on chemical fertilizers for nutrient management in crop production for the last few decades has led to several problems affecting soil health, environment and farmers themselves. Based on the field work done in 2012-13 with 1080 farmers of different size-classes in semi-arid regions of Uttar Pradesh, Jharkhand and Madhya Pradesh states of India, this paper reveals that the farmers in semi-arid regions of India are actively managing soil fertility and other soil properties through a wide range of practices that are based on local resources and knowledge. It also highlights the socio-economic web woven around these soil fertility management practices. This study highlights the contribution of organic matter by traditional soil fertility management practices in maintaining the soil health. Livestock has profound influence on the soil fertility enhancement through supply of organic manure. Empirical data of this study has clearly revealed how farmers’ soil fertility management options are being undermined by government policies that give more priority to chemical fertiliser-based strategies. Based on the findings it is argued that there should be a 'level playing field' for both organic and inorganic soil fertility management methods by promoting and supporting farmers in using organic methods. There is a need to provide credit to farmers for adopting his choice of soil fertility management methods which suits his socio-economic conditions and that best suits the long term productivity of soils. The study suggests that the government policies related to soil fertility management must be enabling, creating the conditions for development based more on locally available resources and local skills and knowledge. This will not only keep Indian soils in healthy condition but also support the livelihoods of millions of people, especially the small and marginal farmers.

Keywords: livestock, organic matter, small farmers, soil fertility

Procedia PDF Downloads 175
1622 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 231
1621 Comparative Study on Productivity, Chemical Composition and Yield Quality of Some Alternative Crops in Romanian Organic Farming

Authors: Maria Toader, Gheorghe Valentin Roman, Alina Maria Ionescu

Abstract:

Crops diversity and maintaining and enhancing the fertility of agricultural lands are basic principles of organic farming. With a wider range of crops in agroecosystem can improve the ability to control weeds, pests and diseases, and the performance of crops rotation and food safety. In this sense, the main objective of the research was to study the productivity and chemical composition of some alternative crops and their adaptability to soil and climatic conditions of the agricultural area in Southern Romania and to cultivation in the organic farming system. The alternative crops were: lentil (7 genotypes); five species of grain legumes (5 genotypes); four species of oil crops (5 genotypes). The seed production was, on average: 1343 kg/ha of lentil; 2500 kg/ha of field beans; 2400 kg/ha of chick peas and blackeyed peas; more than 2000 kg/ha of atzuki beans, over 1250 kg/ha of fenugreek; 2200 kg/ha of safflower; 570 kg/ha of oil pumpkin; 2150 kg/ha of oil flax; 1518 kg/ha of camelina. Regarding chemical composition, lentil seeds contained: 22.18% proteins, 3.03% lipids, 33.29% glucides, 4.00% minerals, and 259.97 kcal energy values. For field beans: 21.50% proteins, 4.40% lipids, 63.90% glucides, 5.85% minerals, 395.36 kcal energetic value. For chick peas: 21.23% proteins, 4.55% lipids, 53.00% glucides, 3.67% minerals, 348.22 kcal energetic value. For blackeyed peas: 23.30% proteins, 2.10% lipids, 68.10% glucides, 3.93% minerals, 350.14 kcal energetic value. For adzuki beans: 21.90% proteins, 2.60% lipids, 69.30% glucides, 4.10% minerals, 402.48 kcal energetic value. For fenugreek: 21.30% proteins, 4.65% lipids, 63.83% glucides, 5.69% minerals, 396.54 kcal energetic value. For safflower: 12.60% proteins, 28.37% lipids, 46.41% glucides, 3.60% minerals, 505.78 kcal energetic value. For camelina: 20.29% proteins, 31.68% lipids, 36.28% glucides, 4.29% minerals, 526.63 kcal energetic value. For oil pumpkin: 29.50% proteins, 36.92% lipids, 18.50% glucides, 5.41% minerals, 540.15 kcal energetic value. For oil flax: 22.56% proteins, 34.10% lipids, 27.73% glucides, 5.25% minerals, 558.45 kcal energetic value.

Keywords: adaptability, alternative crops, chemical composition, organic farming productivity

Procedia PDF Downloads 518
1620 Theoretical Comparisons and Empirical Illustration of Malmquist, Hicks–Moorsteen, and Luenberger Productivity Indices

Authors: Fatemeh Abbasi, Sahand Daneshvar

Abstract:

Productivity is one of the essential goals of companies to improve performance, which as a strategy-oriented method, determines the basis of the company's economic growth. The history of productivity goes back centuries, but most researchers defined productivity as the relationship between a product and the factors used in production in the early twentieth century. Productivity as the optimal use of available resources means that "more output using less input" can increase companies' economic growth and prosperity capacity. Also, having a quality life based on economic progress depends on productivity growth in that society. Therefore, productivity is a national priority for any developed country. There are several methods for calculating productivity growth measurements that can be divided into parametric and non-parametric methods. Parametric methods rely on the existence of a function in their hypotheses, while non-parametric methods do not require a function based on empirical evidence. One of the most popular non-parametric methods is Data Envelopment Analysis (DEA), which measures changes in productivity over time. The DEA evaluates the productivity of decision-making units (DMUs) based on mathematical models. This method uses multiple inputs and outputs to compare the productivity of similar DMUs such as banks, government agencies, companies, airports, Etc. Non-parametric methods are themselves divided into the frontier and non frontier approaches. The Malmquist productivity index (MPI) proposed by Caves, Christensen, and Diewert (1982), the Hicks–Moorsteen productivity index (HMPI) proposed by Bjurek (1996), or the Luenberger productivity indicator (LPI) proposed by Chambers (2002) are powerful tools for measuring productivity changes over time. This study will compare the Malmquist, Hicks–Moorsteen, and Luenberger indices theoretically and empirically based on DEA models and review their strengths and weaknesses.

Keywords: data envelopment analysis, Hicks–Moorsteen productivity index, Leuenberger productivity indicator, malmquist productivity index

Procedia PDF Downloads 195
1619 Agent-Based Modelling to Improve Dairy-origin Beef Production: Model Description and Evaluation

Authors: Addisu H. Addis, Hugh T. Blair, Paul R. Kenyon, Stephen T. Morris, Nicola M. Schreurs, Dorian J. Garrick

Abstract:

Agent-based modeling (ABM) enables an in silico representation of complex systems and cap-tures agent behavior resulting from interaction with other agents and their environment. This study developed an ABM to represent a pasture-based beef cattle finishing systems in New Zea-land (NZ) using attributes of the rearer, finisher, and processor, as well as specific attributes of dairy-origin beef cattle. The model was parameterized using values representing 1% of NZ dairy-origin cattle, and 10% of rearers and finishers in NZ. The cattle agent consisted of 32% Holstein-Friesian, 50% Holstein-Friesian–Jersey crossbred, and 8% Jersey, with the remainder being other breeds. Rearers and finishers repetitively and simultaneously interacted to determine the type and number of cattle populating the finishing system. Rearers brought in four-day-old spring-born calves and reared them until 60 calves (representing a full truck load) on average had a live weight of 100 kg before selling them on to finishers. Finishers mainly attained weaners from rearers, or directly from dairy farmers when weaner demand was higher than the supply from rearers. Fast-growing cattle were sent for slaughter before the second winter, and the re-mainder were sent before their third winter. The model finished a higher number of bulls than heifers and steers, although it was 4% lower than the industry reported value. Holstein-Friesian and Holstein-Friesian–Jersey-crossbred cattle dominated the dairy-origin beef finishing system. Jersey cattle account for less than 5% of total processed beef cattle. Further studies to include re-tailer and consumer perspectives and other decision alternatives for finishing farms would im-prove the applicability of the model for decision-making processes.

Keywords: agent-based modelling, dairy cattle, beef finishing, rearers, finishers

Procedia PDF Downloads 101
1618 Bioconversion of Capsaicin Using the Optimized Culture Broth of Lipase Producing Bacterium of Stenotrophomonas maltophilia

Authors: Doostishoar Farzad, Forootanfar Hamid, Hasan-Bikdashti Morvarid, Faramarzi Mohammad Ali, Ameri Atefe

Abstract:

Introduction: Chili peppers and related plants in the family of capsaicum produce a mixture of capsaicins represent anticarcinogenic, antimutagenic, and chemopreventive properties. Vanillylamine, the main product of capsaicin hydrolysis is applied as a precursor for manufacturing of natural vanillin (a famous flavor). It is also used in the production of synthetic capsaicins harboring a wide variety of physiological and biological activities such as antibacterial and anti-inflammatory effects as well as enhancing of adrenal catecholamine secretion, analgesic, and antioxidative activities. The ability of some lipases, such as Novozym 677 BG and Novozym 435 and also some proteases e.g. trypsine and penicillin acylase, in capsaicin hydrolysis and green synthesis of vanillylamine has been investigated. In the present study the optimized culture broth of a newly isolated lipase-producing bacterial strain (Stenotrophomonas maltophilia) applied for the hydrolysis of capsaicin. Materials and methods: In order to compare hydrolytic activity of optimized and basal culture broth through capsaicin 2 mL of each culture broth (as sources of lipase) was introduced to capsaicin solution (500 mg/L) and then the reaction mixture (total volume of 3 mL) was incubated at 40 °C and 120 rpm. Samples were taken every 2 h and analyzed for vanillylamine formation using HPLC. Same reaction mixture containing boiled supernatant (to inactivate lipase) designed as blank and each experiment was done in triplicate. Results: 215 mg/L of vanillylamine was produced after the treatment of capsaicin using the optimized medium for 18 h, while only 61 mg/L of vanillylamine was detected in presence of the basal medium under the same conditions. No capsaicin conversion was observed in the blank sample, in which lipase activity was suppressed by boiling of the sample for 10 min. Conclusion: The application of optimized broth culture for the hydrolysis of capsaicin led to a 43% conversion of that pungent compound to vanillylamine.

Keywords: Capsaicin, green synthesis, lipase, stenotrophomonas maltophilia

Procedia PDF Downloads 481
1617 Wear Progress and -Mechanisms in Torpedo Ladles in Steel Industry

Authors: Mattahias Maj, Fabio Tatzgern, Karl Adam, Damir Kahrimanovic, Markus Varga

Abstract:

Torpedo ladles are necessary transport carriages in steel production to move the molten crude iron from the blast furnace to the steel refining plant. This requires the ladles to be high temperature resistant and insulate well to preserve the temperature and hold the risk of solidification at bay. Therefore, the involved refractories lining the inside of the torpedo ladles are chosen mostly according to their thermal properties, although wear of the materials by the liquid iron is also of major importance. In this work, we combined investigations of the thermal behaviour with wear studies of the lining over the whole lifetime of a torpedo ladle. Additional numerical simulations enabled a detailed model of the mechanical loads and temperature propagation at the various stations (heating, filling, emptying, cooling). The core of the investigation were detailed 3D measurements of the ladle’s cavity and thereby quantitative information of the wear progress at different time intervals during the lifetime of the ladles. The measurements allowed for a separation of different wear zones according to severity, namely the “splash zone” where the melt directly hits the ladle, the “melt zone” where during transport always liquid melt is present, and the “slag zone”, where the slag floats on the melt causing the most severe wear loss. Numerical simulations of the filling process were taken to calculate stress levels and temperature gradients, which led to the different onset of wear on those zones. Thermal imaging and punctual temperature measurements allowed for a study of the thermal consequences entailed by the wear onset. Additional “classical” damage analysis of the worn refractories complete the investigation. Thereby the wear mechanisms leading to the substantial wear loss were disclosed.

Keywords: high temperature, tribology, liquid-solid interaction, refractories, thermography

Procedia PDF Downloads 226
1616 Optimisation of Dyes Decolourisation by Bacillus aryabhattai

Authors: A. Paz, S. Cortés Diéguez, J. M. Cruz, A. B. Moldes, J. M. Domínguez

Abstract:

Synthetic dyes are extensively used in the paper, food, leather, cosmetics, pharmaceutical and textile industries. Wastewater resulting from their production means several environmental problems. Improper disposal of theirs effluents involves adverse impacts and not only about the colour, also on water quality (Total Organic Carbon, Biological Oxygen Demand, Chemical Oxygen Demand, suspended solids, salinity, etc.) on flora (inhibition of photosynthetic activity), fauna (toxic, carcinogenic, and mutagenic effects) and human health. The aim of this work is to optimize the decolourisation process of different types of dyes by Bacillus aryabhattai. Initially, different types of dyes (Indigo Carmine, Coomassie Brilliant Blue and Remazol Brilliant Blue R) and suitable culture media (Nutritive Broth, Luria Bertani Broth and Trypticasein Soy Broth) were selected. Then, a central composite design (CCD) was employed to optimise and analyse the significance of each abiotic parameter. Three process variables (temperature, salt concentration and agitation) were investigated in the CCD at 3 levels with 2-star points. A total of 23 experiments were carried out according to a full factorial design, consisting of 8 factorial experiments (coded to the usual ± 1 notation), 6 axial experiments (on the axis at a distance of ± α from the centre), and 9 replicates (at the centre of the experimental domain). Experiments results suggest the efficiency of this strain to remove the tested dyes on the 3 media studied, although Trypticasein Soy Broth (TSB) was the most suitable medium. Indigo Carmine and Coomassie Brilliant Blue at maximal tested concentration 150 mg/l were completely decolourised, meanwhile, an acceptable removal was observed using the more complicate dye Remazol Brilliant Blue R at a concentration of 50 mg/l.

Keywords: Bacillus aryabhattai, dyes, decolourisation, central composite design

Procedia PDF Downloads 221
1615 Evaluation of Certain Medicinal Plants for in vitro Anti-Oxidant and Anti-Glycation Activities

Authors: K. Shailaja

Abstract:

The advanced glycation end products (AGEs) formed between the reducing sugar and protein as a result of Oxidative stress and non-enzymatic glycosylation play an important role in pathogenesis of diabetes and aging complication. Glycation results in the production of free radicals. The oxidation process is believed to play an important role in AGEs formation. Thus agents with antioxidative property and antiglycation activity may retard the process of AGEs formation. Selected medicinal plants for the present study include Catharanthus roseus, Bougainvillea spectabilis (pink flowers), Cinnamomum tamala, Cinnamomum zeylanica, Abutilon indicum, Asparagus racemosus, and Sapindus emarginatus. The crude ethanolic extracts of the selected medicinal plants at varying concentrations ranging from 1-100 mg/ml were evaluated for in vitro antioxidant and protein glycation activities by FRAP and glucose-BSA assay respectively. Among all the plants tested, Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum showed strong antioxidant activity The antioxidant activity was expressed as mg of Gallic acid/ gm sample which was found to be 4.3 mg, 1.3mg, and 1.3mg respectively for Bougainvillea spectabilis, Catharanthus roseus and Abutilon indicum. The results of inhibition of the initial glycation product i.e., fructosamine was found to be 35% for Asparagus racemosus, Cinnamomum tamala and Abutilon indicum followed by the other plant extracts. The results indicate that these plants are potential sources of natural antioxidants which have free radical scavenging activity and might be used not only for reducing oxidative stress in diabetes but also open a new research avenues in the field of Natural Products.

Keywords: in vitro antioxidant activity, anti-glycation activity, ethanol extracts, polyphenols, Catharanthus roseus, Cinnamomum tamala

Procedia PDF Downloads 432
1614 Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67

Authors: Efri Mardawati, Ronny Purwadi, Made Tri Ari Penia Kresnowati, Tjandra Setiadi

Abstract:

EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data.

Keywords: oil palm empty fruit bunches (EFB), xylose, enzymatic hydrolysis, kinetic modelling

Procedia PDF Downloads 389
1613 Dissolved Black Carbon Accelerates the Photo-Degradation of Polystyrene Microplastics

Authors: Qin Ou, Yanghui Xu, Xintu Wang, Kim Maren Lompe, Gang Liu, Jan Peter Van Der Hoek

Abstract:

Microplastics (MPs) can undergo the photooxidation process under ultraviolet (UV) exposure, which determines their transformation and fate in environments. The presence of dissolved organic matter (DOM) can interact with MPs and take participate in the photo-degradation of MPs. As an important DOM component, dissolved black carbon (DBC), widely distributed in aquatic environments, can accelerate or inhibit the sunlight-driven photo-transformation of environmental pollutants. However, the role and underlying mechanism of DBC in the photooxidation of MPs are not clear. Herein, the DBC (< 0.45 µm) was extracted from wood biochar and fractionated by molecular weight (i.e., <3 KDa, 3 KDa−30 KDa, 30 KDa−0.45 µm). The effects of DBC chemical composition (i.e., molecular weight and chemical structure) in DBC-mediated photo-transformation of polystyrene (PS) MPs were investigated. The results showed that DBC initially inhibited the photo-degradation of MPs due to light shielding. Under UV exposure for 6−24 h, the presence of 5 mg/L DBC decreased the carbonyl index of MPs compared to the control. This inhibitory effect of DBC was found to decrease with increasing irradiation time. Notably, DBC initially decreased but then increased the hydroxyl index with aging time, suggesting that the role of DBC may shift from inhibition to acceleration. In terms of the different DBC fractions, the results showed that the smallest fraction of DBC (<3 KDa) significantly accelerated the photooxidation of PS MPs since it acted as reactive oxygen species (ROS) generators, especially in promoting the production of ¹O₂ and ³DBC* and •OH. With the increase in molecular weight, the acceleration effect of DBC on the degradation of MPs was decreased due to the increase of light shielding and possible decrease of photosensitization ability. This study thoroughly investigated the critical role of DBC chemical composition in the photooxidation process, which helps to assess the duration of aging and transformation of MPs during long-term weathering in natural waters.

Keywords: microplastics, photo-degradation, dissolved black carbon, molecular weight, photosensitization

Procedia PDF Downloads 79
1612 Linear Stability Analysis of a Regularized Two-Fluid Model for Unstable Gas-Liquid Flows in Long Hilly Terrain Pipelines

Authors: David Alejandro Lazo-Vasquez, Jorge Luis Balino

Abstract:

In the petroleum industry, multiphase flow occurs when oil, gas, and water are transported in the same pipe through large pipeline systems. The flow can take different patterns depending on parameters like fluid velocities, pipe diameter, pipe inclination, and fluid properties. Mainly, intermittent flow is produced by the natural propagation of short and long waves, according to the Kelvin-Helmholtz Stability Theory. To model stratified flow and the onset of intermittent flow, it is crucial to have knowledge of short and long waves behavior. The two-fluid model, frequently employed for characterizing multiphase systems, becomes ill-posed for high liquid and gas velocities and large inclination angles, for short waves can develop infinite growth rates. We are interested in focusing attention on long-wave instability, which leads to the production of roll waves that may grow and result in the transition from stratified flow to intermittent flow. In this study, global and local linear stability analyses for dynamic and kinematic stability criteria predict the regions of stability of the flow for different pipe inclinations and fluid velocities in regularized and non-regularized systems, concurrently. It was possible to distinguish when: wave growth rates are absolutely bounded (stable stratified smooth flow), waves have finite growth rates (unstable stratified wavy flow), and when the equation system becomes elliptic and hyperbolization is needed. In order to bound short wave growth rates and regularize the equation system, we incorporated some lower and higher-order terms like interfacial drag and surface tension, respectively.

Keywords: linear stability analysis, multiphase flow, onset of slugging, two-fluid model regularization

Procedia PDF Downloads 136
1611 Adverse Curing Conditions and Performance of Concrete: Bangladesh Perspective

Authors: T. Manzur

Abstract:

Concrete is the predominant construction material in Bangladesh. In large projects, stringent quality control procedures are usually followed under the supervision of experienced engineers and skilled labors. However, in the case of small projects and particularly at distant locations from major cities, proper quality control is often an issue. It has been found from experience that such quality related issues mainly arise from inappropriate proportioning of concrete mixes and improper curing conditions. In most cases external curing method is followed which requires supply of adequate quantity of water along with proper protection against evaporation. Often these conditions are found missing in the general construction sites and eventually lead to production of weaker concrete both in terms of strength and durability. In this study, an attempt has been made to investigate the performance of general concreting works of the country when subjected to several adverse curing conditions that are quite common in various small to medium construction sites. A total of six different types of adverse curing conditions were simulated in the laboratory and samples were kept under those conditions for several days. A set of samples was also submerged in normal curing condition having proper supply of curing water. Performance of concrete was evaluated in terms of compressive strength, tensile strength, chloride permeability and drying shrinkage. About 37% and 25% reduction in 28-day compressive and tensile strength were observed respectively, for samples subjected to most adverse curing condition as compared to the samples under normal curing conditions. Normal curing concrete exhibited moderate permeability (close to low permeability) whereas concrete under adverse curing conditions showed very high permeability values. Similar results were also obtained for shrinkage tests. This study, thus, will assist concerned engineers and supervisors to understand the importance of quality assurance during the curing period of concrete.

Keywords: adverse, concrete, curing, compressive strength, drying shrinkage, permeability, tensile strength

Procedia PDF Downloads 202