Search results for: source topic detection
8591 Benefits of Hybrid Mix in Renewable Energy and Integration with E-Efficient Compositions
Authors: Ahmed Khalil
Abstract:
Increased energy demands around the world have led to the raise in power production which has resulted with more greenhouse gas emissions through fossil sources. These fossil sources and emissions cause deterioration in echo-system. Therefore, renewable energy sources come to the scene as echo-friendly and clean energy sourcing, whereas the electrical devices and energy needs decrease in the timeline. Each of these renewable energy sources contribute to the reduction of greenhouse gases and mitigate environmental deterioration. However, there are also some general and source-specific challenges, which influence the choice of the investors. The most prominent general challenge that effects end-users’ comfort and reliability is usually determined as the intermittence which derives from the diversions of source conditions, due to nature dynamics and uncontrolled periodic changes. Research and development professionals strive to mitigate intermittence challenge through material improvement for each renewable source whereas hybrid source mix stand as a solution. This solution prevails well, when single renewable technologies are upgraded further. On the other hand, integration of energy efficient devices and systems, raise the affirmative effect of such solution in means of less energy requirement in sustainability composition or scenario. This paper provides a glimpse on the advantages of composing renewable source mix versus single usage, with contribution of sampled e-efficient systems and devices. Accordingly it demonstrates the extended benefits, through planning and predictive estimation stages of Ahmadi Town Projects in Kuwait.Keywords: e-efficient systems, hybrid source, intermittence challenge, renewable energy
Procedia PDF Downloads 1348590 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling
Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra
Abstract:
Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.Keywords: multi-temporal satellite image, urban growth, non-stationary, stochastic model
Procedia PDF Downloads 4268589 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems
Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi
Abstract:
The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks
Procedia PDF Downloads 3538588 Signal Processing of the Blood Pressure and Characterization
Authors: Hadj Abd El Kader Benghenia, Fethi Bereksi Reguig
Abstract:
In clinical medicine, blood pressure, raised blood hemodynamic monitoring is rich pathophysiological information of cardiovascular system, of course described through factors such as: blood volume, arterial compliance and peripheral resistance. In this work, we are interested in analyzing these signals to propose a detection algorithm to delineate the different sequences and especially systolic blood pressure (SBP), diastolic blood pressure (DBP), and the wave and dicrotic to do their analysis in order to extract the cardiovascular parameters.Keywords: blood pressure, SBP, DBP, detection algorithm
Procedia PDF Downloads 4378587 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups
Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski
Abstract:
In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection
Procedia PDF Downloads 1448586 The Convergence of IoT and Machine Learning: A Survey of Real-time Stress Detection System
Authors: Shreyas Gambhirrao, Aditya Vichare, Aniket Tembhurne, Shahuraj Bhosale
Abstract:
In today's rapidly evolving environment, stress has emerged as a significant health concern across different age groups. Stress that isn't controlled, whether it comes from job responsibilities, health issues, or the never-ending news cycle, can have a negative effect on our well-being. The problem is further aggravated by the ongoing connection to technology. In this high-tech age, identifying and controlling stress is vital. In order to solve this health issue, the study focuses on three key metrics for stress detection: body temperature, heart rate, and galvanic skin response (GSR). These parameters along with the Support Vector Machine classifier assist the system to categorize stress into three groups: 1) Stressed, 2) Not stressed, and 3) Moderate stress. Proposed training model, a NodeMCU combined with particular sensors collects data in real-time and rapidly categorizes individuals based on their stress levels. Real-time stress detection is made possible by this creative combination of hardware and software.Keywords: real time stress detection, NodeMCU, sensors, heart-rate, body temperature, galvanic skin response (GSR), support vector machine
Procedia PDF Downloads 698585 Victims and Violators: Open Source Information, Admissibility Standards, and War Crimes Investigations in Iraq and Syria
Authors: Genevieve Zingg
Abstract:
Modern technology and social media platforms have fundamentally altered the nature of war crimes investigations by providing new forms of data, evidence, and documentation, and pose a unique opportunity to expand the efficacy of international law. However, much of the open source information available is deemed inadmissible in subsequent legal proceedings and fails to function as evidence largely due to issues of reliability and verifiability. Focusing on current judicial investigations related to ongoing conflicts in Syria and Iraq, this paper will examine key challenges and opportunities for the effective use of open source information in securing justice. This paper will consider strategies and approaches that can be used to ensure that information collected by affected populations meets basic admissibility standards. This paper argues that the critical failure to equip civilian populations in conflict zones with knowledge and information regarding established admissibility standards and guidelines both jeopardizes the potential of open source information and compromises the ability of victims to participate effectively in justice and accountability processes. The ultimate purpose of this paper is, therefore, to examine how to maximize the value of open source information based on the rules of evidence in international, regional, and national courts, and how to maximize the participation of affected populations in holding their abusers to account.Keywords: human rights, international criminal law, international justice, international law, Iraq, open source information, social media, Syria, transitional justice, war crimes
Procedia PDF Downloads 3328584 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.Keywords: agricultural object detection, deep learning, machine vision, YOLO family
Procedia PDF Downloads 1958583 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods
Authors: Mohammad Arabi
Abstract:
The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.Keywords: electric motor, fault detection, frequency features, temporal features
Procedia PDF Downloads 458582 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 648581 Phishing Attacks Facilitated by Open Source Intelligence
Authors: Urva Maryam
Abstract:
The information has become an important asset to the current cosmos. Globally, various tactics are being observed to confine the spread of information as it makes people vulnerable to security attacks. Open Source Intelligence (OSINT) is a publicly available source that has disseminated information about users or websites, companies, and various organizations. This paper focuses on the quantitative method of exploring various OSINT tools that reveal public information of personals. This information could further facilitate phishing attacks. Phishing attacks can be launched on email addresses, open ports, and unsecure web-surfing. This study allows to analyze the information retrieved from OSINT tools, i.e. theHarvester, and Maltego that can be used to send phishing attacks to individuals.Keywords: e-mail spoofing, Maltego, OSINT, phishing, spear phishing, theHarvester
Procedia PDF Downloads 1478580 YOLO-IR: Infrared Small Object Detection in High Noise Images
Authors: Yufeng Li, Yinan Ma, Jing Wu, Chengnian Long
Abstract:
Infrared object detection aims at separating small and dim target from clutter background and its capabilities extend beyond the limits of visible light, making it invaluable in a wide range of applications such as improving safety, security, efficiency, and functionality. However, existing methods are usually sensitive to the noise of the input infrared image, leading to a decrease in target detection accuracy and an increase in the false alarm rate in high-noise environments. To address this issue, an infrared small target detection algorithm called YOLO-IR is proposed in this paper to improve the robustness to high infrared noise. To address the problem that high noise significantly reduces the clarity and reliability of target features in infrared images, we design a soft-threshold coordinate attention mechanism to improve the model’s ability to extract target features and its robustness to noise. Since the noise may overwhelm the local details of the target, resulting in the loss of small target features during depth down-sampling, we propose a deep and shallow feature fusion neck to improve the detection accuracy. In addition, because the generalized Intersection over Union (IoU)-based loss functions may be sensitive to noise and lead to unstable training in high-noise environments, we introduce a Wasserstein-distance based loss function to improve the training of the model. The experimental results show that YOLO-IR achieves a 5.0% improvement in recall and a 6.6% improvement in F1-score over existing state-of-art model.Keywords: infrared small target detection, high noise, robustness, soft-threshold coordinate attention, feature fusion
Procedia PDF Downloads 698579 Comparative Analysis of Dissimilarity Detection between Binary Images Based on Equivalency and Non-Equivalency of Image Inversion
Authors: Adnan A. Y. Mustafa
Abstract:
Image matching is a fundamental problem that arises frequently in many aspects of robot and computer vision. It can become a time-consuming process when matching images to a database consisting of hundreds of images, especially if the images are big. One approach to reducing the time complexity of the matching process is to reduce the search space in a pre-matching stage, by simply removing dissimilar images quickly. The Probabilistic Matching Model for Binary Images (PMMBI) showed that dissimilarity detection between binary images can be accomplished quickly by random pixel mapping and is size invariant. The model is based on the gamma binary similarity distance that recognizes an image and its inverse as containing the same scene and hence considers them to be the same image. However, in many applications, an image and its inverse are not treated as being the same but rather dissimilar. In this paper, we present a comparative analysis of dissimilarity detection between PMMBI based on the gamma binary similarity distance and a modified PMMBI model based on a similarity distance that does distinguish between an image and its inverse as being dissimilar.Keywords: binary image, dissimilarity detection, probabilistic matching model for binary images, image mapping
Procedia PDF Downloads 1518578 An Android Application for ECG Monitoring and Evaluation Using Pan-Tompkins Algorithm
Authors: Cebrail Çiflikli, Emre Öner Tartan
Abstract:
Parallel to the fast worldwide increase of elderly population and spreading unhealthy life habits, there is a significant rise in the number of patients and health problems. The supervision of people who have health problems and oversight in detection of people who have potential risks, bring a considerable cost to health system and increase workload of physician. To provide an efficient solution to this problem, in the recent years mobile applications have shown their potential for wide usage in health monitoring. In this paper we present an Android mobile application that records and evaluates ECG signal using Pan-Tompkins algorithm for QRS detection. The application model includes an alarm mechanism that is proposed to be used for sending message including abnormality information and location information to health supervisor.Keywords: Android mobile application, ECG monitoring, QRS detection, Pan-Tompkins Algorithm
Procedia PDF Downloads 2318577 Spatial Mapping and Change Detection of a Coastal Woodland Mangrove Habitat in Fiji
Authors: Ashneel Ajay Singh, Anish Maharaj, Havish Naidu, Michelle Kumar
Abstract:
Mangrove patches are the foundation species located in the estuarine land areas. These patches provide a nursery, food source and protection for numerous aquatic, intertidal and well as land-based organisms. Mangroves also help in coastal protection, maintain water clarity and are one of the biggest sinks for blue carbon sequestration. In the Pacific Island countries, numerous coastal communities have a heavy socioeconomic dependence on coastal resources and mangroves play a key ecological and economical role in structuring the availability of these resources. Fiji has a large mangrove patch located in the Votua area of the Ba province. Globally, mangrove population continues to decline with the changes in climatic conditions and anthropogenic activities. Baseline information through wetland maps and time series change are essential references for development of effective mangrove management plans. These maps reveal the status of the resource and the effects arising from anthropogenic activities and climate change. In this study, we used remote sensing and GIS tools for mapping and temporal change detection over a period of >20 years in Votua, Fiji using Landsat imagery. Landsat program started in 1972 initially as Earth Resources Technology Satellite. Since then it has acquired millions of images of Earth. This archive allows mapping of temporal changes in mangrove forests. Mangrove plants consisted of the species Rhizophora stylosa, Rhizophora samoensis, Bruguiera gymnorrhiza, Lumnitzera littorea, Heritiera littoralis, Excoecaria agallocha and Xylocarpus granatum. Change detection analysis revealed significant reduction in the mangrove patch over the years. This information serves as a baseline for the development and implementation of effective management plans for one of Fiji’s biggest mangrove patches.Keywords: climate change, GIS, Landsat, mangrove, temporal change
Procedia PDF Downloads 1788576 Distorted Document Images Dataset for Text Detection and Recognition
Authors: Ilia Zharikov, Philipp Nikitin, Ilia Vasiliev, Vladimir Dokholyan
Abstract:
With the increasing popularity of document analysis and recognition systems, text detection (TD) and optical character recognition (OCR) in document images become challenging tasks. However, according to our best knowledge, no publicly available datasets for these particular problems exist. In this paper, we introduce a Distorted Document Images dataset (DDI-100) and provide a detailed analysis of the DDI-100 in its current state. To create the dataset we collected 7000 unique document pages, and extend it by applying different types of distortions and geometric transformations. In total, DDI-100 contains more than 100,000 document images together with binary text masks, text and character locations in terms of bounding boxes. We also present an analysis of several state-of-the-art TD and OCR approaches on the presented dataset. Lastly, we demonstrate the usefulness of DDI-100 to improve accuracy and stability of the considered TD and OCR models.Keywords: document analysis, open dataset, optical character recognition, text detection
Procedia PDF Downloads 1708575 A Diagnostic Accuracy Study: Comparison of Two Different Molecular-Based Tests (Genotype HelicoDR and Seeplex Clar-H. pylori ACE Detection), in the Diagnosis of Helicobacter pylori Infections
Authors: Recep Kesli, Huseyin Bilgin, Yasar Unlu, Gokhan Gungor
Abstract:
Aim: The aim of this study was to compare diagnostic values of two different molecular-based tests (GenoType® HelicoDR ve Seeplex® H. pylori-ClaR- ACE Detection) in detection presence of the H. pylori from gastric biopsy specimens. In addition to this also was aimed to determine resistance ratios of H. pylori strains against to clarytromycine and quinolone isolated from gastric biopsy material cultures by using both the genotypic (GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection) and phenotypic (gradient strip, E-test) methods. Material and methods: A total of 266 patients who admitted to Konya Education and Research Hospital Department of Gastroenterology with dyspeptic complaints, between January 2011-June 2013, were included in the study. Microbiological and histopathological examinations of biopsy specimens taken from antrum and corpus regions were performed. The presence of H. pylori in all the biopsy samples was investigated by five differnt dignostic methods together: culture (C) (Portagerm pylori-PORT PYL, Pylori agar-PYL, GENbox microaer, bioMerieux, France), histology (H) (Giemsa, Hematoxylin and Eosin staining), rapid urease test (RUT) (CLOtest, Cimberly-Clark, USA), and two different molecular tests; GenoType® HelicoDR, Hain, Germany, based on DNA strip assay, and Seeplex ® H. pylori -ClaR- ACE Detection, Seegene, South Korea, based on multiplex PCR. Antimicrobial resistance of H. pylori isolates against clarithromycin and levofloxacin was determined by GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection, and gradient strip (E-test, bioMerieux, France) methods. Culture positivity alone or positivities of both histology and RUT together was accepted as the gold standard for H. pylori positivity. Sensitivity and specificity rates of two molecular methods used in the study were calculated by taking the two gold standards previously mentioned. Results: A total of 266 patients between 16-83 years old who 144 (54.1 %) were female, 122 (45.9 %) were male were included in the study. 144 patients were found as culture positive, and 157 were H and RUT were positive together. 179 patients were found as positive with GenoType® HelicoDR and Seeplex ® H. pylori -ClaR- ACE Detection together. Sensitivity and specificity rates of studied five different methods were found as follows: C were 80.9 % and 84.4 %, H + RUT were 88.2 % and 75.4 %, GenoType® HelicoDR were 100 % and 71.3 %, and Seeplex ® H. pylori -ClaR- ACE Detection were, 100 % and 71.3 %. A strong correlation was found between C and H+RUT, C and GenoType® HelicoDR, and C and Seeplex ® H. pylori -ClaR- ACE Detection (r:0.644 and p:0.000, r:0.757 and p:0.000, r:0.757 and p:0.000, respectively). Of all the isolated 144 H. pylori strains 24 (16.6 %) were detected as resistant to claritromycine, and 18 (12.5 %) were levofloxacin. Genotypic claritromycine resistance was detected only in 15 cases with GenoType® HelicoDR, and 6 cases with Seeplex ® H. pylori -ClaR- ACE Detection. Conclusion: In our study, it was concluded that; GenoType® HelicoDR and Seeplex ® H. pylori -ClaR- ACE Detection was found as the most sensitive diagnostic methods when comparing all the investigated other ones (C, H, and RUT).Keywords: Helicobacter pylori, GenoType® HelicoDR, Seeplex ® H. pylori -ClaR- ACE Detection, antimicrobial resistance
Procedia PDF Downloads 1678574 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 4308573 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk
Authors: Kashif Jabbar
Abstract:
Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation
Procedia PDF Downloads 808572 Surface-Enhanced Raman Spectroscopy-Based Detection of SARS-CoV-2 Through In Situ One-pot Electrochemical Synthesis of 3D Au-Lysate Nanocomposite Structures on Plasmonic Au Electrodes
Authors: Ansah Iris Baffour, Dong-Ho Kim, Sung-Gyu Park
Abstract:
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus and is gradually shifting to an endemic phase which implies the outbreak is far from over and will be difficult to eradicate. Global cooperation has led to unified precautions that aim to suppress epidemiological spread (e.g., through travel restrictions) and reach herd immunity (through vaccinations); however, the primary strategy to restrain the spread of the virus in mass populations relies on screening protocols that enable rapid on-site diagnosis of infections. Herein, we employed surface enhanced Raman spectroscopy (SERS) for the rapid detection of SARS-CoV-2 lysate on an Au-modified Au nanodimple(AuND)electrode. Through in situone-pot Au electrodeposition on the AuND electrode, Au-lysate nanocomposites were synthesized, generating3D internal hotspots for large SERS signal enhancements within 30 s of the deposition. The capture of lysate into newly generated plasmonic nanogaps within the nanocomposite structures enhanced metal-spike protein contact in 3D spaces and served as hotspots for sensitive detection. The limit of detection of SARS-CoV-2 lysate was 5 x 10-2 PFU/mL. Interestingly, ultrasensitive detection of the lysates of influenza A/H1N1 and respiratory syncytial virus (RSV) was possible, but the method showed ultimate selectivity for SARS-CoV-2 in lysate solution mixtures. We investigated the practical application of the approach for rapid on-site diagnosis by detecting SARS-CoV-2 lysate spiked in normal human saliva at ultralow concentrations. The results presented demonstrate the reliability and sensitivity of the assay for rapid diagnosis of COVID-19.Keywords: label-free detection, nanocomposites, SARS-CoV-2, surface-enhanced raman spectroscopy
Procedia PDF Downloads 1218571 Malware Detection in Mobile Devices by Analyzing Sequences of System Calls
Authors: Jorge Maestre Vidal, Ana Lucila Sandoval Orozco, Luis Javier García Villalba
Abstract:
With the increase in popularity of mobile devices, new and varied forms of malware have emerged. Consequently, the organizations for cyberdefense have echoed the need to deploy more effective defensive schemes adapted to the challenges posed by these recent monitoring environments. In order to contribute to their development, this paper presents a malware detection strategy for mobile devices based on sequence alignment algorithms. Unlike the previous proposals, only the system calls performed during the startup of applications are studied. In this way, it is possible to efficiently study in depth, the sequences of system calls executed by the applications just downloaded from app stores, and initialize them in a secure and isolated environment. As demonstrated in the performed experimentation, most of the analyzed malicious activities were successfully identified in their boot processes.Keywords: android, information security, intrusion detection systems, malware, mobile devices
Procedia PDF Downloads 2988570 Moving Object Detection Using Histogram of Uniformly Oriented Gradient
Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang
Abstract:
Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine
Procedia PDF Downloads 5928569 Basic Study of Mammographic Image Magnification System with Eye-Detector and Simple EEG Scanner
Authors: Aika Umemuro, Mitsuru Sato, Mizuki Narita, Saya Hori, Saya Sakurai, Tomomi Nakayama, Ayano Nakazawa, Toshihiro Ogura
Abstract:
Mammography requires the detection of very small calcifications, and physicians search for microcalcifications by magnifying the images as they read them. The mouse is necessary to zoom in on the images, but this can be tiring and distracting when many images are read in a single day. Therefore, an image magnification system combining an eye-detector and a simple electroencephalograph (EEG) scanner was devised, and its operability was evaluated. Two experiments were conducted in this study: the measurement of eye-detection error using an eye-detector and the measurement of the time required for image magnification using a simple EEG scanner. Eye-detector validation showed that the mean distance of eye-detection error ranged from 0.64 cm to 2.17 cm, with an overall mean of 1.24 ± 0.81 cm for the observers. The results showed that the eye detection error was small enough for the magnified area of the mammographic image. The average time required for point magnification in the verification of the simple EEG scanner ranged from 5.85 to 16.73 seconds, and individual differences were observed. The reason for this may be that the size of the simple EEG scanner used was not adjustable, so it did not fit well for some subjects. The use of a simple EEG scanner with size adjustment would solve this problem. Therefore, the image magnification system using the eye-detector and the simple EEG scanner is useful.Keywords: EEG scanner, eye-detector, mammography, observers
Procedia PDF Downloads 2148568 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux
Authors: Hao Mi, Ming Yang, Tian-yue Yang
Abstract:
Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing
Procedia PDF Downloads 2218567 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1238566 Preparation of Li Ion Conductive Ceramics via Liquid Process
Authors: M. Kotobuki, M. Koishi
Abstract:
Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.Keywords: co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte
Procedia PDF Downloads 3508565 Phishing Attacks Facilitated by Open Source Intelligence
Authors: Urva Maryam
Abstract:
Information has become an important asset to the current cosmos. Globally, various tactics are being observed to confine the spread of information as it makes people vulnerable to security attacks. Open Source Intelligence (OSINT) is a publicly available source that has disseminated information about users or website, companies, and various organizations. This paper focuses on the quantitative method of exploring various OSINT tools that reveal public information of personals. This information could further facilitate the phishing attacks. Phishing attacks can be launched on email addresses, open ports, and unsecured web-surfing. This study allows to analyze information retrieved from OSINT tools i.e., the Harvester, and Maltego, that can be used to send phishing attacks to individuals.Keywords: OSINT, phishing, spear phishing, email spoofing, the harvester, maltego
Procedia PDF Downloads 808564 3D Multiuser Virtual Environments in Language Teaching
Authors: Hana Maresova, Daniel Ecler
Abstract:
The paper focuses on the use of 3D multi-user virtual environments (MUVE) in language teaching and presents the results of four years of research at the Faculty of Education, Palacký University in Olomouc (Czech Republic). In the form of an experiment, mother tongue language teaching in the 3D virtual worlds Second Life and Kitely (experimental group) and parallel traditional teaching on identical topics representing teacher's interpretation using a textbook (control group) were implemented. The didactic test, which was presented to the experimental and control groups in an identical form before and after the instruction, verified the effect of the instruction in the experimental group by comparing the results obtained by both groups. Within the three components of mother-tongue teaching (vocabulary, literature, style and communication education), the students in the literature group achieved partially better results (statistically significant in the case of items devoted to the area of visualization of the learning topic), while in the case of grammar and style education the respondents of the control group achieved better results. On the basis of the results obtained, we can conclude that the most appropriate use of MUVE can be seen in the teaching of those topics that provide the possibility of dramatization, experiential learning and group involvement and cooperation, on the contrary, with regard to the need to divide students attention between the topic taught and the control of avatar and movement in virtual reality as less suitable for teaching in the area of memorization of the topic or concepts.Keywords: distance learning, 3D virtual environments, online teaching, language teaching
Procedia PDF Downloads 1618563 Marzuq Basin Palaeozoic Petroleum System
Authors: M. Dieb, T. Hodairi
Abstract:
In the Southwest Libya area, the Palaeozoic deposits are an important petroleum system, with Silurian shale considered a hydrocarbon source rock and Cambro-Ordovician recognized as a good reservoir. The Palaeozoic petroleum system has the greatest potential for conventional and is thought to represent the significant prospect of unconventional petroleum resources in Southwest Libya. Until now, the lateral and vertical heterogeneity of the source rock was not well evaluated, and oil-source correlation is still a matter of debate. One source rock, which is considered the main source potential in Marzuq Basin, was investigated for its uranium contents using gamma-ray logs, rock-eval pyrolysis, and organic petrography for their bulk kinetic characteristics to determine the petroleum potential qualitatively and quantitatively. Thirty source rock samples and fifteen oil samples from the Tannezzuft source rock were analyzed by Rock-Eval Pyrolysis, microscopely investigation, GC, and GC-MS to detect acyclic isoprenoids and aliphatic, aromatic, and NSO biomarkers. Geochemistry tools were applied to screen source and age-significant biomarkers to high-spot genetic relationships. A grating heterogeneity exists among source rock zones from different levels of depth with varying uranium contents according to gamma-ray logs, rock-eval pyrolysis results, and kinetic features. The uranium-rich Tannezzuft Formations (Hot Shales) produce oils and oil-to-gas hydrocarbons based on their richness, kerogen type, and thermal maturity. Biomarker results such as C₂₇, C₂₈, and C₂₉ steranes concentrations and C₂₄ tetracyclic terpane/C₂₉ tricyclic terpane ratios, with sterane and hopane ratios, are considered the most promising biomarker information in differentiating within the Silurian Shale Tannezzuft Formation and in correlating with its expelled oils. The Tannezzuft Hot Shale is considered the main source rock for oil and gas accumulations in the Cambro-Ordovician reservoirs within the Marzuq Basin. Migration of the generated and expelled oil and gas from the Tannezzuft source rock to the reservoirs of the Cambro-Ordovician petroleum system was interpreted to have occurred along vertical and lateral pathways along the faults in the Palaeozoic Strata. The Upper Tannezzuft Formation (cold shale) is considered the primary seal in the Marzuq Basin.Keywords: heterogeneity, hot shale, kerogen, Silurian, uranium
Procedia PDF Downloads 608562 Graph-Based Semantical Extractive Text Analysis
Authors: Mina Samizadeh
Abstract:
In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis
Procedia PDF Downloads 68